
INTRODUCTION TO
VIRTUALIZATION

(ISSISP 2014 tutorial)

Federico Maggi — @phretor

federico.maggi@polimi.it

BASIC CONCEPTS

What is Virtualization?

 Virtualization is a very similar concept to emulation
 Emulation: the system pretends to be another system

 e.g., “executing” ARM instructions using a program compiled for and
running on a x86 processor

 Virtualization: the system pretends to be one or more systems

 e.g., multiple operating systems sharing the same CPU

 Emulation & virtualization can co-exist, and multiple virtual
machines of different architectures can run concurrently on the
same physical hardware

 Example: an x86 and an ARM guest running on top of an x86 host

cpu cpu2

cpu cpu1cpu

virtualization emulation

Emulation example (CPU)

 CPU emulation can be accomplished in different ways,
but the underlying concept is the same:

 Binary rewriting (or translation): Take the instruction stream,
and generate another instruction stream.

 This approach is generally slow, because every
instruction—and the I/O operations—must be entirely
handled in software

Emulation: QEMU (example)

 QEMU efficiently emulates a couple of dozens of
architectures, including PowerPC, x86, ARM, MIPS,
Sparc, Alpha, etc.

 In addition to CPU emulation, QEMU, as well as other
emulators, provide device emulation, e.g.:

 VGA display

 PS/2 mouse and keyboard

 block devices

 We will see how QEMU (and other emulators) can be
used to virtualize an entire machine.

CPU Emulation

 Simple to describe, but very challenging to design and
difficult to implement. A few examples:

 management of the translated code

 register allocation

 code optimization

 memory partitioning and management

 self-modifying code support

 exception handling

 hardware interrupts

 The way QEMU performs CPU emulation via binary
translation makes it stand out from the crowd for its
good efficiency and ease of portability.

QEMU Binary Translation Example

 BT via dynamic compilation

 Guest code (PowerPC)
 addi r1,r1,-16 # r1 = r1 – 16

 Target code (x86)
 mov 0x4(%ebp),%ebx

 add $0xfffffff0,%ebx

 mov %ebx,0x4(%ebp)

C

Target
ISA

dyngen

Micro
operations

code
generator

design & compile time

runtime

caching

Micro Operations

 Chosen so that their number is much smaller than all
the combinations of instructions and operands of the
target CPU.

 Translation from target CPU to micro operations is hand
coded in C and then compiled with GCC in the target
CPU object file

 From the previous addi r1,r1,-16 # r1 = r1 – 16

movl_T0_r1 # T0 = r1

addl_T0_im -16 # T0 = T0 - 16

movl_r1_T0 # r1 = T0

 Easy portability is ensured by GCC backends

Micro Operation Implementation

void op_movl_T0_r1(void) /* movl_T0_r1 */

{

 T0 = env->regs[1]; // virtual registers

}

extern int __op_param1;

void op_addl_T0_im(void) /* op_addl_T0_im */

{

 T0 = T0 + ((long)(&__op_param1));

}

Runtime Translation

movl_T0_r1

ebx = env->regs[1]

mov 0x4(%ebp),%ebx

addl_T0_im -16

ebx = ebx - 16

add $0xfffffff0,%ebx

movl_r1_T0

env->regs[1] = ebx

mov %ebx,0x4(%ebp)

Back to Virtualization

Let's give a loose definition:

 “virtualization is a framework or methodology of

dividing the resources of a computer into multiple

execution environments, by applying one or more

concepts or technologies such as hardware and software

partitioning, time-sharing, partial or complete machine

simulation, emulation, quality of service, and many others”

—Amit Singh, An Introduction to Virtualization (Jan, 2004)

http://www.kernelthread.com/publications/virtualization/

Virtualization is an Old Idea

 The concept of virtualization is already applied to
modern operating systems (OSs).

