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The Internet is the largest computer infrastructure
And many people, institutions and firms “live” into it.

Some numbers (2008-2009):

I Google estimates more than 1 trillion unique URLs,
I Facebook has more than 250 millions active users (65

millions on mobile devices),
I (Mar 2008) YouTube stores more than 70 million videos and

the most popular video has been viewed 112,486,327 times.
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...unfortunately...



Turns out it’s also extremely insecure

Some numbers (2005-2009):

I 1,250 breaches reported to authorities [9],
I 263,470,869 compromised records [1],
I (2008) 1 million individual computers infected by

Conficker [11],
I (2008) 75,000 bots/day [11].

Note: these only refer to the facts that have been detected and
reported.
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Main causes of todays’ Internet security issues

I vulnerable software,
I efficient exploitation,
I well-organized and powerful cyber-crime.

This is actually a “lethal cocktail”: let’s see why.
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The most popular software tool is flawed
BTW, looks like MS IE is more secure than Mozilla :)
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This metric will examine the total number of vulnerabilities affecting the following Web browsers:

Apple Safari

Google Chrome

Microsoft Internet Explorer

Mozilla browsers 

Opera

During 2008, 99 vulnerabilities affected Mozilla browsers (figure 10). Forty of these vulnerabilities were 

considered low severity and 59 were considered medium severity. This is fewer than the 122 vulnerabilities 

that were documented in 2007 for Mozilla browsers, of which 91 were considered low severity and 31 were 

considered medium severity.
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Figure 10. Web browser vulnerabilities
Source: Symantec 

Internet Explorer was subject to 47 new vulnerabilities in 2008. Sixteen of these vulnerabilities were 

considered low severity and 31 were considered medium severity. This is fewer than the 57 new 

vulnerabilities documented in Internet Explorer in 2007, of which 28 were considered low severity,  

28 were considered medium severity, and one was considered high severity.

Safari was affected by 40 new vulnerabilities in 2008, of which 16 were considered low severity and  

24 were considered medium severity. This is less than the 47 vulnerabilities identified in Safari in 2007,  

of which 27 were considered low severity, 19 were considered medium severity, and one was considered 

high severity.



Actually, browsers do not really matter
Here is the real culprit

Symantec Global Internet Security Threat Report

44

Memory corruption vulnerabilities also made up the majority of plug-in vulnerabilities in 2007, with 288 

being classified as such out of 475 total vulnerabilities identified (table 5). Of the remaining, 76 were 

considered DoS issues, 54 allowed unauthorized file system access, 24 allowed elevated security context, 

nine allowed command execution, eight allowed content injection, five vulnerabilities allowed information 

disclosure, and two were related to origin validation. There were no spoofing vulnerabilities in browser plug-

in technologies in 2007 and nine vulnerabilities could not be classified due to a lack of information about 

the causes and effects of the vulnerabilities.

Memory corruption vulnerabilities constituted the majority of browser plug-in vulnerabilities in both 2007 

and 2008. However, the data indicates that DoS vulnerabilities were less prevalent in 2008 than they were 

in 2007. In 2008, they were displaced by unauthorized file system access vulnerabilities as the second 

highest proportion of plug-in technology vulnerabilities. In October of 2008, Symantec noted the rise in 

unauthorized file system access vulnerabilities affecting ActiveX controls.113 At that time, attackers had 

integrated a number of exploits for these issues into attack toolkits, proving their effectiveness and 

popularity among attackers. In the same month, Symantec also observed new attack patterns for 

unauthorized file system access vulnerabilities that affected ActiveX controls.114 These attack patterns  

can allow attackers to exploit unauthorized file system access vulnerabilities to execute arbitrary code.

The decrease of DoS vulnerabilities and increase in vulnerabilities such as unauthorized file system access 

and elevated security context indicate an evolving skill set among security researchers and attackers. In 

particular, researchers and attackers are developing their skills to pinpoint higher-severity vulnerabilities 

that allow remote code execution and other serious consequences. This also explains the prevalence of 

memory corruption vulnerabilities in browser plug-ins because, if successfully exploited, they will let an 

attacker run arbitrary code on the affected computer. DoS vulnerabilities in plug-in technologies are often 

the result of unskilled security research efforts because their effect on client applications is minimal in 

comparison to DoS vulnerabilities affecting servers. As a result, it is not as worthwhile to discover lower-

severity vulnerabilities such as DoS. Security researchers and attackers with an advanced skill set usually 

prefer to devote their efforts to finding more significant vulnerabilities that will ideally allow the underlying 

computer to be compromised in some way as a result of exploitation.

Adobe Acrobat Reader

Adobe Flash Player

ActiveX

Java

Mozilla Extensions

QuickTime

Windows Media Player

Memory corruption

Memory corruption/origin validation/
elevated security context

Memory corruption

Elevated security context

Content injection

Memory corruption

Memory corruption

Memory corruption/content injection/
command execution

Elevated security context

Memory corruption

Elevated security context

Content injection

Memory corruption

Memory corruption/DoS

Plug-in 2008 Top Category 2007 Top Category 

 

Table 5. Top categories for Web browser plug-in vulnerabilities
Source: Symantec 

113 https://forums2.symantec.com/t5/Vulnerabilities-Exploits/ActiveX-File-Overwrite-Delete-Vulnerabilities-Continued/ba-p/361308#A175
114 https://forums2.symantec.com/t5/Vulnerabilities-Exploits/Web-Attacks-Using-Microsoft-Help-and-Support-Center-Viewer/ba-p/360270#A172



Actually, browsers do not really matter
Here is the real culprit

Symantec Global Internet Security Threat Report

44

Memory corruption vulnerabilities also made up the majority of plug-in vulnerabilities in 2007, with 288 

being classified as such out of 475 total vulnerabilities identified (table 5). Of the remaining, 76 were 

considered DoS issues, 54 allowed unauthorized file system access, 24 allowed elevated security context, 

nine allowed command execution, eight allowed content injection, five vulnerabilities allowed information 

disclosure, and two were related to origin validation. There were no spoofing vulnerabilities in browser plug-

in technologies in 2007 and nine vulnerabilities could not be classified due to a lack of information about 

the causes and effects of the vulnerabilities.

