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BASIC CONCEPTS



What is Virtualization?

 Virtualization is a very similar concept to emulation
 Emulation: the system pretends to be another system

 e.g., “executing” ARM instructions using a program compiled for and 
running on a x86 processor

 Virtualization: the system pretends to be one or more systems

 e.g., multiple operating systems sharing the same CPU

 Emulation & virtualization can co-exist, and multiple virtual 
machines of different architectures can run concurrently on the 
same physical hardware

 Example: an x86 and an ARM guest running on top of an x86 host
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Emulation example (CPU)

 CPU emulation can be accomplished in different ways, 
but the underlying concept is the same:

 Binary rewriting (or translation): Take the instruction stream, 
and generate another instruction stream.

 This approach is generally slow, because every 
instruction—and the I/O operations—must be entirely 
handled in software



Emulation: QEMU (example)

 QEMU efficiently emulates a couple of dozens of 
architectures, including PowerPC, x86, ARM, MIPS, 
Sparc, Alpha, etc.

 In addition to CPU emulation, QEMU, as well as other 
emulators, provide device emulation, e.g.:

 VGA display

 PS/2 mouse and keyboard

 block devices

 We will see how QEMU (and other emulators) can be 
used to virtualize an entire machine.



CPU Emulation

 Simple to describe, but very challenging to design and 
difficult to implement. A few examples:

 management of the translated code

 register allocation

 code optimization

 memory partitioning and management

 self-modifying code support

 exception handling

 hardware interrupts

 The way QEMU performs CPU emulation via binary 
translation makes it stand out from the crowd for its 
good efficiency and ease of portability.



QEMU Binary Translation Example

 BT via dynamic compilation

 Guest code (PowerPC)
    addi r1,r1,-16   # r1 = r1 – 16

 Target code (x86)
    mov 0x4(%ebp),%ebx

    add $0xfffffff0,%ebx

    mov %ebx,0x4(%ebp)
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Micro Operations

 Chosen so that their number is much smaller than all 
the combinations of instructions and operands of the 
target CPU.

 Translation from target CPU to micro operations is hand 
coded in C and then compiled with GCC in the target 
CPU object file

 From the previous addi r1,r1,-16   # r1 = r1 – 16

movl_T0_r1 # T0 = r1

addl_T0_im -16 # T0 = T0 - 16

movl_r1_T0 # r1 = T0

 Easy portability is ensured by GCC backends



Micro Operation Implementation

void op_movl_T0_r1(void) /* movl_T0_r1 */

{

    T0 = env->regs[1]; // virtual registers

}

extern int __op_param1;

void op_addl_T0_im(void) /* op_addl_T0_im */

{

    T0 = T0 + ((long)(&__op_param1));

}



Runtime Translation

# movl_T0_r1

# ebx = env->regs[1]

mov    0x4(%ebp),%ebx

# addl_T0_im -16

# ebx = ebx - 16

add    $0xfffffff0,%ebx

# movl_r1_T0

# env->regs[1] = ebx

mov    %ebx,0x4(%ebp)



Back to Virtualization

Let's give a loose definition:

    “virtualization is a framework or methodology of 

dividing the resources of a computer into multiple 

execution environments, by applying one or more 

concepts or technologies such as hardware and software 

partitioning, time-sharing, partial or complete machine 

simulation, emulation, quality of service, and many others”

—Amit Singh, An Introduction to Virtualization (Jan, 2004)

http://www.kernelthread.com/publications/virtualization/


Virtualization is an Old Idea

 The concept of virtualization is already applied to 
modern operating systems (OSs).

 Examples:
 Scheduling time-sharing technique (CPU Virtualization)

 e.g., each process thinks that it has exclusive access to the CPU, 
but the OS's scheduler makes sure that each process gets a fair 
share

 Virtual memory layout (Memory Virtualization)

 e.g., each process does not compute the physical memory 
addresses on its own, but the OS and the CPU “virtualize” the 
physical memory

 Screen multiplexing (Window managers)

 e.g., in a multi-window system, each program draws using pixels 
within an area, without checking if other windows are using the 
same pixels



Why Virtualize?