 Examples:
 Scheduling time-sharing technique (CPU Virtualization)

 e.g., each process thinks that it has exclusive access to the CPU,
but the OS's scheduler makes sure that each process gets a fair
share

 Virtual memory layout (Memory Virtualization)

 e.g., each process does not compute the physical memory
addresses on its own, but the OS and the CPU “virtualize” the
physical memory

 Screen multiplexing (Window managers)

 e.g., in a multi-window system, each program draws using pixels
within an area, without checking if other windows are using the
same pixels

Why Virtualize?

 The basic reasons for virtualization are:
 Migration due to HW faults

 (the state of) virtual machines can be serialized and resumed

 Cloning for testing environment, patches etc.

 e.g., old or unsupported architectures
 e.g., save the state of a virtual machine, modify, rollback

 Power usage, exploiting maximum computation power

 e.g., two server each utilizing 20% CPU waste power,
consolidating them to one physical machine with two virtual
machines is easy and saves power

 Very high degree of isolation (Security features)

 e.g., an infected kernel (e.g., rootkit) only affects the processes
running on that virtual machine

 Can you think of other reasons?

Virtualizing a Machine

 An OS is designed to be in total control of the hardware
resources that it manages

 Concurrently running multiple OSs on the same
hardware is simply conflicting with the basic idea of OS

 Virtualizing a machine, with respect to the OS, means
introducing another layer that does a very similar job

 this layer is usually called Virtual Machine Monitor (VMM)

 depending on where it sits, the VMM can take different actions

 Ideally, the VMM has to monitor each CPU instruction
and ensure that each OS is unaffected

 each OS thinks that it has exclusive access to the hardware

 The VMM must be able to have full observability

A Bit of Terminology
Guest OSs

Host OS

Host
Machine

Virtualizing a Machine

 CPU virtualization
 how to run instructions “concurrently”?

 Memory virtualization
 how to isolate each guest OS in a physical memory space?

 Resource management
 how to create, run, destroy, migrate guests?

 There is actually much more, but this is just an intro ;-)

CPU VIRTUALIZATION

CPU Virtualization

 Conceptually very easy
 run a process (i.e., application process, or the kernel),

 interrupt the process,

 save the CPU state,

 run another process, and so on.

 Problem
 the physical CPU and the virtual CPU are not identical

 example: when the CPU is in privileged mode, the OS is allowed
to interfere with the physical hardware (e.g., physical memory)

 the hypervisor must ensure that each vCPU1 and vCPU2 do not
conflict when their respective OS1 and OS2 are accessing the
physical hardware

cpu

vCPU1 vCPU2

hypervisor

OS1 OS2

Privileges: Ring Permission (1/3)

 Protection rings, are mechanisms to protect data and
functionality from faults and malicious behavior.

 A protection ring is one of two, or more, hierarchical
levels or layers of privilege within the architecture of a
computer system.

 This is generally hardware enforced by some CPU
architectures that provide different CPU modes at the
hardware or microcode level.

Privileges: Ring Permission (2/3)

 Special gates (e.g., system calls) between rings are
provided to allow an outer ring to access an inner ring's
resources in a controlled manner, as opposed to
allowing arbitrary usage.

unused

kernel

applications

Privileges: Ring Permission (3/3)

 Privileged (or supervisor) mode
 hardware-mediated flag that can be changed by code running in

system-level software (e.g., OS code).

 System-level tasks or threads will have this flag set while they
are running (ring 0),

 whereas user-space applications will not (ring 3).

 This flag determines whether it would be possible to
execute machine code operations such as

 modifying registers for various descriptor table

 performing operations such as disabling interrupts.

 Speaking of instructions...

Virtualization Requirements
“Formal Requirements for Virtualizability Third Generation
Architectures” (1974). Popek and Goldberg defined a set of
requirements that must be met.

Privileged and Sensitive Instructions

 Privileged instructions
 may execute in a privileged mode (ring 0),

 but will trap if executed outside this mode (ring >0).

 Control-sensitive instructions
 attempt to change the configuration of resources in the system

 e.g., physical memory assigned to a program.

