

Modern Botnets

and the Rise of Automatically Generated Domains

Joint work with

Stefano Schiavoni (POLIMI & Google, MSc),

Edoardo Colombo (POLIMI)

Lorenzo Cavallaro (RHUL, PhD),

Stefano Zanero (POLIMI, PhD)

Federico Maggi federico@maggi.cc Politecnico di Milano

Who I am

Federico Maggi, PhD

Post-doctoral Researcher

Topics

Android malware, malware analysis, web measurements

Background

Intrusion detection, anomaly detection

www.red-book.eu

The RED BOOK

A Roadmap for Systems Security Research

Audience

Policy makers

Researchers

Journalists

Content

Vulnerabilities

Social Networks

Critical Infrastructure

Mobile Devices

Malware

Free PDF

Roadmap

- 1. Botnets
- 2. Communication channels
- 3. Domain generation algorithms (DGAs)
- 4. Detecting DGA-based botnets
- 5. Results

Roadmap

1. Botnets

- 2. Communication channels
- 3. Domain generation algorithms (DGAs)
- 4. Detecting DGA-based botnets
- 5. Results

Botnets: from malware to service

Botnet

- Network of (malware infected) computers
- Controlled by an external entity (e.g., cybercriminal)

Bot

- Computer member of a botnet
- Infected with malicious software

Botmaster

Person or group managing the botnet

Centralized topology example

Infected machines = \$\$\$

Steal sensitive information

- harvest contacts
- online banking credentials

Run malicious activities

- send spam, phishing emails, click fraud
- denial of service

Make money

rent the infrastructure as a service

Maintenance

update the malware

Command & control flow

Administration dashboard (spyeye)

Source (webroot.com)

Some notable examples

Flashback (2012–today)

- 600K compromised Macs (so, it's not just Windows)
- credentials stealing

Grum (2008–2012)

- 840K compromised devices,
- 40bln/mo spam emails

TDL-4 (2011–today)

- 4,5M compromised machines (first 3 months)
- known as "indestructible".

Cryptolocker (October 2013–today) NEW

Roadmap

1. Botnets

2. Communication channels

- 3. Domain generation algorithms (DGAs)
- 4. Detecting DGA-based botnets
- 5. Results

Where is the my C&C server?

- 1. Where is my C&C server located?
- 2. Contact the C&C server
- 3. Receive command

C&C channel: single point of failure

P2P is the natural answer.

We focus on **centralized botnets** because they're still a **majority**.

Centralized C&C mechanisms

Hardcoded IPs (e.g., 123.123.123.123)

- Bot software (malware) ships with the IPs
- Botmaster can update IPs regularly
- Knowing the IP makes takedown easy

Hardcoded domain names (e.g., cnc.example.com)

- Decouple IP from domain
- Botmaster free to change domain names and IPs
- Frequently changing IPs make takedown harder
- Botmaster must own many IPs

Hardcoded domain names (2)

Hardcoded domain names (1)

Roadmap

- 1. Botnets
- 2. Communication channels

3. Domain generation algorithms (DGAs)

- 4. Detecting DGA-based botnets
- 5. Results

Game-changing approach

Goals of the botmaster

- Make the C&C server harder to locate
- Make the C&C channel resilient to hijacking

Reversing the malware binary should not reveal the location of the C&C nor any useful information toward that.

Single domain vs. Domain flux

vljiic.org

yxipat.cn

f0938772fb.co.cc rboed.info

jyzirvf.info

79ec8f57ef.cc

hughfgh142.tk

gkeqr.org

fyivbrl3b0dyf.cn

xtknjczaafo.biz

vitgyyizzz.biz

yxzje.info

nlgie.org

ukujhjg11.tk

aawrqv.biz

cnc.example.com

predictable easy to leak

THOUSANDS OF DOMAINS PER DAY

unpredictable impossible to leak

Domain of the day

BOTMASTER

Domain of the day

Register only one domain every day (week) that resolve to the true IP of the C&C

vljiic.org

f0938772fb.co.cc

jyzirvf.info

hughfgh142.tk

fyivbrl3b0dyf.cn

vitgyyizzz.biz

nlgie.org

aawrqv.biz

yxipat.cn

rboed.info

79ec8f57ef.cc

gkeqr.org

xtknjczaafo.biz

yxzje.info

ukujhjg11.tk

. . .

THOUSANDS OF DOMAINS PER DAY

unpredictable impossible to leak

Where is my C&C server?

Leveraging DNS

- Only the botmaster knows the active domain
- The DNS protocol does the rest
- The DGA can be made more unpredictable (e.g., Twitter trending topic)

Reversing the malware binary

only reveals the generation algorithm

not the active domain of the day!

Message in a bottle

(Source)

Roadmap

- 1. Botnets
- 2. Communication channels
- 3. Domain generation algorithms (DGAs)
- 4. Detecting DGA-based botnets
 - 5. Results

Natural observation point: DNS

gkeqr.org is malicious

ukujhjg11.tk

BOTS

Domain reputation systems

Notos

• [Antonakakis et al., 2010]

KOPIS

• [Antonakakis et al., 2011]

EXPOSURE

- [Bilge et al., 2011]
- http://exposure.iseclab.org

Drawbacks

They tell malicious vs. benign domains apart

No insights on what is the purpose of the domain

- C&C of what botnet?
- Could the same C&C be used for multiple botnets?
- Is the domain malicious for other reasons?
 - Phishing
 - Spam
 - Drive-by download