Memory corruption vulnerabilities constituted the majority of browser plug-in vulnerabilities in both 2007 

and 2008. However, the data indicates that DoS vulnerabilities were less prevalent in 2008 than they were 

in 2007. In 2008, they were displaced by unauthorized file system access vulnerabilities as the second 

highest proportion of plug-in technology vulnerabilities. In October of 2008, Symantec noted the rise in 

unauthorized file system access vulnerabilities affecting ActiveX controls.113 At that time, attackers had 

integrated a number of exploits for these issues into attack toolkits, proving their effectiveness and 

popularity among attackers. In the same month, Symantec also observed new attack patterns for 

unauthorized file system access vulnerabilities that affected ActiveX controls.114 These attack patterns  

can allow attackers to exploit unauthorized file system access vulnerabilities to execute arbitrary code.

The decrease of DoS vulnerabilities and increase in vulnerabilities such as unauthorized file system access 

and elevated security context indicate an evolving skill set among security researchers and attackers. In 

particular, researchers and attackers are developing their skills to pinpoint higher-severity vulnerabilities 

that allow remote code execution and other serious consequences. This also explains the prevalence of 

memory corruption vulnerabilities in browser plug-ins because, if successfully exploited, they will let an 

attacker run arbitrary code on the affected computer. DoS vulnerabilities in plug-in technologies are often 

the result of unskilled security research efforts because their effect on client applications is minimal in 

comparison to DoS vulnerabilities affecting servers. As a result, it is not as worthwhile to discover lower-

severity vulnerabilities such as DoS. Security researchers and attackers with an advanced skill set usually 

prefer to devote their efforts to finding more significant vulnerabilities that will ideally allow the underlying 

computer to be compromised in some way as a result of exploitation.

Adobe Acrobat Reader

Adobe Flash Player

ActiveX

Java

Mozilla Extensions

QuickTime

Windows Media Player

Memory corruption

Memory corruption/origin validation/
elevated security context

Memory corruption

Elevated security context

Content injection

Memory corruption

Memory corruption

Memory corruption/content injection/
command execution

Elevated security context

Memory corruption

Elevated security context

Content injection

Memory corruption

Memory corruption/DoS

Plug-in 2008 Top Category 2007 Top Category 

 

Table 5. Top categories for Web browser plug-in vulnerabilities
Source: Symantec 

113 https://forums2.symantec.com/t5/Vulnerabilities-Exploits/ActiveX-File-Overwrite-Delete-Vulnerabilities-Continued/ba-p/361308#A175
114 https://forums2.symantec.com/t5/Vulnerabilities-Exploits/Web-Attacks-Using-Microsoft-Help-and-Support-Center-Viewer/ba-p/360270#A172



The most accessible applications are flawed too
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can provide guidance into vectors of attack that are likely to target these specific plug-in technologies. 

Security policies should be adjusted to anticipate these attack vectors, such as using a Web proxy to filter 

incoming multimedia content and applets and restricting the use of particular plug-ins. 

Web application vulnerabilities

This discussion focuses on the number of vulnerabilities disclosed during this reporting period that affect 

Web applications compared to the overall volume of vulnerabilities disclosed during the same period. This 

comparison provides insight into Web application security, which is especially important given the recent 

trend of attackers compromising trusted websites as a means of exploiting visitors to those sites.

In 2008, 63 percent of identified vulnerabilities affected Web applications (figure 13). This is an increase 

over 2007, when 59 percent of identified vulnerabilities affected Web applications. The previous volume  

of the Symantec Global Internet Security Threat Report noted a decrease in the proportion of Web 

application vulnerabilities in 2007.125 This trend has not continued in 2008. 
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Figure 13. Web application vulnerabilities
Source: Symantec

In the previous volume of the Symantec Global Internet Security Threat Report, it was noted that there was  

a correlation between the rise in site-specific vulnerabilities and the drop in Web application vulnerabilities. 

In 2008, there may be a similar correlation as the number of site-specific cross-site scripting vulnerabilities 

was lower than 2007, while the proportion of Web applications was greater. This indicates that security 

researchers are dividing their attention between auditing specific websites and Web applications. Security 

researchers appeared to focus more effort toward Web applications in 2008; however, the number of Web 

application vulnerabilities discovered in 2008 is still small in comparison to the number of site-specific 

cross-site scripting vulnerabilities. This may mean that the incentives for discovering site-specific 

125 http://eval.symantec.com/mktginfo/enterprise/white_papers/b-whitepaper_internet_security_threat_report_xiii_04-2008.en-us.pdf : p. 35
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Wait a minute...
..do they really rent compromized resources?

Why not? Amazon S3/EC2 rents computers as a service.
Cyber-criminals do that too.

