
Effective multimodel anomaly detection using
cooperative negotiation

Alberto Volpatto, Federico Maggi, and Stefano Zanero

Dipartimento di Elettronica e Informazione
Politecnico di Milano

{volpatto,fmaggi,zanero}@elet.polimi.it

Abstract. Many computer protection tools incorporate learning tech-
niques that build mathematical models to capture the characteristics of
system’s activity and then check whether live system’s activity fits the
learned models. This approach, referred to as anomaly detection, has
enjoyed immense popularity because of its effectiveness at recognizing
unknown attacks (under the assumption that attacks cause glitches in
the protected system). Typically, instead of building a single complex
model, smaller, partial models are constructed, each capturing differ-
ent features of the monitored activity. Such multimodel paradigm raises
the non-trivial issue of combining each partial model to decide whether
or not the activity contains signs of attacks. Various mechanisms can be
chosen, ranging from a simple weighted average to Bayesian networks, or
more sophisticated strategies. In this paper we show how different aggre-
gation functions can influence the detection accuracy. To mitigate these
issues we propose a radically different approach: rather than treating the
aggregation as a calculation, we formulate it as a decision problem, im-
plemented through cooperative negotiation between autonomous agents.
We validated the approach on a publicly available, realistic dataset, and
show that it enhances the detection accuracy with respect to a system
that uses elementary aggregation mechanisms.

Keywords: Anomaly detection, cooperative negotiation.

1 Introduction

As a growing number of business and personal activities are conducted over the
Internet, cybercrime has became a growing concern [1]. In the current threat
landscape, 0-day exploits and site-specific attacks are at the same time the most
challenging and frequent threats [2]. 0-day exploits take advantage of vulnerabil-
ities not publicly disclosed, whereas site-specific attacks target a specific applica-
tion, such as custom product, rather than a widely deployed system. Among the
defense tools, anomaly detectors leverage a description of the normal activity
of the protected system, and are therefore potentially effective against attacks
never seen before. The assumption (and, to some extent, the limitation) is that
attacks would leave traces that can be automatically recognized as anomalous.

2 Volpatto et al.

On the other hand, misuse-based detectors, which rely on a list of signatures of
known attacks, only offer protection against attack vectors that have been pub-
licly disclosed. Despite its remarkable precision at detecting known threats, the
misuse-based paradigm offer no help against 0-day and custom-made attacks.

A long-standing approach in the design of complex systems is the use of
multiple models [3, 4]. This paradigm is also effective for anomaly detection, as
proven by the recent literature detection [5–12] and lies in the decomposition of
a complex problem (i.e., capturing the “normal behavior” of a potentially large
and complex system) into simpler sub-problems, each tackled by one mathemat-
ical model. For example, there are systems that analyze the observed activity
(e.g., the HTTP requests and responses) and build models such as the average
length of a request, or the relative frequency of ASCII symbols into an HTTP
request body. Usually, such models have a numerical representation that con-
tributes to an overall evaluation of the degree of anomaly. The models can be
encapsulated into autonomous agents [13]. This technique have been shown to
be as effective as the traditional, multimodel approach [14–19], with the benefit
of a more natural design and the existence of a plethora of multiagent program-
ming frameworks [20]. Unfortunately, while the use of multiagent systems may
improve the ease of design of anomaly detectors, the problem of aggregating the
models persists.

The core point of this paper is that the aggregation phase is crucial to achieve
good precision. We propose to tackle this problem and its issues (described in
Section 2.1) by exploiting the multiagent framework beyond its architectural
properties. More precisely, we use cooperative negotiation to implement the ag-
gregation task as a decision problem. This approach is inspired by the seminal
study described in [21], where cooperative negotiation has been used to classify
the payloads of TCP packets. However, the study was explicitly a toy exam-
ple, tested on artificial, outdated traffic (i.e., IDEVAL [22]). We further develop
the idea, adapt it to real-world settings, and examine carefully the impact of
the negotiation protocol’s parameters. The contributions of this paper can be
summarized as follows.

– In Section 2 we discuss the issues caused by simple aggregation strategies,
and motivate why this problem should be addressed to achieve reliable attack
detection.

– In Section 3 we present a simple, yet very effective, technique that leverage
cooperative negotiation between autonomous agents to decide whether or
not a given event is an attack and detail how we incorporated this technique
in an anomaly detector.

– In Section 4 we evaluate the detection capabilities of the tool obtained over
a realistic, publicly-available data set, and discuss its limitations.

