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The Internet is the largest computer infrastructure

And many people, institutions and firms “live” into it.

Some numbers (2008-2009):

» Google estimates more than 1 trillion unique URLs,

» Facebook has more than 250 millions active users (65
millions on mobile devices),

» (Mar 2008) YouTube stores more than 70 million videos and
the most popular video has been viewed 112,486,327 times.



...unfortunately...
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Turns out it’s also extremely insecure

Some numbers (2005-2009):

» 1,250 breaches reported to authorities [9],
» 263,470,869 compromised records [1],

» (2008) 1 million individual computers infected by
Conficker [11],

» (2008) 75,000 bots/day [11].

Note: these only refer to the facts that have been detected and
reported.
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Main causes of todays’ Internet security issues

» vulnerable software,
» efficient exploitation,

» well-organized and powerful cyber-crime.

This is actually a “lethal cocktail”: let's see why.



The most popular software tool is flawed
BTW, looks like MS IE is more secure than Mozilla :)
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Actually, browsers do not really matter

Here is the real culprit

m 2008 Top Category 2007 Top Category

Adobe Acrobat Reader

Adobe Flash Player

ActiveX

Java

Mozilla Extensions
QuickTime

Windows Media Player

Memory corruption

Memory corruption/origin validation/

elevated security context
Memory corruption
Elevated security context
Content injection
Memory corruption

Memory corruption

Memory corruption/content injection/
command execution

Elevated security context

Memory corruption
Elevated security context
Content injection
Memory corruption

Memory corruption/DoS



The most accessible applications are flawed too

Percentage of vulnerabilities
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Wait a minute...

..do they really rent compromized resources?

Why not? Amazon S3/EC2 rents computers as a service.
Cyber-criminals do that too.

> Not only they trade stolen information (old news):
» Credit cards go as low as $0.30-60.0
» Bank accounts for less than $1,000

» Attack services run using botnets:

» DDoS

» Phishing campaigns

» Spamming campaigns,
» Scam web-sites design!



Pick your choice from the attack-as-a-service
gourmet menu

2008 2007 2008 2007
Rank Rank Percentage | Percentage | Range of Prices

0 N O U A~ W N

10

Credit card information
Bank account credentials
Email accounts

Email addresses

Proxies

Full identities

Mailers

Cash out services

Shell scripts
Scams

32%

19%
5%
5%
4%
4%
3%
3%

3%
3%

21%
17%
4%
6%
3%
6%
5%
5%

2%
5%

$0.06-$30
$10-$1000
$0.10-$100
$0.33/MB-$100/MB
$0.16-$20
$0.70-$60

$2-$40

8%-50% or flat rate of
$200-$2000 per item

$2-$20

$3-$40/week for hosting,
$2-$20 design



A few years ago...

Webserver



...and nowadays

It’s just a multiplication factor but it is damn significant!




...and they come with a sweet graphical user
interface...
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One possible Mitigation Strategy

Attacks generate anomalous behavior

» Any computer system generates observable activity,
» Example: processes, system calls, HTTP requests;

» Hyp.: compromised systems generate unusual activity,
» Example: too-long message content, too-many processes,

> learning models of benign activity to detect malicious
behaviors.

» Example: —
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HTTP messages (requests)

/article/id/32
/comment/<paril>/<parl-val>
/login/<paril>/<paril-val>/<par2>/<par2-val>

/<component1>/ /<parl-val>/ /<par2-val>

/<component2>/ /<parl-val>
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Models of good messages




Simple example

Anomaly detection

Client

/<parl-val>

/<parl-val>
/<parl-val>
/<parl-val> M1 M2 M3 Mn

Example of models

— parameter string length

- — numeric range

T — probabilistic grammar of strings
- — string character distribution

/<component1>/ /<par1-val>

Webserver




Simple example

Anomaly detection

Client

Models of good sessions

c3 C1
AN C7¢,

T o1 c2 c3 _@
/<component 1>/ /<pari-val> M1 M2 Mn

/<component1>/- /<par1-val>

/<component1>/ /<par1-val>

Webserver



Simple example

Anomaly detection

Client
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Simple example

Anomaly detection

Client

/<component1>/ /<par1-val>

C2

/
C1 C3
M1

/<component1>/ /<par1-val>

Webserver



Simple example

Anomaly detection

Malicious HTTP Request
GET /login/id/a' or 't'='t

Dynamic

web page

Interesting HTTP Response pag

Bad guy <hl>...userl, passl,...</hl>




Simple example

Anomaly detection

Client

Detection of bad messages

Webserver



Simple example

Anomaly detection

. Malicious HTTP Request

GET /login/id/<script>..</script>

Badiguy

Malicious HTTP Response
‘ <script>iInfectPCs () ;</script>

Dynamic
web page

Victim



Simple example

Anomaly detection

Client

/<component1>/<par1>/<pari-val>
/<component1>/<pax1>/<parl-val>
/<component1>/<par1>/<pari-val>
/<component1>/<pax1>/<parl-val>
/<component1>/<par1>/<parl-val>

/<component1>/<pari>/<parl-val>

/<component1>/<par1>/<parl-val>

/<component1>/<par1>/<parl-val>

/<component1>/<par1>/<parl-val>

Detection of bad sessions

/<component1>/<par1>/<parl-val>

/<component1>/<pari>/<parl-val>
/<component1>/<par1>/<parl-val>

/<component1>/<pari>/<parl-val>

Webserver



The same applies to any type of activity.
The crucial point is how to design models.
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Our research

Three subjects

1. HTTP interactions,

> primary communication channel between malicious machines;
2. operating system processes,

» malicious code (i.e., virus) is the typical infection vector;

3. combination of the two,

» malicious network activity — malicious activity on the
operating system.