I Not only they trade stolen information (old news):

I Credit cards go as low as $0.30-60.0
I Bank accounts for less than $1,000

I Attack services run using botnets:

I DDoS
I Phishing campaigns
I Spamming campaigns,
I Scam web-sites design!
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Pick your choice from the attack-as-a-service
gourmet menu
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2008
Rank

1

2

3

4

5

6

7

8

9

10

2007
Rank

1

2

9

3

12

4

6

5

17

8

Item

Credit card information 

Bank account credentials

Email accounts

Email addresses 

Proxies 

Full identities 

Mailers 

Cash out services
 

Shell scripts 

Scams 

2008
Percentage

32%

19%

5%

5%

4%

4%

3%

3%

3%

3%

2007
Percentage

21%

17%

4%

6%

3%

6%

5%

5%

2%

5%

Range of Prices

$0.06–$30

$10–$1000

$0.10–$100

$0.33/MB–$100/MB

$0.16–$20

$0.70–$60

$2–$40

8%–50% or flat rate of 
$200–$2000 per item

$2–$20

$3–$40/week for hosting, 
$2–$20 design

Table 1. Goods and services available for sale on underground economy servers
Source: Symantec 

One result that Symantec has drawn from the observance of increased professionalization in the 

underground economy is that the coordination of specialized and, in some cases, competitive groups for 

the production and distribution of items such as customized malicious code and phishing kits has led to a 

dramatic increase in the general proliferation of malicious code. In 2008, Symantec detected 1,656,227 

malicious code threats (figure 3). This represents over 60 percent of the approximately 2.6 million 

malicious code threats that Symantec has detected in total over time.
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...and nowadays
It’s just a multiplication factor but it is damn significant!

Webserver

Those hundreds of thousands infected machines. And own your PC.



...and they come with a sweet graphical user
interface...





One possible Mitigation Strategy
Attacks generate anomalous behavior

I Any computer system generates observable activity,

I Example: processes, system calls, HTTP requests;

I Hyp.: compromised systems generate unusual activity,

I Example: too-long message content, too-many processes,

I learning models of benign activity to detect malicious
behaviors.

I Example: →
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Simple example
HTTP messages (requests)

/article/id/32

/comment/<par1>/<par1-val>
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/<component1>/<par1>/<par1-val>/<par2>/<par2-val>
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Simple example
Anomaly detection
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The same applies to any type of activity.
The crucial point is how to design models.
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Figure 4. Two pruned trees used by the application database library to model
an SQL query. The one on the right side is deemed anomalous.

tree is O(n2 + K · n), with w = 2, where n is the number
of nodes of the pruned Anomaly Tree and K is the number
of known templates (the n2 member is due to the template
generation routine, whereas the K · n term is due to the
comparisons against all the templates). The algorithm will
always generate some fundamental templates (e.g. a template
with just an <html /> node plus a wild-card) that match all,
or almost all, the response pages.

Detection is performed by testing the Anomaly Tree of any
generated result for compatibility against all the templates
built; the wild-card nodes validate any sub-tree starting at their
positions. If a tree matches every template, as is the case for
an EP with static content, a null anomaly score is returned.
Otherwise, a numeric value is calculated using the observation
rate of the highest non-matching template. The trust level is
the frequency of the highest matching template, or 0 in case
of EPs with no templates (i.e. no JavaScript code).

3) JS Engine: This AE uses a very simple technique to
model JavaScript code. To this end, the MD5 of each code
snippet extracted during the learning phase is stored. Although
this approach may lead to false positives, it is effective for
pages that reuse the same JavaScript code. For the same
reason, it does not account for the code generated at runtime,
also because this would require an excessive overhead due to
the need of interpreting the JavaScript.

Learning is straightforward, and its complexity is linear with
the number of JavaScript found in the new pages. During
detection, we once again leverage the YS distribution to assign
high anomaly scores to the MD5s that are infrequent in the
training sets (i.e., those that are suspected of being outliers),
as previously explained. In this case, the anomaly score is
X = YS(ρ, |F |

T ) where F is the set of MD5s extracted
from total number T of training responses that contain scripts.
Clearly, the JavaScript that generate unknown MD5s is flagged
as anomalous regardless of its rate of appearance in the
training set.

The trust level is measured as avg
�

|F |
T

�
.

C. Application Database Library

This library analyzes the SQL queries before they are sent to
the database and is implemented within the web application’s
scope. Hence, it has full access to the application data, e.g.,
which script was invoked, which script generated the query.

Currently, the only implemented AE is the Structure Engine,
which relies on the parse tree of the queries. Contrarily to what
was done in [24], no modification to the queries is required.
In addition, as opposed to the method described in [27] based
on static analysis, our technique is dynamic.

Constants or user-supplied data are filtered from the trees,
while logical and arithmetic operators are kept. This may
allow mimicry evasions (e.g., a query where only the names
of the tables have been altered not detected as anomalous).

However, SQL injections often alter the structure of the query
dramatically.

Learning is performed by storing the trees corresponding
to each EP along with their frequency. Detection is performed
by comparing the tree obtained from the submitted query with
the stored ones. If the tree does not match any of the known
ones, the AE returns an anomaly score equal to 1; otherwise
it is R

R
, where R is the number of times the matching tree has

been observed, and R is the average number of appearance
calculated over all the trees belonging to the same EP.

V. EXPERIMENTAL RESULTS

We evaluated both the detection capabilities and the process-
ing overhead of Masibty on four real-world, PHP applications:
Artmedic Weblog, SineCMS, PHP-Nuke, and JAF. The MySQL
databases were manually populated with fake yet reasonable
data that resemble as close as possible a real-world deploy-
ment. We used the Apache web server protected by Masibty,
on Linux Ubuntu 8.10 running on a 2.50GHz machine with
4GB of RAM. In a real deployment, Masibty can be installed
on dedicated machines.

Masibty was trained on the HTTP messages and SQL
queries (PHP-Nuke only) generated during many interactions
between clients and the application. More precisely: 6647
requests to Artmedic Weblog, 324 to SineCMS, 1310 to PHP-
Nuke, and 902 to JAF. During training, we have tried to emu-
late both regular users and administrators. To test the resilience
to outliers, 1% of the requests were actually attacks that were
generated as follows. The exploits for the vulnerabilities were
selected by carefully monitoring the bugtraq mailing list during
late 2008. In addition, mutated versions of the attacks were
generated manually. Attacks included XSS attempts (e.g., we
used CVE-2006-0676 for PHP-Nuke), remote file inclusions
(e.g., we used CVE-2006-7128/6142 for JAF-CMS) and SQL
injections (e.g., we used CVE-2006-5525 for PHP-Nuke). The
large majority of these attacks were used to build the testing
dataset.