 The basic reasons for virtualization are:
 Migration due to HW faults

 (the state of) virtual machines can be serialized and resumed

 Cloning for testing environment, patches etc.

 e.g., old or unsupported architectures
 e.g., save the state of a virtual machine, modify, rollback

 Power usage, exploiting maximum computation power

 e.g., two server each utilizing 20% CPU waste power, 
consolidating them to one physical machine with two virtual 
machines is easy and saves power

 Very high degree of isolation (Security features)

 e.g., an infected kernel (e.g., rootkit) only affects the processes 
running on that virtual machine

 Can you think of other reasons?



Virtualizing a Machine

 An OS is designed to be in total control of the hardware 
resources that it manages

 Concurrently running multiple OSs on the same 
hardware is simply conflicting with the basic idea of OS

 Virtualizing a machine, with respect to the OS, means 
introducing another layer that does a very similar job

 this layer is usually called Virtual Machine Monitor (VMM)

 depending on where it sits, the VMM can take different actions

 Ideally, the VMM has to monitor each CPU instruction 
and ensure that each OS is unaffected

 each OS thinks that it has exclusive access to the hardware

 The VMM must be able to have full observability



A Bit of Terminology
Guest OSs

Host OS

Host 
Machine



Virtualizing a Machine

 CPU virtualization
 how to run instructions “concurrently”?

 Memory virtualization
 how to isolate each guest OS in a physical memory space?

 Resource management
 how to create, run, destroy, migrate guests?

 There is actually much more, but this is just an intro ;-)



CPU VIRTUALIZATION



CPU Virtualization

 Conceptually very easy
 run a process (i.e., application process, or the kernel),

 interrupt the process,

 save the CPU state,

 run another process, and so on.

 Problem
 the physical CPU and the virtual CPU are not identical

 example: when the CPU is in privileged mode, the OS is allowed 
to interfere with the physical hardware (e.g., physical memory)

 the hypervisor must ensure that each vCPU1 and vCPU2 do not 
conflict when their respective OS1 and OS2 are accessing the 
physical hardware

cpu
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Privileges: Ring Permission (1/3)

 Protection rings, are mechanisms to protect data and 
functionality from faults and malicious behavior.

 A protection ring is one of two, or more, hierarchical 
levels or layers of privilege within the architecture of a 
computer system.

 This is generally hardware enforced by some CPU 
architectures that provide different CPU modes at the 
hardware or microcode level.



Privileges: Ring Permission (2/3)

 Special gates  (e.g., system calls) between rings are 
provided to allow an outer ring to access an inner ring's 
resources in a controlled manner, as opposed to 
allowing arbitrary usage.
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applications



Privileges: Ring Permission (3/3)

 Privileged (or supervisor) mode
 hardware-mediated flag that can be changed by code running in 

system-level software (e.g., OS code).

 System-level tasks or threads will have this flag set while they 
are running (ring 0),

 whereas user-space applications will not (ring 3).

 This flag determines whether it would be possible to 
execute machine code operations such as

 modifying registers for various descriptor table

 performing operations such as disabling interrupts.

 Speaking of instructions...



Virtualization Requirements
“Formal Requirements for Virtualizability Third Generation 
Architectures” (1974). Popek and Goldberg defined a set of 
requirements that must be met.



Privileged and Sensitive Instructions

 Privileged instructions
 may execute in a privileged mode (ring 0),

 but will trap if executed outside this mode (ring >0).

 Control-sensitive instructions
 attempt to change the configuration of resources in the system 

 e.g., physical memory assigned to a program.

 Behavior-sensitive instructions
 behave in a different way depending on the configuration of 

resources

 e.g., load and store operations that act on virtual memory

 Related to so-called “side effects”.



CPU Virtualization: Requirements

 All sensitive instructions must also be privileged 
instructions

 so that they trap if executed in non-privileged mode

 Why? A hypervisor must be able to intercept any 
instructions that change the state of the machine in a 
way that impacts other processes.

 The job of the hypervisor is to keep track of the state of 
the CPU, and expose a different state to each OS

 when switching between two OSs, we need to save the state 
of the CPU exposed to the first OS, and restore the state for the 
new one. And so on.



CPU Virtualization: Requirements
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Sensitive instructions executed in non-privileged mode ~> trap!



Problems of x86 Virtualization
 There is a set of 17 instructions in the x86 instruction set that 

does not have this property.

 Sensitive register instructions

 Example: the LARLAR and LSLLSL instructions load information 
about a specified memory segment. Because these 
cannot be trapped, there is no way for the hypervisor 
to rearrange the memory layout without a guest OS 
finding out.