 Behavior-sensitive instructions
 behave in a different way depending on the configuration of

resources

 e.g., load and store operations that act on virtual memory

 Related to so-called “side effects”.

CPU Virtualization: Requirements

 All sensitive instructions must also be privileged
instructions

 so that they trap if executed in non-privileged mode

 Why? A hypervisor must be able to intercept any
instructions that change the state of the machine in a
way that impacts other processes.

 The job of the hypervisor is to keep track of the state of
the CPU, and expose a different state to each OS

 when switching between two OSs, we need to save the state
of the CPU exposed to the first OS, and restore the state for the
new one. And so on.

CPU Virtualization: Requirements

cpu

OS1 OS2

Non-sensitive instructions executed in non-privileged mode

Sensitive instructions executed in privileged mode

hypervisor

it's a trap!

Sensitive instructions executed in non-privileged mode ~> trap!

Problems of x86 Virtualization
 There is a set of 17 instructions in the x86 instruction set that

does not have this property.

 Sensitive register instructions

 Example: the LARLAR and LSLLSL instructions load information
about a specified memory segment. Because these
cannot be trapped, there is no way for the hypervisor
to rearrange the memory layout without a guest OS
finding out.

 Protection system instructions

 Example: SIDT, set the values of certain condition
registers, but have no corresponding load
instructions.

 So, every time they execute they must be trapped and
the new value stored elsewhere as well, so it can be
restored when the virtual machine is re-activated.

Some Solutions for x86 Virtualization

 x86 is a very attractive architecture because is very
widespread

 In order to overcome the issue of x86 architecture we can
use 3 possible solutions:

 Binary Rewriting or Translation ~> workaround

 Paravirtualization ~> workaround

 Hardware-assisted Virtualization ~> makes x86 virtualizable

 The price to pay for the workarounds is either
 performance penalty (binary rewriting)

 modify the OS (paravirtualization)

Binary Translation for Virtualization

 It's conceptually like emulation, but we don't translate
to another architecture's ISA. QEMU can help as well.

 The instruction stream is scanned by the virtualization
environment and privileged instructions are identified.

 Every privileged instruction is rewritten to execute on
an emulated CPU rather than on the real CPU.

 Basically, the guest executes on an interpreter rather
than directly on the physical CPU.

 The interpreter correctly implements non-trapping instructions

 Essentially, the interpreter separates the physical state from
the virtual state.

Binary Translation for Virtualization

 It inserts breakpoints on any jump and on any privileged
instruction.

 When it gets to a jumpjump, the instruction stream reader
needs to quickly scan the next part for privileged
instructions and mark them.

 When it reaches a privileged instruction, it has to emulate
it.

VMware's Approach to BT

Observation: non-privileged instructions are the majority.
Let's optimize those.

 Binary
 Obviously, we're translating x86 op codes.

 Dynamic
 Translation happens at runtime, interleaved with execution of the

generated code.

 On demand (lazy translation)
 Code is translated only when it is about to execute. Side-steps

the problem of telling code and data apart.

 System level
 Makes no assumption about the guest code. It just translates and

execute whatever code. Requires no OS modification.

VMware's Translation Example

VMware

Guest OS
Guest CPU PC

VMware's Translation Example
Translation step

translator-invoking
continuations

Execution step

isPrime(49)
Translation step

Performance Issues

 Consequence: the new control transfers that are
added

 change the code layout (may result in more jumps),

 imply new calls to the translator.

 The more translation-execution-translation switches, the
more speed penalty is introduced.

 Mitigations:
 keep a cache of the translated code blocks, and

 allow translated code blocks to jump between each others when
it's safe to do so, without invoking the translator all the time

VMware Resulting Architecture

Hardware

Paravirtualization (Xen Approach)

 Except for the problematic instructions, x86 is virtualizable

 Ring 1 is unused: lets use it!

Paravirtualization (Xen Approach)

 Approach: ignore the problematic instructions and let the
OS deal with them (i.e., inform the hypervisor).

