
The versatile RF-analysis tool that quacks!
With ♥ From Trend Micro Research

Presented at HITB 2019 Armory by:
Federico Maggi, @phretor

With ♥ From Trend Micro Research
This work wouldn't have been possible without the support of my employer.

In particular, I'd like to thank:

● Managers and execs, who believed in this project and let me work on it
● Jonathan Andersson, who inspired and helped me debugging the quirks of the

CC1120
● Philippe Lin, an early adopter of (the first-ever prototype of) RFQuack
● Marco Balduzzi, who never stopped asking me "how's RFQuack going?"
● Jullienne Yerro, and the rest of the marketing team for the beautiful logo (kudos to

Jojo Mendoza for that) and the media support

Signal Analysis 101

From Symbols to Signal: Baseband Data

From Symbols to Signal: Amplitude Shift

From Symbols to Signal: Frequency Shift

From Symbols to Signal: Phase Shift

From Signal to Symbols

01010110110101010010101101101111010111111010101

The Hard Part is not Over

From Bits to Packets

101010101010101010101010 0101001010110110111101 ………

Preamble Sync Words TrailerPayload

Still, we Haven't Reverse Engineered the Protocol

From Packets to Application Payload

101010101010101010101010 0101001010110110111101 ………

Preamble Sync Words TrailerHeader Fields Data

Custom application protocol
(with security through obscurity baked in, usually)

Software Defined Radios

SDRs - Main Idea: Take Many RF Signal Samples

SDRs: Pros vs. Cons

● Great for signal reconnaissance
● Very flexible: you get straight

access to the raw signal
● Software support to assist in

writing radios

● You have to write your own radio
in software

● Radio accuracy is up to you
● Serious ones can be expensive

Bottom Line
It's hard to build an accurate

and reliable radio

RF Dongles

RF Dongles - Main Idea: Embedded Radio

RF Dongles: Pros vs. Cons

● Great to quickly demodulate
signals

● Very accurate: you get reliable
access to the demodulated
bitstream

● As fast as the hardware radio

● Not as flexible as SDRs
● Demodulation support is limited to

what the hardware can do

Bottom Line
There's no such thing like a

"generic RF dongle"

The Perfect Corner Case

TI CC11xx's in 4-FSK

It's still 4-FSK, but it uses only 2 symbols for preamble and sync Then switches to 4 symbols

But but...the TI CC1111 can do 4-FSK

Principles

Hardware Modularity

Supports any embedded radio

Supports "any" MCU

Software Abstraction With Full Low-level Control

● High-level operations
○ Set frequency
○ Switch mode (TX, RX, IDLE)
○ Reset radio

● Low-level operations
○ Set register to value
○ Get register value
○ Upcoming: straight access to make SPI transactions from the Python client

Developer Friendly
● C + Arduino compatible + build system based on PlatformIO
● Simple and clean API: Inspired by, and including MQTT

■ Inbound >[command]~Base64([Protobuf-serialized blob])

■ Outbound <[command]~Base64([Protobuf-serialized blob])

[RFQ] 156 T: RFQuack data structure initialized: WEMOSD1_CC1120
[RFQ] 464 T: Connecting WEMOSD1_CC1120_6c54 to MQTT broker 192.168.42.225:1883
[RFQ] 2117 T: MQTT connected

...
[RFQ] 2130 T: Subscribed to topic: rfquack/in/#
[RHAL] SRES
[RHAL] SCAL
[RHAL] SIDLE
[RHAL] START MARCSTATE.MARC_STATE ==============================
[RHAL] Waiting for MARCSTATE.MARC_STATE == 0b1
[RHAL] END MARCSTATE.MARC_STATE ==============================
[RHAL] IRQ bus clear
[RHAL] _variablePayloadLen = 1

From RFQuack

From the radio driver

● Verbose, configurable logging facility

Cut the Cords

WiFi, Cellular

Comparison Matrix
SDRs YardStickOne PandwaRF

Supported Radios Any (software) CC1101 CC1101 Any (even multi radio)