More insights needed

NXDOMAINs

Infected clients try many domains

Many NXDOMAIN responses

Distinctive pattern of DGA

Finding distinct DGAs

Drawbacks

Needs an unpractical observation point

- No global view
- Hard to deploy

Needs the IP of the clients

Privacy of the clients is not enforced

Lower level DNS servers

OUR SOLUTION

Overview of our solution

Step 1: Linguistic analysis

We measure the "randomness" of the strings with respect to non-DGA-generated domains

malicious.cn fyivbrl3b0dyf.cn yxipat.cn

f0938772fb.co.cc evildomain.com evilrot.org

jyzirvf.info nlgie.org gkeqr.org

hughfgh142.tk aawrqv.biz xtknjczaafo.biz

Feature 1: meaningful word ratio
Feature 2: n-gram popularity

(with respect to a given language)

Likely non-DGA-generated

Likely DGA-generated

jyzirvf.info nlgie.org gkeqr.org hughfgh142.tk xtknjczaafo.biz aawrqv.biz Feature 1: meaningful word ratio Feature 2: n-gram popularity (with respect to a given language) **Likely DGA-generated** Likely non-DGA-generated Feature 1 $\begin{array}{ll} \textbf{HIGH} & 1 = \frac{4+6}{10} = \frac{|\text{`evil'}| + |\text{`domain'}|}{|\text{`evildomain'}|} = LF1 = \frac{|word_1| + \cdots + |word_N|}{|\text{domainname}|} = \frac{|\text{`pat'}|}{|\text{`vxipat'}|} = \frac{3}{6} = 0.5 \ \text{Lower lower low$ Feature 2 (n = 2) $= \texttt{`ev'} + \texttt{`vi'} + \cdots + \texttt{`ai'} + \texttt{`in'} = LF2 = \sum \text{popularity}(\text{n-gram}_i) = \texttt{`yx'} + \cdots + \texttt{`at'} = CF2 = \sum \text{popularity}(\text{n-gram}_i) = \texttt{`yx'} + \cdots + \texttt{`at'} = CF2 = \sum \text{popularity}(\text{n-gram}_i) = \texttt{`yx'} + \cdots + \texttt{`at'} = CF2 = \sum \text{popularity}(\text{n-gram}_i) = \texttt{`yx'} + \cdots + \texttt{`at'} = CF2 = \sum \text{popularity}(\text{n-gram}_i) = \texttt{`yx'} + \cdots + \texttt{`at'} = CF2 = \sum \text{popularity}(\text{n-gram}_i) = \texttt{`yx'} + \cdots + \texttt{`at'} = CF2 = \sum \text{popularity}(\text{n-gram}_i) = \texttt{`yx'} + \cdots + \texttt{`at'} = CF2 = \sum \text{popularity}(\text{n-gram}_i) = \texttt{`yx'} + \cdots + \texttt{`at'} = CF2 = \sum \text{popularity}(\text{n-gram}_i) = \texttt{`yx'} + \cdots + \texttt{`at'} = CF2 = \sum \text{popularity}(\text{n-gram}_i) = \texttt{`yx'} + \cdots + \texttt{`at'} = CF2 = \sum \text{popularity}(\text{n-gram}_i) = \texttt{`yx'} + \cdots + \texttt{`at'} = CF2 = \sum \text{popularity}(\text{n-gram}_i) = \texttt{`yx'} + \cdots + \texttt{`at'} = CF2 = \sum \text{popularity}(\text{n-gram}_i) = \texttt{`yx'} + \cdots + \texttt{`at'} = CF2 = \sum \text{popularity}(\text{n-gram}_i) = \texttt{`yx'} + \cdots + \texttt{`at'} = CF2 = CF2$ **HIGH** HIGH LOW Feature 3 (n = 3)HIGH Feature N (n = N)LOW

Linguistic features (2D PCA)

First principal component

Step 2: IP analysis

Step 2: DBSCAN Clustering

Cluster 1

Domains that, in their lifetime, have resolved to the very same IPs

Cluster 2

Domains that, in their lifetime, have resolved to the very same IPs

Cluster 3

Domains that, in their lifetime, have resolved to the very same IPs

Singleton (removed)

Real output (example)

Classifying new domains

Roadmap

- 1. Modern cybercrime
- 2. Botnets
- 3. Communication channels
- 4. Domain generation algorithms (DGAs)
- 5. Detecting DGA-based botnets

6. Results

Step 1 on real data

Step 2 on real data

hy613.cn 73it.cn 5ybdiv.cn dky.com ejm.com eko.com 69wan.cn hy093.cn 08hhwl.cn efu.com elq.com bqs.com hy673.cn onkx.cn xmsyt.cn bec.com dpl.com eqy.com watdj.cn dhjy6.cn dur.com CCZ.COM pjrn3.cn 3dcyp.cn x0v7r.cn dky.com ejm.com eko.com 0bc3p.cn hdnx0.cn 9q0kv.cn efu.com elg.com bgs.com 5vm53.cn 7ydzr.cn fyj25.cn bec.com dpl.com eqy.com qwr7.cn xq4ac.cn ygb55.cn dur.com bnq.com ccz.com

Correct clusters found: Conficker, Bamital, SpyEye, Palevo

DEMO (come talk to me offline)

DGA Clustering

Ongoing research

Non-english baseline

- Italian domain names? Swedish domain names?
- Non-ASCII domains?
 - п.соm
 - · 葉留心.io
 - **♥★**₹♥.tk

Word-based DGAs

- concatenate random, valid words instead of letters
 - also-is-dom-yesterday-a-new.com

Federico Maggi federico@maggi.cc Politecnico di Milano