 If a guest system executes an instruction that doesn’t
trap while inside a paravirtualized environment, the
guest has to deal with the consequences.

 Conceptually, this is similar to the binary rewriting
approach, except that here the rewriting happens at
compile time (or design time), rather than at runtime.

 The OS is designed with support for running in ring 0, but
it runs in ring 1 now

 it means that it cannot execute privileged instructions,
because the will simply fail

Privileged Instructions via Ring 1

 In order to simulate a privileged instruction the
hypervisor exposes a set of hypercalls.

 A hypercall is conceptually similar to a system call. On
UNIX systems, the convention for invoking a system call
is to push the values and then raise an interrupt.

A regular system call from ring 3 (process) to ring 0 (OS)

The OS has interrupt handlers that take care of each
system call.

push dword 0 # push parameters
mov eax, 1 # set the system call
push eax # push syscall identifier
int 80h # raise software interrupt

Ring Transitions with Hypercalls

int 80h int 82h

int 80h

raise int 80hraise int 80h

MEMORY VIRTUALIZATION

Memory Virtualization

 Conceptually easy, but more difficult than CPU
virtualization

 Two main problems, in essence
 (problem 1) the hypervisor must be aware of the physical

memory allocation, to confine each guest OS in an address
space

 (problem 2) modern CPUs cache the virtual-to-physical
address translation to speedup memory accesses

 Consequence
 require significant modification of the guest OS, which needs to

inform the hypervisor before allocating memory

 require significant work from the hypervisor, which needs to
manage the swapping of processes of different OSs

Virtual Memory in Regular OSs

Control
register

Per process

Physical
memory

Virtual
memory

x86 Problems and Solutions

 Solution by user-space hypervisors (e.g., VMware)
 each guest is assigned a virtual page table

 every update to the virtual page table goes through the
hypervisor

 the hypervisor multiplexes the updates of the real page table
for each guest OS

 Price to pay: increased overhead

 Solution by ring-0 hypervisors using PV (e.g., Xen)
 use real page tables as if each guest OS runs in hardware

 give each guest OS read-only access to the page tables (no
overhead for reads)

 Price to pay: modify the guest OS to inform the hypervisor
when page updates are needed (using a hypercall).

How About Cached
Virtual-to-Physical Translations?

 The second problem is that the real CPU manages
cache misses in hardware by walking the OS's page
table

 but...which OS?

 The CPU is unaware that there is more than one OS running!

 Which CR3? The hypervisor intervenes to write a “physical”
address in it, which points to the real physical address.

 Plus, the CPU does not allow to modify its cache

 In paravirtualized guests, this is solved by flushing the
cache at each OS switch (~> performance penalty)

 The guest OS must be modified to inform the
hypervisor every time a new process is allocated

Performance of Paravirtualization

 Most of the instructions run directly in hardware

 Issues
 extra transition step from ring 0 to ring 1 imposes a bit of

overhead

 Less overhead than emulation in binary translation

 Need to port the OS to Xen in order to use the hypercalls an
other few details

 how about closed-source OSs?

Recap on Problems and Solutions

 The issues that we have seen generally boil down to the
fact that hardware

 was designed to run one OS

 has internal state that is not observable or not modifiable
from the outside

 This problem applies to other components such as:
 I/O devices

 modern video cards have a lot of internal states

 time (not really a device, but a very important concept)

 real time vs. CPU time vs. virtual machine time

HARDWARE-ASSISTED
VIRTUALIZATION

Hardware-Assisted Virtualization

unused

kernel

applications

hypervisor

Hardware-Assisted Virtualization

 Radically solved the aforementioned problem for CPUs

 Intel and AMD
 added specific instructions to make virtualization easier for x86

 AMD ~> AMD-V, formerly Pacifica

 Intel ~> IVT or VT

 Result: adding a “ring -1” above ring 0
 the OS stays where it expects to be

 all sensitive instructions can be trapped with no side effects

 no need to modify the OS, at all, yet with the same benefits of the
paravirtualization approach.