 Protection system instructions

 Example: SIDT, set the values of certain condition 
registers, but have no corresponding load 
instructions.

 So, every time they execute they must be trapped and 
the new value stored elsewhere as well, so it can be 
restored when the virtual machine is re-activated.



Some Solutions for x86 Virtualization

 x86 is a very attractive architecture because is very 
widespread

 In order to overcome the issue of x86 architecture we can 
use 3 possible solutions:

 Binary Rewriting or Translation ~> workaround

 Paravirtualization ~> workaround

 Hardware-assisted Virtualization ~> makes x86 virtualizable

 The price to pay for the workarounds is either
 performance penalty (binary rewriting)

 modify the OS (paravirtualization)



Binary Translation for Virtualization

 It's conceptually like emulation, but we don't translate 
to another architecture's ISA. QEMU can help as well.

 The instruction stream is scanned by the virtualization 
environment and privileged instructions are identified.

 Every privileged instruction is rewritten to execute on 
an emulated CPU rather than on the real CPU.

 Basically, the guest executes on an interpreter rather 
than directly on the physical CPU.

 The interpreter correctly implements non-trapping instructions

 Essentially, the interpreter separates the physical state from 
the virtual state.



Binary Translation for Virtualization

 It inserts breakpoints on any jump and on any privileged 
instruction. 

 When it gets to a jumpjump, the instruction stream reader 
needs to quickly scan the next part for privileged 
instructions and mark them. 

 When it reaches a privileged instruction, it has to emulate 
it.



VMware's Approach to BT

Observation: non-privileged instructions are the majority. 
Let's optimize those.

 Binary
 Obviously, we're translating x86 op codes.

 Dynamic
 Translation happens at runtime, interleaved with execution of the 

generated code.

 On demand (lazy translation)
 Code is translated only when it is about to execute. Side-steps 

the problem of telling code and data apart.

 System level
 Makes no assumption about the guest code. It just translates and 

execute whatever code. Requires no OS modification.



VMware's Translation Example

VMware

Guest OS
Guest CPU PC



VMware's Translation Example
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continuations

Execution step

isPrime(49)
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Performance Issues

 Consequence: the new control transfers that are 
added

 change the code layout (may result in more jumps),

 imply new calls to the translator.

 The more translation-execution-translation switches, the 
more speed penalty is introduced.

 Mitigations:
 keep a cache of the translated code blocks, and

 allow translated code blocks to jump between each others when 
it's safe to do so, without invoking the translator all the time



VMware Resulting Architecture

Hardware



Paravirtualization (Xen Approach)

 Except for the problematic instructions, x86 is virtualizable

 Ring 1 is unused: lets use it!



Paravirtualization (Xen Approach)

 Approach: ignore the problematic instructions and let the 
OS deal with them (i.e., inform the hypervisor).

 If a guest system executes an instruction that doesn’t 
trap while inside a paravirtualized environment, the 
guest has to deal with the consequences.

 Conceptually, this is similar to the binary rewriting 
approach, except that here the rewriting happens at 
compile time (or design time), rather than at runtime.

 The OS is designed with support for running in ring 0, but 
it runs in ring 1 now

 it means that it cannot execute privileged instructions, 
because the will simply fail



Privileged Instructions via Ring 1

 In order to simulate a privileged instruction the 
hypervisor exposes a set of hypercalls.

 A hypercall is conceptually similar to a system call. On 
UNIX systems, the convention for invoking a system call 
is to push the values and then raise an interrupt.

A regular system call from ring 3 (process) to ring 0 (OS)

The OS has interrupt handlers that take care of each 
system call.

push dword 0 # push parameters
mov eax, 1 # set the system call
push eax # push syscall identifier
int 80h # raise software interrupt



Ring Transitions with Hypercalls

int 80h int 82h

int 80h

raise int 80hraise int 80h



MEMORY VIRTUALIZATION



Memory Virtualization

 Conceptually easy, but more difficult than CPU 
virtualization

 Two main problems, in essence
 (problem 1) the hypervisor must be aware of the physical 

memory allocation, to confine each guest OS in an address 
space

 (problem 2) modern CPUs cache the virtual-to-physical 
address translation to speedup memory accesses

 Consequence
 require significant modification of the guest OS, which needs to 

inform the hypervisor before allocating memory

 require significant work from the hypervisor, which needs to 
manage the swapping of processes of different OSs



Virtual Memory in Regular OSs
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x86 Problems and Solutions

 Solution by user-space hypervisors (e.g., VMware)
 each guest is assigned a virtual page table

 every update to the virtual page table goes through the 
hypervisor

 the hypervisor multiplexes the updates of the real page table 
for each guest OS

 Price to pay: increased overhead

 Solution by ring-0 hypervisors using PV (e.g., Xen)
 use real page tables as if each guest OS runs in hardware

 give each guest OS read-only access to the page tables (no 
overhead for reads)

 Price to pay: modify the guest OS to inform the hypervisor 
when page updates are needed (using a hypercall).