Client Support Lots of options RFCat firmware and
client

RFCat client Developer-friendly API

Open Software Depends Yes Not the firmware Yes, Arduino compatible

Open Hardware Depends Yes Yes Yes

Connectivity USB, Gigabit USB USB, BT USB, WiFi, Cellular

Price $20–2000 >= $100 >= $110 >= $40

Getting Started

Get and Assemble the Hardware

What the Hardware!?
● Pick any SPI (Serial Peripheral Interface) embedded radio module

○ Available anywhere from Adafruit, Sparkful, eBay, Amazon, AliExpress
○ RFM69, CC1111, CC1120, nRF24, nRF51

● Hint: there are pre-made shields for popular radios (e.g., FeatherWing Radio)
● Connect SPI pins

○ MOSI
○ MISO
○ SCLK
○ CS

● Plus at least one interrupt line to the MCU's GPIO pin
● Add an antenna

Make it Nicer (and give it a modem)

Check out the Code
$ git clone https://github.com/trendmicro/RFQuack

$ cd RFQuack

$ pip install -r src/client/requirements.pip

$ pio install -g <library name> # from library.json

$ cd examples/

https://github.com/trendmicro/RFQuack

RFQuack-<board>-<radio>-<transport>

<no transport> = MQTT, by default

Configure the Firmware "src/main.cpp"
#define RFQUACK_UNIQ_ID "WEMOSD1_CC1120" // <- unique ID

#define RFQUACK_NETWORK_ESP8266

#include "wifi_credentials.h" // <- not committed because it contains secrets

#define RFQUACK_TRANSPORT_MQTT

#define RFQUACK_MQTT_BROKER_HOST "192.168.42.225" // <- MQTT broker IP or hostname (credentials are supported too)

#define RFQUACK_RADIO_CC1120 // <- Radio chip (CC1120 and RF69 are supported as of now)

#define RFQUACK_RADIO_PIN_CS 15 // <- SPI Slave select PIN

#define RFQUACK_RADIO_PIN_IRQ 4 // <- Interrupt PIN

#define RFQUACK_RADIO_PIN_RST 5 // <- Reset PIN

#define RFQUACK_DEBUG_RADIO true

#define RFQUACK_DEV

#define RFQUACK_LOG_SS_DISABLED // <- Disable SoftwareSerial logging (we're using HardwareSerial)

#include "rfquack.h"

void setup() { rfquack_setup(); } void loop() { rfquack_loop(); }

Mind the Serial Port in "platformio.ini"
[env:d1_mini]

platform = espressif8266

board = d1_mini

framework = arduino

upload_port = /dev/cu.wchusbserial14110

monitor_port = /dev/cu.wchusbserial14110

upload_speed = 115200

monitor_speed = 115200

Build the Firmware
$ git clone https://github.com/trendmicro/RFQuack

$ cd RFQuack

$ pip install -r src/client/requirements.pip

$ pio install -g <library name> # from library.json

$ cd examples/

$ make && sleep 1 && make upload && make monitor

$ mosquitto -v # if using MQTT transport

https://github.com/trendmicro/RFQuack

Boot and Connect
[RFQ] 152 T: Setting sync words length to 4

[RFQ] 153 T: Packet filtering data initialized

[RFQ] 154 T: Packet modification data initialized

[RFQ] 156 T: RFQuack data structure initialized: WEMOSD1_CC1120

[RFQ] 464 T: Connecting WEMOSD1_CC1120_6c54 to MQTT broker 192.168.42.225:1883

[RFQ] 2117 T: MQTT connected

[RFQ] 2130 T: Subscribed to topic: rfquack/in/#

[RFQ] 2231 T: 📡 Setting up radio (CS: 15, RST: 5, IRQ: 4)

[RFQ] 3141 T: 📶 Radio initialized (debugging: true)

[RFQ] 3142 T: CC1120 type 0x4823 ready to party 🎉

[RFQ] 3144 T: Modem config set to 5

[RFQ] 3147 T: Max payload length: 128 bytes

[RFQ] 3151 T: 📶 Radio is fully set up (RFQuack mode: 4, radio mode: 2)