Results are summarized in Table I. On simple applications,
such as Artmedic Weblog and SineCMS, all the attacks inserted
were identified, with no false positives. Suspecting overfitting,
the results were manually inspected, and further mutated
versions of the attacks were inserted. Surprisingly, no evasion
attempt succeeded. On PHP-Nuke Masibty reported no false
positives and a non-negligible amount of false negatives on
some XSS attacks. Since JAF stores data on a flat file, the
SQL module was disabled. Nevertheless, the proxy module has
successfully recognized all 16 attacks. In JAF, an administrator
can include external HTML pages created. We exploited
this feature and submitted some rather complex pages also
containing JavaScript — obviously, training and testing dataset
contained a different set of pages. This caused 0.38% of false
positives. In all the cases but PHP-Nuke the attacks were
all detected by the XSSAnomaly and PAnomaly reasoners,
which both contributed to create an anomaly score beyond the
thresholds. In addition, the SQL injections against PHP-Nuke
were detected by the QueryAnomaly reasoner.

Globally, Masibty detected 95.75% of the attacks with
0.095% of false positives. For comparison with systems that
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representation of the relative frequencies of occurrence. To this
end, we adapted to online use the algorithm proposed in [9] to
perform a variant of the Pearson χ2-test to determine whether
an observed value can be generated by the learned distribution.
The anomaly score is 1− p, where p is the p-value of the χ2-
test. The algorithm requires a single scan of the input and a
constant-time calculation, its complexity being thus O(n+k).
An appropriate trust level of this model is planned as a future
improvement. At the moment, this engine’s trust level is 1.

6) Length Engine: Most of the parameters of a web appli-
cation are not random in length. Some have fixed length (e.g.,
tokens, numeric identifiers), while some have a certain degree
of variance. Only a few are completely random in length,
most notably injection attempts. Long attributes are commonly
associated with overflows, and also XSS attacks can be quite
long. For instance, the shortest known XSS is 161 byte long
[30]. This engine estimates the unknown length distribution
for a given parameter in order to assess the anomaly of a
parameter of length l in the detection phase.

Once again, we adapted the algorithm described in [9]
to work online. No assumptions is made on the underlying
distribution, which is specified by means of the sample mean
µ and variance σ2, calculated from training data. Detection
is performed through the Chebyshev inequality, which deter-
mines an upper bound on the probability that the difference
between the value of a random variable x and the mean of the
distribution exceeds a certain threshold. Let t be the threshold
P(|x−µ| > t) < σ2

t2 . Therefore, the probability of a string of
size greater than l is P(|x−µ| > |l−µ|) < σ2

(l−µ)2 . Similarly
to the previous engine, the trust level is fixed at 1 and an
appropriate trust model is planned as a future work.

B. XSSAnomaly

This AR is aimed at detecting client side attacks. For
example, JavaScript-based manipulation of the DOM or simple
injection of contents into a web page, can be leveraged to
completely change the client’s perception of a page. A web
site could be defaced on the client side, or a phishing site
could overlap the original site, and so on. This reasoner detects
anomalies in the embedded (i.e., not included as a separate file)
code, and in the DOM. This allows to mitigate also more subtle
threats such as client-side page defacement. This reasoner has
to evaluate server response, thus is implemented as a post-
query reasoner.

The DOM tree is constructed from the response using
Gecko, a fast, open source parser and layout engine im-
plemented in C++, and accessible through XPCOM APIs,
wrapped by the Mozilla Parser Java library. The tree is then
decorated with the JavaScript content of each node, while
textual or otherwise non-JavaScript attributes are removed,
keeping only structural information. The resulting structures,
called Anomaly Tree, are used for both training and detection,
which are detailed for each of the two engines described below.
Depending on the AE adopted, two Anomaly Trees may be
identical or different with a certain, numerical degree.

1) Crisp Engine: This engine detects anomalies in both
DOM and JavaScript code. It utilizes the Anomaly Trees to

html
head title

body div p em

p em

html
head title

body div
p em

p em

p em

Figure 3. Two DOMs of two requests that only differ by the number of
repetitions.

learn the normal structure of pages associated with a given EP,
assuming that requests to a single EP will be very similar to
each other (e.g. a template filled in with variable information).

In general, two DOM nodes are deemed as equal if and
only if both they match and their inline JavaScript code
is identical, if any. This may arise issues with JavaScript
generated dynamically (e.g., after a certain event), but makes
the engine resilient to mimicry attacks.

During learning, the first Anomaly Tree is simply recorded.
Subsequent trees are compared against the known ones. If
a perfect match (i.e., identical tree) is found, a counter
associated to each tree is incremented, otherwise the new
tree is recorded. A peculiar characteristic of this engine is
that it takes into account recurring content, frequent in data-
centric web pages (e.g., search results or items in an online
store). More precisely, trees are traversed in parallel and
whenever a mismatch is found, the largest sub-tree is checked
for descendants with identical structure. If a node causes a
mismatch and such a node is not equal to the next one in the
smaller tree — thus marking the end of the repetitions, the
trees are deemed different and stored separately. Otherwise, the
trees are considered identical, with a different set of repetitions
as shown in Figure 3. This single-pass algorithm is linear with
respect to the number of nodes of the largest tree.

Since any XSS injection is obtained by adding at least one
element to the DOM, any Anomaly Tree with no matching
learned trees is flagged as anomalous, with an anomaly score
of 1.

The trust level for a given Anomaly Tree and EP is
calculated during training as 1 − D

T , where D is the number
of different Anomaly Trees and T is the total number of
responses processed. If the ratio is low, and thus the number
of total queries is far greater in comparison to the number of
different Anomaly Trees, the AE can be trusted and thus it
returns a value which is very close to 1.

2) Template Engine: This engine is meant to be adopted on
highly-dynamic pages (e.g., forums, blogs, news aggregators).

