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Main threats

Traditional threats:
• Phishing

• Credentials Database Theft 

Banking Trojans
Malware that aims at stealing banking credentials in 
order to perform online financial frauds:
- ZeuS (2007+)
- SpyEye (2011+)
- Citadel (2012+)
- Carberp (2014+)
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Web Injections
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Effect of a web injection



Effect of a web injection



Internet banking frauds are difficult to analyze and detect:

•Fraudulent behavior is dynamic and dispersed in large and 
highly imbalanced datasets with different customers

•Scarcity of available informations and data

•Most of the existing approaches:

• Black box 

• Based on synthetic data 

• Not adaptive baseline profiling

Banking Fraud Detection: Challenges

11



Fraud detection is a wide research topic

•Main focus: credit cards

• Both in literature and in the market

•Most of the existing approaches:

• Black box:

• Instead, analysts need an explanation for the results

• Tiring manual investigation and confirmation

• Not adaptive:

• CC frauds are assumed to be “always the same” 
across the world

Existing approaches & market offer
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BankSealer: Goals

• Not focus on pure detection approach

• Support the analysis and the investigation of (novel) frauds 
and anomalies through readable model and results

• Decision support system able to model user behavior and 
its evolution
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Publications

If you wish to check the publications during or after the talk:

Michele Carminati, Roberto Caron, Federico Maggi, Ilenia 
Epifani, Stefano Zanero, “BankSealer: An Online Banking 
Fraud Analysis and Decision Support System”, in IFIP SEC 
2014

Michele Carminati, Roberto Caron, Federico Maggi, Ilenia 
Epifani, Stefano Zanero, “BankSealer: A decision support 
system for online banking fraud analysis and investigation”, 
Computers & Security, vol. 53, Sept. 2015, pp. 175–186
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http://link.springer.com/chapter/10.1007%2F978-3-642-55415-5_32
http://link.springer.com/chapter/10.1007%2F978-3-642-55415-5_32
http://www.sciencedirect.com/science/article/pii/S0167404815000437
http://www.sciencedirect.com/science/article/pii/S0167404815000437


Original Dataset

• Three months, one of the largest banks in Italy

• Skewed and unbalanced distribution of the 
attribute values

• High cardinality

• Majority of users perform only few transactions

# Transactions # Users

Bank Transfers 371,137 47,650

Prepaid phone 54,141 16,093

Debit cards 34,986 8,415
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Anonymized Dataset
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IP Timestamp Type Amount User ID IBAN Country



Skewed data example
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Attributes

BANK TRANSFERS $$$    CC.IP    IP    IBAN    CC_IBAN       D:H:M:S

PHONE RECAHRGES $$$    CC.IP    IP    OP.TEL   NUM.TEL        D:H:M:S

PREPAID CARDS $$$    CARD_TYPE  CARD.NR  CC_IP  D:H:M:S
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Model for Each Attribute

VALUES FOR ATTRIBUTE "X" (or CATEGORIES)

IBAN_1   IBAN_2  IBAN_3                               . . .             IBAN_N

19

FR
EQ

U
EN

C
Y



Model Example



HBOS = Histogram Based Outlier Score
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Users with scarce data: Global Profile

Two phases:

1. Clustering: find groups of similar users
a. Algorithm: incremental DBSCAN
b. Distance function: Mahalanobis

2. Anomaly score: distance of a user from the large 
clusters
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Majority of Users Behave Similarly
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Majority of Users Behave Similarly
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Majority of Users Behave Similarly
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distance = anomaly score



Majority of Users Behave Similarly
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distance = anomaly score

HBOS' = HBOS * distance



39



40



41

Fraud Analysis
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Bank$ealer
Feature Weighting & Detection
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Generate synthetic frauds based on scenarios built with the 
collaboration of bank experts that replicate the typical real 
attacks performed against online banking users

Inject n fraudulent transactions (or users) in the testing 
dataset and analyze the top n transactions (or users) in the 
ranking

FREQUENCY

ONE-SHOT

PERIODIC

$$$

HIGH

LOW

1.INFORMATION STEALER

2. TRANSACTION HIJACKING 

3. “STEALTHY” FRAUDS

ORIGIN

LOCAL IP

FOREIGN IP

Dataset Generation
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Detection Capabilities
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For comparison, best result in state of the art: Wei et al. 
(2013) report detecting 60-70% of the frauds with 
unreported precision



With Genetic Algorithms
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Mixed scenario



Resource Requirements: Training

RAM per #Users RAM per #days
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Time Performance: Runtime

Domain Timespan of Data Runtime

Bank Transfers
1 day
1 month

1–4 min
6–93 min

Prepaid phone
1 day
1 month

18–25 sec
0.5–2.5 min

Debit cards
1 day
1 month

7–10 sec
12–60 sec
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Note: ranges are for "only well trained" and "including undertrained" users.

# Transactions # Users

Bank Transfers 371,137 47,650

Prepaid phone 54,141 16,093

Debit cards 34,986 8,415
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