Hardware-Assisted Virtualization

 We have two modes:
 VMX Root Mode = VMM at hypervisor level

 VMX Non-Root Operation = Normal execution into the virtual
machine

Hardware-Assisted Virtualization

 IVT adds a new mode to the processor, called VMX

 A hypervisor can run in VMX root mode and be invisible
to the operating system, running in ring 0.

 New instructions set
 enable ~> VMX root-mode is enabled and CPU is configured to

execute the VMM in root-mode.

 vmexit

 access to privileged CPU state
 interrupt virtualization
 I/O device virtualization
 page-table virtualization

 vmresume ~> back to non-root operation

 vmlaunch ~> execute virtual machine non-root mode

Hardware-assisted Memory Mgmt

 Shadow page tables
 implement Xen's page-table update mechanism in hardware

 trap into the hypervisor whenever the guest OS attempts to
update the page table and change the mapping

 Nested page tables (best)
 Adds another level of indirection in memory addressing

 “physical” addresses are not really physical, but those assigned
to the guest

 the CPU transparently handles all this for us!

hypervisor

CPU

R
A

M
Without nested page tables

Guest 1 Guest 2

hypervisor

CPU

vR
A

M
2

Guest 1 Guest 2

With nested page tables

PT1 PT2

vR
A

M
1

OTHER FORMS OFVIRTUALIZATION
(examples)

Other Forms of Virtualization (1/3)
 ABI – Application Binary Interface Virtualization

 allow the execution of binary formats on other OSs

 e.g., Wine: run Windows PE binaries on Linux

 wrapper around Linux system calls to emulate Windows API

Hardware

Kernel (e.g., Linux)

Native application

Native Application Binary Interface (e.g., ELF)

Windows PE

Other Forms of Virtualization (2/3)

 Containers (e.g., Jail, LXC)
 isolated application-level environments

 very lightweight, fast to create and destroy

 multiplex the ABI and filesystem without changing the OS

 increasingly popular for deploying apps in multi-tenant OSs

Hardware

 Kernel

Container 1

app

Container 2

app

app app

app

Storage

Filesystem

Other Forms of Virtualization (3/3)

 Language based
 define an intermediate target language, often called bytecode, for

compiled applications

 usually closer to the source code than to the machine code

 define a semantic and virtual machine for executing the
intermediate language

 allow complete isolation at the “instruction” level

 each application runs in a small virtual machine, which is actually
a process in the guest operating system

 allow program portability across different guests, at the cost of
porting the virtual machine

 popular examples: Java, Dalvik (Android), .NET

APPLICATION OF VIRTUALIZATION
(example)

Using Virtualization for Dynamic
Analysis of Unknown Binaries

 Problem
 x86 executable binary that does something probably bad to our

system.

 we don't know what it does, and have no time to manually
analyze it (as there are ~180 million suspicious binaries out
there)

 Approach
 let it run on a real machine and observe what it does

 interesting actions: system calls, because they imply that
privileged code is executed

 open a network connection, write to a file, place a call, send SMS

Example Process Trace (Mac OS X)

0 = issetugid(0x0, 0x0, 0x0)

0 = geteuid(0x0, 0x0, 0x0)

0 = csops(0x0, 0x0, 0xBFFFF7F4)

12 = shared_region_check_np(0xBFFFD790, 0x0, 0xBFFFF7F4)

0 = __sysctl(0xBFFFD630, 0x2, 0xBFFFD5F8)

0 = stat64("CoreFoundation", 0xBFFFE7B8, 0x1)

...

193084 = write(0x4, "\316\372\355\376\a\0", 0x2F23C)

Naïve Solution

 Modify an open-source OS to log every time a system
call is invoked

 Alternatively, use process-auditing tools (ptrace,
DTrace) to do the same job without modifying the OS

 Prepare a real system, with the modified OS installed and
a few applications

 Launch the binary (revert, repeat for every sample)

 Do you see the problems?
 what if the OS is not open source or have no process auditing?

 a smart malware can realize that a process is being traced, or
that the OS has been modified.