During learning, Anomaly Trees are pruned by removing
nodes with no JavaScript content, including their descendants.
Then, a maximum number w of wild-card nodes are inserted;
higher values of w lead to better accuracy on complex pages.
This must be traded-off with a higher computational complex-
ity. The algorithm works as follows: it substitutes one node a
time (and its sub-tree) with a wild-card. Thus, if w = 1 wild-
card is allowed, a number of templates equal to the number
of nodes n is generated, one with each node substituted by a
wild-card. With w = 2 this grows to n ·(n−1) templates, with
all the possible combinations of 2 wild-cards. During learning,
this is done for each new Anomaly Tree. In case of a match
with a previously known template, a counter associated to the
template is incremented.

The learning algorithm is rather expensive as for each new
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tree is O(n2 + K · n), with w = 2, where n is the number
of nodes of the pruned Anomaly Tree and K is the number
of known templates (the n2 member is due to the template
generation routine, whereas the K · n term is due to the
comparisons against all the templates). The algorithm will
always generate some fundamental templates (e.g. a template
with just an <html /> node plus a wild-card) that match all,
or almost all, the response pages.

Detection is performed by testing the Anomaly Tree of any
generated result for compatibility against all the templates
built; the wild-card nodes validate any sub-tree starting at their
positions. If a tree matches every template, as is the case for
an EP with static content, a null anomaly score is returned.
Otherwise, a numeric value is calculated using the observation
rate of the highest non-matching template. The trust level is
the frequency of the highest matching template, or 0 in case
of EPs with no templates (i.e. no JavaScript code).

3) JS Engine: This AE uses a very simple technique to
model JavaScript code. To this end, the MD5 of each code
snippet extracted during the learning phase is stored. Although
this approach may lead to false positives, it is effective for
pages that reuse the same JavaScript code. For the same
reason, it does not account for the code generated at runtime,
also because this would require an excessive overhead due to
the need of interpreting the JavaScript.

Learning is straightforward, and its complexity is linear with
the number of JavaScript found in the new pages. During
detection, we once again leverage the YS distribution to assign
high anomaly scores to the MD5s that are infrequent in the
training sets (i.e., those that are suspected of being outliers),
as previously explained. In this case, the anomaly score is
X = YS(ρ, |F |

T ) where F is the set of MD5s extracted
from total number T of training responses that contain scripts.
Clearly, the JavaScript that generate unknown MD5s is flagged
as anomalous regardless of its rate of appearance in the
training set.

The trust level is measured as avg
�

|F |
T

�
.

C. Application Database Library

This library analyzes the SQL queries before they are sent to
the database and is implemented within the web application’s
scope. Hence, it has full access to the application data, e.g.,
which script was invoked, which script generated the query.

Currently, the only implemented AE is the Structure Engine,
which relies on the parse tree of the queries. Contrarily to what
was done in [24], no modification to the queries is required.
In addition, as opposed to the method described in [27] based
on static analysis, our technique is dynamic.

Constants or user-supplied data are filtered from the trees,
while logical and arithmetic operators are kept. This may
allow mimicry evasions (e.g., a query where only the names
of the tables have been altered not detected as anomalous).

However, SQL injections often alter the structure of the query
dramatically.

Learning is performed by storing the trees corresponding
to each EP along with their frequency. Detection is performed
by comparing the tree obtained from the submitted query with
the stored ones. If the tree does not match any of the known
ones, the AE returns an anomaly score equal to 1; otherwise
it is R

R
, where R is the number of times the matching tree has

been observed, and R is the average number of appearance
calculated over all the trees belonging to the same EP.

V. EXPERIMENTAL RESULTS

We evaluated both the detection capabilities and the process-
ing overhead of Masibty on four real-world, PHP applications:
Artmedic Weblog, SineCMS, PHP-Nuke, and JAF. The MySQL
databases were manually populated with fake yet reasonable
data that resemble as close as possible a real-world deploy-
ment. We used the Apache web server protected by Masibty,
on Linux Ubuntu 8.10 running on a 2.50GHz machine with
4GB of RAM. In a real deployment, Masibty can be installed
on dedicated machines.

Masibty was trained on the HTTP messages and SQL
queries (PHP-Nuke only) generated during many interactions
between clients and the application. More precisely: 6647
requests to Artmedic Weblog, 324 to SineCMS, 1310 to PHP-
Nuke, and 902 to JAF. During training, we have tried to emu-
late both regular users and administrators. To test the resilience
to outliers, 1% of the requests were actually attacks that were
generated as follows. The exploits for the vulnerabilities were
selected by carefully monitoring the bugtraq mailing list during
late 2008. In addition, mutated versions of the attacks were
generated manually. Attacks included XSS attempts (e.g., we
used CVE-2006-0676 for PHP-Nuke), remote file inclusions
(e.g., we used CVE-2006-7128/6142 for JAF-CMS) and SQL
injections (e.g., we used CVE-2006-5525 for PHP-Nuke). The
large majority of these attacks were used to build the testing
dataset.

Results are summarized in Table I. On simple applications,
such as Artmedic Weblog and SineCMS, all the attacks inserted
were identified, with no false positives. Suspecting overfitting,
the results were manually inspected, and further mutated
versions of the attacks were inserted. Surprisingly, no evasion
attempt succeeded. On PHP-Nuke Masibty reported no false
positives and a non-negligible amount of false negatives on
some XSS attacks. Since JAF stores data on a flat file, the
SQL module was disabled. Nevertheless, the proxy module has
successfully recognized all 16 attacks. In JAF, an administrator
can include external HTML pages created. We exploited
this feature and submitted some rather complex pages also
containing JavaScript — obviously, training and testing dataset
contained a different set of pages. This caused 0.38% of false
positives. In all the cases but PHP-Nuke the attacks were
all detected by the XSSAnomaly and PAnomaly reasoners,
which both contributed to create an anomaly score beyond the
thresholds. In addition, the SQL injections against PHP-Nuke
were detected by the QueryAnomaly reasoner.