The results of our experiments show that the proposed technique alleviates the
detection errors caused by inaccurate combinations of models. Our approach
applies to any multimodel system. However, due to the popularity of web ap-
plications and web-based attacks, we validate it on a recent anomaly detector
designed to protect web applications.

Effective multimodel anomaly detection using cooperative negotiation 3

2 Multimodel anomaly detection

A learning-based anomaly detector learns the normal activity by observing a
system’s activity. In the representative, simple example of HTTP, such activ-
ity consists in the HTTP requests and responses exchanged between servers
and clients. Requests, or queries, Q = {q1, q2, . . . , qj , . . .}, are usually decom-
posed into resources (i.e. paths) and parameters. For instance, the request ‘GET
/page?uid=u44&p=14&do=delete’ contains the resource ‘/page’ and the pa-
rameters {〈uid, ‘u44’〉, 〈g, 14〉, 〈do, ‘delete’〉}.

During an initial learning (or training) phase, a multimodel detector instanti-
ates different mathematical models, m(1), . . . ,m(Z), to compute certain features,
1, . . . , Z, on each training sample (e.g., an HTTP request, response, or a sequence
of requests-responses). The specific models and the strategy to combine their
output determine the classes of attacks that can be detected. Typical models
proposed in literature capture features such as the average length of the string
parameters, their character distribution and probabilistic grammar, or the order
in which parameters appear across the requests against the each resource. Unfor-
tunately, due to space limitations, we must refer the interested reader to [9,12,23]
for more details. During detection, the model instances computed during train-
ing are used as maps, m(z) : Q 7→ [0, 1],∀z, and their outputs are aggregated
into an overall anomaly score. This score is checked against thresholds and alerts
are fired accordingly. Thresholds are fixed a priori or, usually, computed during
learning. The improvements proposed in this work — validated using the set
of models implemented in Masibty [12] — are independent from the particular
models, and thus can be easily applied to any learning-based detector.

2.1 Drawbacks of model aggregation

In the design of a multimodel anomaly detector, the value aggregation [24] phase
has a significant impact on the quality of detection results. Just for simplicity in
illustrating our point, we can roughly distinguish between simple and complex
aggregation strategies, and in both cases such strategies can be parametric or
non-parametric.

An example of simple, non-parametric aggregation strategy is the arithmetic
mean. While this type of approach requires no user intervention and is very
simple to understand, the lack of a differentiation between the models does not
allow to control the impact of models with poor performance on the overall
detection. The most natural solution to this issue is the use of parametric aggre-
gation functions (e.g., a weighted average), with different parameters assigned to
the models in order to optimize detection quality. These mechanisms obviously
create the non-trivial problem of choosing the parameters (e.g., the weights),
which clearly influence the final value. In addition, if the system employs a large
set of models, it might be difficult to properly set all the weights. Although the
optimal weights can be computed automatically from the data, as demonstrated
by the results of the experiment described in Section 4.1, this is not sufficient to
achieve good detection accuracy if a simplistic aggregation method is used. More

4 Volpatto et al.

complex strategies, such as Bayesian networks (or ad-hoc aggregation criteria),
can perform very well under the conditions they have been designed for, but un-
fortunately their inherent complexity makes manual tuning and improvements
difficult for the end-users. Our aggregation approach, which performances are
comparable to such methods, have the advantage of being easier to manually
configure.

From the previous observations, it follows that the design of a simpler, generic
method to reduce detection errors caused by model aggregation is necessary to
obtain a reasonable level of protection from multimodel anomaly detectors.

3 Exploiting cooperative negotiation

We implemented our model aggregation approach by modifying the training and
detection algorithms of Masibty [12].

3.1 Modifications to the learning phase

To fully implement the detection phase detailed in Section 3.2, the learning phase
of a traditional multimodel detector requires some minor modifications. In par-

ticular, every model, m(z), must implement a trust model, T
(z)
j : Q 7→ [0, 1], that

assesses the “reliability” of m(z), up to the j-th training step (i.e., after the j-th
training has been analyzed). As motivated in Section 3.2, this model is required
for completing the cooperative negotiation correctly. The final decision indeed
depends upon the agents with higher trust level, while the impact of poorly-
trained agents (which may lead to overfitting) is minimized. For this reason, the
trust functions must be designed in such a way that models that have received
ample training are assigned high trusts, since they are likely to produce accurate
and reliable detections. For example, one of the models checks for the presence
of parameters in each HTTP request and computes their appearance ratio across
all the requests. The anomaly score is calculated as 1−min (MR ,min (PR)), where
M and P , respectively, indicate the number of missing and present parameters,
while R is the total number of requests. The trust level is high if the presence
is nearly constant, while it decreases if an application exhibits variations. The
trust function is thus 1− M

R . Due to space limitations, we refer the reader to [12]
for details on the models implemented on the prototype (see Fig. 1 in [12]) used
for our experiments.