How About Cached
Virtual-to-Physical Translations?

 The second problem is that the real CPU manages 
cache misses in hardware by walking the OS's page 
table

 but...which OS?

 The CPU is unaware that there is more than one OS running!

 Which CR3? The hypervisor intervenes to write a “physical” 
address in it, which points to the real physical address.

 Plus, the CPU does not allow to modify its cache

 In paravirtualized guests, this is solved by flushing the 
cache at each OS switch (~> performance penalty)

 The guest OS must be modified to inform the 
hypervisor every time a new process is allocated



Performance of Paravirtualization

 Most of the instructions run directly in hardware

 Issues
 extra transition step from ring 0 to ring 1 imposes a bit of 

overhead

 Less overhead than emulation in binary translation

 Need to port the OS to Xen in order to use the hypercalls an 
other few details

 how about closed-source OSs?



Recap on Problems and Solutions

 The issues that we have seen generally boil down to the 
fact that hardware

 was designed to run one OS

 has internal state that is not observable or not modifiable 
from the outside

 This problem applies to other components such as:
 I/O devices

 modern video cards have a lot of internal states

 time (not really a device, but a very important concept)

 real time vs. CPU time vs. virtual machine time



HARDWARE-ASSISTED
VIRTUALIZATION



Hardware-Assisted Virtualization 
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Hardware-Assisted Virtualization 

 Radically solved the aforementioned problem for CPUs

 Intel and AMD
 added specific instructions to make virtualization easier for x86

 AMD ~> AMD-V, formerly Pacifica

 Intel ~> IVT or VT

 Result: adding a “ring -1” above ring 0
 the OS stays where it expects to be

 all sensitive instructions can be trapped with no side effects

 no need to modify the OS, at all, yet with the same benefits of the 
paravirtualization approach.



Hardware-Assisted Virtualization 

 We have two modes:
 VMX Root Mode = VMM at hypervisor level

 VMX Non-Root Operation = Normal execution into the virtual 
machine



Hardware-Assisted Virtualization

 IVT adds a new mode to the processor, called VMX

 A hypervisor can run in VMX root mode and be invisible 
to the operating system, running in ring 0.

 New instructions set
 enable ~> VMX root-mode is enabled and CPU is configured to 

execute the VMM in root-mode.

 vmexit

 access to privileged CPU state
 interrupt virtualization
 I/O device virtualization
 page-table virtualization

 vmresume ~> back to non-root operation

 vmlaunch ~> execute virtual machine non-root mode



Hardware-assisted Memory Mgmt

 Shadow page tables
 implement Xen's page-table update mechanism in hardware

 trap into the hypervisor whenever the guest OS attempts to 
update the page table and change the mapping

 Nested page tables (best)
 Adds another level of indirection in memory addressing

 “physical” addresses are not really physical, but those assigned 
to the guest

 the CPU transparently handles all this for us!
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OTHER FORMS OFVIRTUALIZATION
(examples)



Other Forms of Virtualization (1/3)
 ABI – Application Binary Interface Virtualization

 allow the execution of binary formats on other OSs 

 e.g., Wine: run Windows PE binaries on Linux

 wrapper around Linux system calls to emulate Windows API

Hardware

Kernel (e.g., Linux)

Native application

Native Application Binary Interface (e.g., ELF)

Windows PE



Other Forms of Virtualization (2/3)

 Containers (e.g., Jail, LXC)
 isolated application-level environments

 very lightweight, fast to create and destroy

 multiplex the ABI and filesystem without changing the OS

 increasingly popular for deploying apps in multi-tenant OSs
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Container 1

app
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Other Forms of Virtualization (3/3)