[RFQ] 3258 T: Transport is sending 26 bytes on topic rfquack/out/status

DEMO
Talking Nodes

Main Functionalities

Modem Configuration: q.set_modem_config()
> q.set_modem_config(

 modemConfigChoiceIndex=0, # canned RadioHead/RadioHAL modem config

 txPower=14, # TX output power (sometimes in dB)

 isHighPowerModule=true, # required by some radio modules

 syncWords=b'\x43\x42', # sync words

 preambleLength=4, # number of bytes of preamble

 carrierFreq=433) # and of course, carrier frequency

Canned Modem Configuration
● Each RadioHead/RadioHAL driver has canned modem configurations
● It's an enum type, so modemConfigChoiceIndex is the index
● Examples:

○ FSK_Rb2Fd5
■ FSK modulation
■ With data whitening
■ Receiver bandwidth: 2kb
■ Frequency deviation: 5kHz

○ GFSK_Rb9_6Fd19_2
○ OOK_Rb1_2Bw75

● More at: https://www.airspayce.com/mikem/arduino/RadioHead
● For RadioHAL: https://github.com/trendmicro/radiohal

https://www.airspayce.com/mikem/arduino/RadioHead
https://github.com/trendmicro/radiohal

Transmit, Receive
> q.set_packet('\x0d\xa2', 13) # TX'0x0d 0xa2' 13 times

● Accepts any raw binary data
● Data size limited by the radio driver (i.e., size of the TX FIFO)
● Re-transmission times limited by RFQuack's TX queue length

> q.rx() # put radio in RX mode

● Will save packets into q.data['packet']
● Receive rate limited by RFQuack's RX queue length
● Maybe obvious: will match data according to modem config.

DEMO
Sniffing a Weird Protocol

Register Access (a.k.a. program the radio chip)

q.set_register(
 0x2e, # register address (8 or 16 bits)
 0b01000000) # register value (you can write in HEX or DEC too)

time.sleep(0.2) # especially if you set many registers in a row

● You could bypass any (modem) configuration
● You should study the datasheet of the radio chip
● You could easily "hang" the radio and RFQuack (just push reset)

Scripting Up!
q.set_modem_config(txPower=14, syncWords=b'\x43\x42', carrierFreq=433)

my_reg_vals = [

(0x2e, 0x33),

(0x2f, 0x32),

(0x01, 0x8D),]

for a,v in my_reg_vals:

q.set_register(a,v)

time.sleep(0.2)

q.rx()

You can create your own "library" of reusable settings.

Packet Filtering and Manipulation

Packet Filtering

Preamble Sync Words Trailer

Simple filtering done by the radio
Configurable via registers

Complex filtering done by RFQuack
Configurable via regexes

Same

Payload

Packet Manipulation

Payload

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Positional byte-level access

Content-based byte-level access

Operations:

Payload[indexOf(0x42)] = Payload[indexOf(0x42)] OP Value

Payload[position] = Payload[position] OP Value

0
x
4
2

XOR
AND
NOT
>>
<<

Conditional Packet Manipulation

Rule 1

Rule 2

Rule 3

Rule N

.
.
.

Payload

Modified Payload

if (match("Payload", filter_pattern)) {

if (match("Payload", pattern1))

if (match("Payload1", pattern2))

if (match("Payload2", pattern3))

if (match("PayloadN-1", patternN))

Payload1 = modify("Payload", rule1)

Payload2 = modify("Payload1", rule2)

Payload3 = modify("Payload2", rule3)

Payload1 = modify("PayloadN-1", ruleN)

}

DEMO
Reverse Engineering a Weird Protocol

Architecture

High Level

The Radio and Firmware Side

Future

Performance Improvements
● Interrupt-driven RX function: no polling in the firmware
● Using the radio's TX FIFO buffering when available (reduce SPI traffic for repeated

transmissions)
● Make RadioHAL thinner and closer to the radio (less abstract wherever possible)
● Optimize the packet filtering/manipulation engine

Test Other Radios (e.g., 2.4GHz, LoRa)

Testing More Platforms

Hardware Shield and Adapters

Making a FeatherWing SIM800 (no, not the FONA)

Integrations and Other Enhancements
● GNU Radio and URH
● Web app interface
● Expose a SPI API
● Multiple radio modules (shared SPI bus, 1 IRQ and 1 SS line each)

https://github.com/trendmicro/RFQuack
With ♥ From Trend Micro Research

Presented by:
Federico Maggi, @phretor

https://github.com/trendmicro/RFQuack