Root of the Problem

 The malware is a user-space process

 Thus has access to the same information that any
process has

 Can invoke system calls (ring 0), inspect their results

 The tracing happens in ring 3, or in the best case in ring 0

 This makes the tracing non transparent with respect to
any process running in ring 3 or ring 0

Virtualization to the Rescue

 We run an unmodified OS on top of a hypervisor

 We work in a virtual ring -1, that is into the hypervisor

 Tools like QEMU or HyperDBG make this very very easy

 What can we do?
 Modify the hypervisor, or use the API provided by the hypervisor

 We can

 intercept “every” instruction
 inspect the memory, the CPU state, etc.

 All without the ring 3 noticing ~> transparent debugging

 Some hypervisors (e.g., WindRiver's) allow backward execution!

Example: CopperDroid

Unmodified guest

QEMU-based
device emulator

Introspection
interface

Semantic
reconstruction

Semantic Gap Problem

 The instruction trace is not very informative
 movl $0x200005d, %eax

 movq %rcx, %r10

 syscall

 jae 0x7fff988ac9b4

 movq %rax, %rdi

 jmpq 0x7fff988a919a

 We need to know the semantic of each instruction and
CPU state

 From that, we can reverse-engineer what system call
was invoked each time

 Most of the time we will have to inspect the memory and
unmarshal (i.e., deserialize) to the objects of interest

System Calls in Linux ARM

 Like on Intel, on ARM architecture invoking a system call
induces a user-to-kernel transition

 On ARM, invoked through the swi interrupt (SoftWare
Interrupt)

 Registers:
 r7 contains the number of the invoked system call

 r0-r5 contain syscall parameters

 lr contains the return address

Example Decoded Trace

fork() = 0x125

getpgid(0x41) = 0x23

setpgid(0x125, 0x23) = 0x0

getuid32() = 0x0

open(“/acct/uid/0/tasks”, …) = ...

fstat64(0x13, 0xbef7f910) = 0x0

mprotect(0x40008000, 0x1000, 0x3) = 0x0

Conclusive Remarks

 Virtualization is basically resource management

 Resources could be anything, from process to hardware

 The hypervisor must have unrestricted read/write access
to the resource to be virtualized

 Virtualizing some CPUs was tricky, but now is easy

 Virtualization is very useful for transparent, dynamic
program analysis

 Malicious programs have started to detect virtual
machines, and refuse to run

THANKS*

Enjoy the rest of the school!

Federico Maggi — @phretor
<federico.maggi@polimi.it>

*thanks to Andrea Lanzi for providing me some material on CPU virtualization.

References

Most of these slides are my personal view on the content
presented in the following papers, books and technical blog
posts:

 Fabrice Bellard, “QEMU, a Fast and Portable Dynamic Translator”, Procs. of
USENIX ATC, 2005.

 Barham et al., “Xen and the Art of Virtualization”, Procs. of SOSP, 2013.

 David Chisnall, “The Definitive Guide to the Xen Hypervisor”, Prentice Hall,
2008.

 Adam K. & Agesen O., “A Comparison of Software and Hardware Techniques
for x86 Virtualization”, Procs. of ASPLOS, 2006.

 Robert P. Goldberg, “A survey of Virtual Machine Research”, Computer, 1974.

 Amit Singh, “An Introduction to Virtualization”, available at
http://kernelthread.com, written in January 2004.

References (continued)

 Bovet and Cesati, “Understanding the Linux Kernel”, 3rd edition, O'Reilly,
2006.

 Reina et al., “A System Call-Centric Analysis and Stimulation Technique to
Automatically Reconstruct Android Malware Behaviors”, Procs. of EuroSec
2013. Tool available online at http://copperdroid.isg.rhul.ac.uk/

 Matthew Portnoy, “Virtualization Essentials”, Wiley, 2012

http://copperdroid.isg.rhul.ac.uk/