Globally, Masibty detected 95.75% of the attacks with
0.095% of false positives. For comparison with systems that
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representation of the relative frequencies of occurrence. To this
end, we adapted to online use the algorithm proposed in [9] to
perform a variant of the Pearson χ2-test to determine whether
an observed value can be generated by the learned distribution.
The anomaly score is 1− p, where p is the p-value of the χ2-
test. The algorithm requires a single scan of the input and a
constant-time calculation, its complexity being thus O(n+k).
An appropriate trust level of this model is planned as a future
improvement. At the moment, this engine’s trust level is 1.

6) Length Engine: Most of the parameters of a web appli-
cation are not random in length. Some have fixed length (e.g.,
tokens, numeric identifiers), while some have a certain degree
of variance. Only a few are completely random in length,
most notably injection attempts. Long attributes are commonly
associated with overflows, and also XSS attacks can be quite
long. For instance, the shortest known XSS is 161 byte long
[30]. This engine estimates the unknown length distribution
for a given parameter in order to assess the anomaly of a
parameter of length l in the detection phase.

Once again, we adapted the algorithm described in [9]
to work online. No assumptions is made on the underlying
distribution, which is specified by means of the sample mean
µ and variance σ2, calculated from training data. Detection
is performed through the Chebyshev inequality, which deter-
mines an upper bound on the probability that the difference
between the value of a random variable x and the mean of the
distribution exceeds a certain threshold. Let t be the threshold
P(|x−µ| > t) < σ2

t2 . Therefore, the probability of a string of
size greater than l is P(|x−µ| > |l−µ|) < σ2

(l−µ)2 . Similarly
to the previous engine, the trust level is fixed at 1 and an
appropriate trust model is planned as a future work.

B. XSSAnomaly

This AR is aimed at detecting client side attacks. For
example, JavaScript-based manipulation of the DOM or simple
injection of contents into a web page, can be leveraged to
completely change the client’s perception of a page. A web
site could be defaced on the client side, or a phishing site
could overlap the original site, and so on. This reasoner detects
anomalies in the embedded (i.e., not included as a separate file)
code, and in the DOM. This allows to mitigate also more subtle
threats such as client-side page defacement. This reasoner has
to evaluate server response, thus is implemented as a post-
query reasoner.

The DOM tree is constructed from the response using
Gecko, a fast, open source parser and layout engine im-
plemented in C++, and accessible through XPCOM APIs,
wrapped by the Mozilla Parser Java library. The tree is then
decorated with the JavaScript content of each node, while
textual or otherwise non-JavaScript attributes are removed,
keeping only structural information. The resulting structures,
called Anomaly Tree, are used for both training and detection,
which are detailed for each of the two engines described below.
Depending on the AE adopted, two Anomaly Trees may be
identical or different with a certain, numerical degree.

1) Crisp Engine: This engine detects anomalies in both
DOM and JavaScript code. It utilizes the Anomaly Trees to

html
head title

body div p em

p em

html
head title

body div
p em

p em

p em

Figure 3. Two DOMs of two requests that only differ by the number of
repetitions.

learn the normal structure of pages associated with a given EP,
assuming that requests to a single EP will be very similar to
each other (e.g. a template filled in with variable information).

In general, two DOM nodes are deemed as equal if and
only if both they match and their inline JavaScript code
is identical, if any. This may arise issues with JavaScript
generated dynamically (e.g., after a certain event), but makes
the engine resilient to mimicry attacks.

During learning, the first Anomaly Tree is simply recorded.
Subsequent trees are compared against the known ones. If
a perfect match (i.e., identical tree) is found, a counter
associated to each tree is incremented, otherwise the new
tree is recorded. A peculiar characteristic of this engine is
that it takes into account recurring content, frequent in data-
centric web pages (e.g., search results or items in an online
store). More precisely, trees are traversed in parallel and
whenever a mismatch is found, the largest sub-tree is checked
for descendants with identical structure. If a node causes a
mismatch and such a node is not equal to the next one in the
smaller tree — thus marking the end of the repetitions, the
trees are deemed different and stored separately. Otherwise, the
trees are considered identical, with a different set of repetitions
as shown in Figure 3. This single-pass algorithm is linear with
respect to the number of nodes of the largest tree.

Since any XSS injection is obtained by adding at least one
element to the DOM, any Anomaly Tree with no matching
learned trees is flagged as anomalous, with an anomaly score
of 1.

The trust level for a given Anomaly Tree and EP is
calculated during training as 1 − D

T , where D is the number
of different Anomaly Trees and T is the total number of
responses processed. If the ratio is low, and thus the number
of total queries is far greater in comparison to the number of
different Anomaly Trees, the AE can be trusted and thus it
returns a value which is very close to 1.

2) Template Engine: This engine is meant to be adopted on
highly-dynamic pages (e.g., forums, blogs, news aggregators).

During learning, Anomaly Trees are pruned by removing
nodes with no JavaScript content, including their descendants.
Then, a maximum number w of wild-card nodes are inserted;
higher values of w lead to better accuracy on complex pages.
This must be traded-off with a higher computational complex-
ity. The algorithm works as follows: it substitutes one node a
time (and its sub-tree) with a wild-card. Thus, if w = 1 wild-
card is allowed, a number of templates equal to the number
of nodes n is generated, one with each node substituted by a
wild-card. With w = 2 this grows to n ·(n−1) templates, with
all the possible combinations of 2 wild-cards. During learning,
this is done for each new Anomaly Tree. In case of a match
with a previously known template, a counter associated to the
template is incremented.