 Language based
 define an intermediate target language, often called bytecode, for 

compiled applications

 usually closer to the source code than to the machine code

 define a semantic and virtual machine for executing the 
intermediate language

 allow complete isolation at the “instruction” level

 each application runs in a small virtual machine, which is actually 
a process in the guest operating system

 allow program portability across different guests, at the cost of 
porting the virtual machine

 popular examples: Java, Dalvik (Android), .NET



APPLICATION OF VIRTUALIZATION
(example)



Using Virtualization for Dynamic 
Analysis of Unknown Binaries

 Problem
 x86 executable binary that does something probably bad to our 

system.

 we don't know what it does, and have no time to manually 
analyze it (as there are ~180 million suspicious binaries out 
there)

 Approach
 let it run on a real machine and observe what it does

 interesting actions: system calls, because they imply that 
privileged code is executed

 open a network connection, write to a file, place a call, send SMS



Example Process Trace (Mac OS X)

0 = issetugid(0x0, 0x0, 0x0)

0 = geteuid(0x0, 0x0, 0x0)

0 = csops(0x0, 0x0, 0xBFFFF7F4)

12 = shared_region_check_np(0xBFFFD790, 0x0, 0xBFFFF7F4)

0 =  __sysctl(0xBFFFD630, 0x2, 0xBFFFD5F8)

0 = stat64("CoreFoundation", 0xBFFFE7B8, 0x1)

...

193084 = write(0x4, "\316\372\355\376\a\0", 0x2F23C)



Naïve Solution

 Modify an open-source OS to log every time a system 
call is invoked

 Alternatively, use process-auditing tools (ptrace, 
DTrace) to do the same job without modifying the OS

 Prepare a real system, with the modified OS installed and 
a few applications

 Launch the binary (revert, repeat for every sample)

 Do you see the problems?
 what if the OS is not open source or have no process auditing?

 a smart malware can realize that a process is being traced, or 
that the OS has been modified.



Root of the Problem

 The malware is a user-space process

 Thus has access to the same information that any 
process has

 Can invoke system calls (ring 0), inspect their results

 The tracing happens in ring 3, or in the best case in ring 0

 This makes the tracing non transparent with respect to 
any process running in ring 3 or ring 0



Virtualization to the Rescue

 We run an unmodified OS on top of a hypervisor

 We work in a virtual ring -1, that is into the hypervisor

 Tools like QEMU or HyperDBG make this very very easy

 What can we do?
 Modify the hypervisor, or use the API provided by the hypervisor

 We can

 intercept “every” instruction
 inspect the memory, the CPU state, etc.

 All without the ring 3 noticing ~> transparent debugging

 Some hypervisors (e.g., WindRiver's) allow backward execution!
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Semantic Gap Problem

 The instruction trace is not very informative
        movl   $0x200005d, %eax

        movq   %rcx, %r10

        syscall 

        jae    0x7fff988ac9b4   

        movq   %rax, %rdi

        jmpq   0x7fff988a919a

 We need to know the semantic of each instruction and 
CPU state

 From that, we can reverse-engineer what system call 
was invoked each time

 Most of the time we will have to inspect the memory and 
unmarshal (i.e., deserialize) to the objects of interest



System Calls in Linux ARM

 Like on Intel, on ARM architecture invoking a system call 
induces a user-to-kernel transition

 On ARM, invoked through the swi interrupt (SoftWare 
Interrupt)

 Registers:
 r7 contains the number of the invoked system call

 r0-r5 contain syscall parameters

 lr contains the return address



Example Decoded Trace

fork( ) = 0x125

getpgid(0x41) = 0x23

setpgid(0x125, 0x23) = 0x0

getuid32( ) = 0x0

open(“/acct/uid/0/tasks”, …) = ...

fstat64(0x13, 0xbef7f910) = 0x0

mprotect(0x40008000, 0x1000, 0x3) = 0x0



Conclusive Remarks

 Virtualization is basically resource management

 Resources could be anything, from process to hardware

 The hypervisor must have unrestricted read/write access 
to the resource to be virtualized

 Virtualizing some CPUs was tricky, but now is easy

 Virtualization is very useful for transparent, dynamic 
program analysis

 Malicious programs have started to detect virtual 
machines, and refuse to run



THANKS*

Enjoy the rest of the school!

Federico Maggi — @phretor
<federico.maggi@polimi.it>

*thanks to Andrea Lanzi for providing me some material on CPU virtualization.
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