1. HTTP interactions
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Protecting web applications and clients

Models of:

» HTTP requests,
» HTTP responses,
» SQL queries,
to protect
> the server from malicious requests,
» the client from infected sites,

» the database from malicious queries.
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request N request

PAnomaly] | Token, Distribution,
Length, Presence, Order

XSSAnomalyf Crisp, JSEngine,
Template

<« ——— - - - - — A e - ———
response U response

Client HTTP inspection Web server




query
QueryAnomaly
(ignored)
- _____l
results

‘Web server

Structure

SQL inspection

DB server
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— = _
/AND\ — _— -
AND OR
~ = ™~ =
pP—em
_body—div_ p—em _body— div=—p—em
heml_ p——em html P em

head—title “head—title



Overall detection capabilities

09+
08"
07+

0.6

DR

0.5

04

0.3

= Qriginale
= Modelli di trust e negoziazione
Modelli di trust, negoziazione, modello dei simboli

0.2

01}F Auto-calibrazione
= Auto-calibrazione e modello dei simboli
0 I 1 I L L 1 I
0 0.1 02 03 0.4 0.5 06 07 0.8

FPR

Tested on about HTTP 8,000 requests, 3000 attacks. EC2ND
2009 [2].
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Updating obsolete models dynamically
What if the website changes?

Models become obsolete, but HT TP responses contain good

insights:
» new links — potential requests — new models,
» <a href="/new/resource/path" />

> new parameters — new models,
» <a href="/path?new_parameter" />

> new parameter values — new training values.
» <a href="/path?parameter=new_value" />
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Parsing HTTP responses to update models

resp; -
< r-- Parsing ---

Li, F;

———————————————————— -- Change or attack? ---

=

J

for each request ¢;

Anomaly detector

. SN N
resp;
,,,,,,,,,, Bt
Web app

intercept the corresponding response resp;
extract parmeters and values from links, forms, fields

at next request ;11

compare parameter and values to spot legit changes
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(a) Response modeling disabled. (b) Response modeling enabled.

Tested on 823 web applications, 58,732,624 HTTP requests, 1000
attacks. RAID 2009 [6] (w/ UC Santa Barbara).
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Training with almost no data

Some pages are infrequently accessed

Scarce HTTP interactions — scarce training data, but:

» similar models have (i.e., capture) similar characteristics,
> group similar models,
» rank models according to their completeness,

» substitute a poorly-trained model with a similar one, but
well-trained.
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Tested on 823 web applications, 58,732,624 HTTP requests, 1000
attacks. NDSS 2010 [10] (w/ UC Santa Barbara).



2. Operating system processes



Protecting the operating system

How to model a process’ activity?



Protecting the operating system

How to model a process’ activity?

A process can be simplified as a sequence of system calls:



Protecting the operating system

How to model a process’ activity?

A process can be simplified as a sequence of system calls:

> intercept system calls and their arguments,



Protecting the operating system

How to model a process’ activity?

A process can be simplified as a sequence of system calls:

> intercept system calls and their arguments,

» group similar calls to make the problem feasible,



Protecting the operating system

How to model a process’ activity?

A process can be simplified as a sequence of system calls:
> intercept system calls and their arguments,
» group similar calls to make the problem feasible,

» encode the sequence of classes of calls as a Markov chain,



Protecting the operating system

How to model a process’ activity?

A process can be simplified as a sequence of system calls:

v

intercept system calls and their arguments,

v

group similar calls to make the problem feasible,

v

encode the sequence of classes of calls as a Markov chain,

v

deviant process — malicious process.



Example of model




Overall detection capabilities

=
=1

Detection Rate (%)

|
20 ;‘1’
i
i
8,000 10,000 12,000

i
I/
0
2,000 4,000 6,000
False Positive Rate (%)

Tested on one week of kernel activity (about 100,000 syscalls/day),
142 attacks. IEEE Transaction on Dep. and Secure Systems [4],

ACM SIGOPS' O.S. Reviews [8].
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Achieving better accuracy

Can we improve accuracy?

Markov chains sometimes lead to false negatives (too permissive):

» use FSM instead,

» avoid false positives due to string parameters by
“compressing” them with Self-Organizing Maps.

Tested on one day of kernel activity (about 145,000 syscalls), 5
attacks. DIMVA 2009 [3].
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Aggregating alerts

Alert coming from different tools should be aggregated to avoid duplicates.

Time-based alert matching can be inaccurate, thus:

» model and alert as a fuzzy set (actually, interval),
» model intrinsic measurement errors,
» more robust than classic methods (e.g., sliding window).

Tested on about two weeks of detection resulting in about 2,000
alerts overall. Information Fusion, Elsevier [5].



Overall detection capabilities
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Detecting related alerts

Malicious network behavior is reflected onto malicious kernel behavior.

How to detect relationships?

» model alerts as stochastic processes,
» use statistical hypothesis tests (e.g., KS' goodness of fit),
» matching series — related alerts.

Tested on about two weeks of detection resulting in about 1,000
alerts per system. RAID 2007 [7].



Conclusions and lesson learned during my PhD

» some of our systems require refactoring because performance
was not our primary focus,

» the most difficult task ever, in our research area, is gathering
enough experimental data,

» often, scientifically sound experiments are very difficult to
prepare because data is also non-labeled,

» in our future research we really want to spend a considerable
amount of time and efforts at designing public data
collection infrastructure.



Obligatory Slide

Thanks!
Questions?
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