The learning algorithm is rather expensive as for each new



Overall detection capabilities

Tested on about HTTP 8,000 requests, 3000 attacks. EC2ND
2009 [2].
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Fig. 4: Detection and false positive rates measured on Q and Qdrift, with HTTP
response modeling enabled in (b).

applications such as cross-site scripting (XSS) (e.g., CVE-2009-0781), SQL injec-
tions (e.g., CVE-2009-1224), and command execution exploits (e.g., CVE-2009-
0258) that are reflected in request parameter values. In particular, we included
a total of 1000 attacks, comprised of 400 XSS attacks, 400 SQL injections, and
200 command injections. The XSS attacks are variations on those listed in [20],
the SQL injections were created similarly from [21], and the command execution
exploits were variations of common command injections against the Linux and
Windows platforms.

In both experiments, webanomaly was evaluated on a data set consisting of
HTTP traffic drawn from real-world web applications. This data was obtained
from several monitoring points at both commercial and academic sites. For each
application, the full contents of each HTTP connection observed over a period of
several months were recorded. The resulting flows were filtered using signature-
based techniques to remove known attacks, and then partitioned into distinct
training and test sets. In total, the data set contains 823 unique web applications,
36,392 unique resource paths, 16,671 unique parameters, and 58,734,624 HTTP
requests.

4.1 Effects of concept drift

In the first experiment, we demonstrate that concept drift as observed in real-
world web applications results in a significant negative impact on false positive
rates. First, webanomaly was trained on an unmodified, filtered data set. Then,
the detector analyzed a test data set Q to obtain a baseline ROC curve.

After the baseline curve had been obtained, the test data set was processed to
introduce new behaviors corresponding to the effects of web application changes,
such as upgrades or source code refactoring, obtaining Qdrift. In this manner, the
set of changes in web application behavior was explicitly known. In particular,
as detailed in Table 1, 6,749 new session flows were created by introducing re-
quests for new resources and creating request sequences for both new and known
resources that had not previously been observed. Also, new parameter sets were
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Tested on 823 web applications, 58,732,624 HTTP requests, 1000
attacks. RAID 2009 [6] (w/ UC Santa Barbara).
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Figure 9: Global profile ROC curves for varying κ. In presence of undertraining (κ <κ stable)
the system is not able to recognize most of the attacks and also reports several false positives.
However, our approach allows to tune κ (e.g., 32, 64) and reach detection accuracies otherwise
unachievable, close to those in absence of undertraining (κ = κstable).

SQL injection5, command execution exploits and any other attack that manifest themselves in
request parameter values. In fact, both the anomaly detector and the improvement we designed
apply to every type of malicious activity caused by manipulations of the HTTP requests, and
thus we are by no means limiting our scope to the following three examples representative of
the aforementioned attacks:

• malicious code inclusion: <script src="http://example.com/malware.js"></script>;

• bypassing login authentication: ’ OR ’x’=’x’--;

• command injection: ; cat /etc/passwd | mail attacker@gmail.com #.

To establish a worst-case bound on the detection accuracy of the system, profiles for each
observed request parameter were deliberately undertrained to artificially induce a scarcity of
training data for all parameters. That is, for each value of κ = 1, 2, 4, 8, 16, 32, 64, the anomaly
detector prematurely terminated profile training after κ samples, and then used the undertrained
profiles to query C. The resulting global profiles were then substituted for the undertrained
profiles and evaluated against the rest of the data set. The sensitivity of the system was varied
over the interval [0, 1], and the resulting ROC curves for each κ are plotted in Figure 9.

As one can clearly see, low values of κ result in the selection of global profiles that do not
accurately model the behavior of the undertrained parameters. As κ increases, however, the
quality of the global profiles returned by the querying process increases as well. In particular,
this increase in quality closely follows the mapping robustness plot presented in Figure 8. As
predicted, setting κ = 32, 64 leads to fairly accurate global profile selection, with the resulting
ROC curves approaching that of fully-trained profiles. This means that even if the component
or, in general, a parameter of a web application has received only a few requests (i.e., 64), by
leveraging a global knowledge base, it is possible to achieve effective attack detection. As a
consequence, our approach can improve the effectiveness of real-world web application anomaly
detection systems.

5These attacks remain the most common attacks against web applications.
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Tested on 823 web applications, 58,732,624 HTTP requests, 1000
attacks. NDSS 2010 [10] (w/ UC Santa Barbara).
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Fig. 6. Comparison of performance of different probability scaling functions.

(Call).
In both cases, using the complete algorithm yield a 100%

detection rate with a very low false positive rate. In the case
of eject, the exploit is detected in the very beginning: since
a very long argument is passed to the execve, this triggers
the argument model. The detection of the shellcode we injected
exploiting the buffer overflow in bsdtar is identified by the
open of the unexpected (special) file /dev/tty. Note that, the
use of thresholds calculated on the overall Markov model allows
us to achieve a 100% detection rate in the case of eject; without
the Markov model, the attack wouldn’t be detected at all.

It is very difficult to compare our results directly with the
other similar systems we identified in Section II. In [17] the
evaluation is performed on the DARPA dataset, but detection rates
and false positive rates are not given (the number of detections
and false alarms is not normalized), so a direct comparison is
difficult. Moreover, detection is computed using an arbitrary time
window, and false alerts are instead given in “alerts per day”. It
is correspondingly difficult to compare against the results in [18],
as the evaluation is ran over a dataset which is not disclosed,
using two programs that are very different from the ones we use,
and using a handful of exploits chosen by the authors. Different
scalings of the false positives and detection rates also make a
comparison impossible to draw.

As a side result, we tested the detection accuracy of the
two scaling functions we proposed for computing the sequence
probability Ps. As shown in Fig. 6, the first and the second variant
both show lower false positive rate w.r.t. to the original, unscaled
version.

D. Performance measurements

An IDS should not introduce significant performance overheads
in terms of the time required to classify events as malicious (or
not). An IDS based on the analysis of system calls has to intercept
and process every single syscall invoked on the operating system
by userspace applications; for this reason, the fastest a system call
is processed, the best. We profiled the code of our system with
gprof and valgrind for CPU and memory requirements. We
ran the IDS on data drawn from the IDEVAL 1999 dataset (which
is sufficient for performance measurements, as in this case we
are only interested in the throughput and not in realistic detection
rates).

In Table XII we reported the measurement of performance on
the five working days of the first week of the dataset for training,
and of the fourth week for testing. The throughput X varies

TABLE XII
TRAINING AND DETECTION THROUGHPUT X .

TRAINING THROUGHPUT
Ses. #Calls #Progr. t (Clust., Markov) [s] X [call/s]
1 97644 111 12.056 (7.683, 3.268) 8099
2 34931 67 3.415 (1.692, 1.356) 10228
3 41133 129 6.721 (3.579, 2.677) 6120
4 50239 152 7.198 (3.019, 3.578) 6979
5 38291 115 4.503 (2.219, 1.849) 8503

DETECTION THROUGHPUT
Ses. #Calls #Progr. t [s] X [call/s]
1 109160 149 6.722 16239
2 160565 186 12.953 12395
3 103605 143 4.653 22266
4 115334 107 5.212 22128
5 112242 147 5.674 19781

during training between 6120 and 10228 syscalls per second. The
clustering phase is the bottleneck in most cases, while the Markov
model construction is generally faster. Due to the clustering step,
the training phase is memory consuming: in the worst case, we
recorded a memory usage of about 700 MB. The performance
observed in the detection phase is of course even more important:
in this case, it varies between 12395 and 22266 syscalls/sec.
Considering that the kernel of a typical machine running services
such as HTTP/FTP on average executes system calls in the order
of thousands per second (e.g., around 2000 system calls per
second for wu-ftpd [35]), the overhead introduced by our IDS
is noticeable but does not severely impact system operations.

VI. CONCLUSIONS

In this paper we described a novel host-based IDS based on
the analysis of system calls arguments and sequence. We analyzed
previous literature on the subject, and found that there exists only
a handful of works which take into account the anomalies in such
arguments. We improved the models suggested in one of these
works, we added a stage of clustering in order to characterize
normal invocations of calls and to better fit models to arguments,
and finally we complemented it with Markov models in order to
capture correlation between system calls.

We outlined a number of new shortcomings in the IDEVAL
dataset, demonstrating that (similarly to the known problems in
the network data) the execution traces for system call analysis are
too simple and predictable, not covering enough programs, nor
exploring different types of executions. In addition, the dataset is
hopelessly outdated, both in terms of attacks and of background
operations. We outlined how we validated our results in order
to obviate such glaring deficiencies of the dataset. We showed
how the prototype is able to correctly contextualize alarms,
giving the user more information to understand what caused
any false positive, and to detect variations over the execution
flow, as opposed to punctual variations over single instances.
We also demonstrated its improved detection capabilities, and a
reduction of false positives. The system is auto-tuning and fully
unsupervised, even if a range of parameters can be set by the user
to improve the quality of detection.

A possible future extension of this work is the analysis of
complementary approaches (such as Markov model merging or
the computation of distance metrics) to better detect anomalies in
the case of long system call sequences, which we identified as a
possible source of false positives.

Tested on one week of kernel activity (about 100,000 syscalls/day),
142 attacks. IEEE Transaction on Dep. and Secure Systems [4],
ACM SIGOPS’ O.S. Reviews [8].
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Fig. 11. Plot of the DRA′ (a) and FPRA′ (b) vs. ARR. “Crisp” refers to the use
of the crisp time-distance aggregation; “Fuzzy” and “Fuzzy (belief)” indicates the
simple fuzzy time-distance aggregation and the use of the attack belief for alert
discarding, respectively.

5 Experimental Results

Using the data generated as described above in Section ??, and the metrics
proposed in Section ??, we compared three different versions of the alert ag-
gregation algorithms proposed in Section ??. In particular we compare the use
of crisp time-distance aggregation, the use use of a simple fuzzy time-distance
aggregation; and finally, the use of attack belief for alert pruning.

Numerical results are plotted in in Fig. ?? for different values of ARR. As we
discussed in Section ??, Fig. ?? (a) refers to the reduction of DR while Fig.
?? (b) focuses on FPR. DRA′ and FPRA′ were calculated using the complete
alert stream, network and host, at different values of ARR. The values of
ARR are obtained by changing the parameters values: in particular, we set
Tbel = 0.66, the alpha cut of Tnear to 0.5, the window size to 1.0 seconds, and
varied the smoothing of the trapezoid between 1.0 and 1.5 seconds, and the
alert delay between 0 and 1.5 seconds. It is not useful to plot the increase in
false negatives, as it can be easily deduced from the decrease in DR.

The last aggregation algorithm, denoted as “Fuzzy (belief)”, shows better per-
formances since the DRA′ is always higher w.r.t. the other two aggregation
strategies; this algorithm also causes a significant reduction of the FPRA′ .
Note that, taking into account the attack belief attribute makes the differ-
ence because it avoids true positives to be discarded; on the other hand, real
false positive are not reported in the output alert stream because of their low
belief.

It is difficult to properly compare our approach with other other fusion ap-
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Detecting related alerts
Malicious network behavior is reflected onto malicious kernel behavior.

How to detect relationships?

I model alerts as stochastic processes,
I use statistical hypothesis tests (e.g., KS’ goodness of fit),
I matching series → related alerts.

Tested on about two weeks of detection resulting in about 1,000
alerts per system. RAID 2007 [7].
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Conclusions and lesson learned during my PhD

I some of our systems require refactoring because performance
was not our primary focus,

I the most difficult task ever, in our research area, is gathering
enough experimental data,

I often, scientifically sound experiments are very difficult to
prepare because data is also non-labeled,

I in our future research we really want to spend a considerable
amount of time and efforts at designing public data
collection infrastructure.
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