Optionally, the trust level can also be exploited to optimize training, by
stopping it automatically when a sufficient amount of data is received by each

model. For example, we adopted δW (j) := maxj∈W T
(z)
j −minj∈W T

(z)
j , where

W is a sliding window1. By choosing a small ε > 0 (we used ε = 0.003 and
W = 5), a model is considered stable after the j-th training sample if δW (j) ≤ ε.
Although more sophisticated criteria can be designed, we noticed that, under

1 the sliding window size influences the training duration: smaller values tend to stop
training early, while higher values result in a longer and more conservative training

Effective multimodel anomaly detection using cooperative negotiation 5

the conditions described in Section 4, this is sufficient to achieve good detection
results. This optimization, however, is not necessary to adopt our cooperative
negotiation approach, and we will evaluate its impact separately.

3.2 Modifications of the detection phase

We translate the value aggregation problem that arises during detection into a
decision problem implemented via cooperative negotiation between autonomous
agents. In artificial intelligence, an agent is the abstraction of an entity capable
of reading inputs by observing the environment, and to perform actions toward
the achievement of certain goals. In our context, the environment is the network
segment which the agent receives HTTP messages from. No other input than the
HTTP messages is passed to the agents. The goal is to find the correct degree
of anomaly, that is, the numeric value that would minimize the detection errors.
Multiagent systems comprise a coordination protocol, implemented by the agents
(and a mediator, if present) to achieve a global goal. In general, these protocols
can be competitive, when the goals of the agents are conflicting, or cooperative,
when the agents pursue a common goal. A form of coordination is negotiation,
where the agents tend to “harmonize” conflicting goals toward the achievement
of the global goal.

We specifically propose to use a cooperative negotiation protocol, described
in the following, to reach an agreement on the anomaly score used to classify
HTTP messages as benign or malicious.

Cooperative negotiation protocol Our system comprises n agents, M1, . . . ,
Mi, . . . , Mn, and a mediator M . Each agent embeds exactly one of the partial
models implemented in the original prototype [12, Section IV], and communi-
cates only with the mediator (which embeds no models).

The protocol is initiated every time a new sample, qj , is observed. The j-
th session iterates multiple times. Each iteration is denoted with t and begins
at t = 0. We define the partial degree of anomaly pti ∈ [0, 1] as the degree of
anomaly computed by the i-th agent using its embedded model m(zi) at iteration
t. The protocol proceeds as follows:

1. each Mi receive the sample qj and calculates its offer, pti = m(zi)(qj).
2. pti is sent to M along with the agent’s trust level, wi = T (zi).
3. M receives pti and wi, ∀i = 1, . . . , n, and calculates an agreement at by using

the agreement function at = A(pt1, w1, p
t
2, w2, . . . , p

t
n, wn).

4. M sends its counter offer at to all the agents.
5. Each Mi calculates the new offer pt+1

i by using a negotiation function pt+1
i =

Fi(p
t
i, a

t).
6. Each Mi sends pt+1

i to M , and steps 3. to 6. are repeated until an agreement,
a, for the j-th session, a = aj , is reached (i.e., until pi = pi′ ,∀i 6= i′).

The global evaluation of the anomaly score for the sample qj is thus aj .

6 Volpatto et al.

We define the agreement function to be the weighted average of the offers,

where weights are the trust levels: A(pt1, w1, pt2, w2, . . ., ptn, wn) :=
∑n

i=1 p
t
iwi∑n

i=1 wi
.

The trust level is constant throughout the negotiation.

The negotiation function is Fi(p
t
i, a

t) = pti+αi(a
t−pti), where at−pti expresses

a measure of disagreement between agent Mi and the global system. Note that
pt+1
i is determined only by values at time t: for this reason, and because each

agent does not change the evaluation of its embedded model over time (for
a given qj), it is unnecessary to actually perform a two-way communication
between the agents and the mediator. Instead, upon receiving all the initial offers,
the mediator can run the negotiation protocol without communicating with the
agents. The cooperative negotiation protocol described does not impose any
negotiation strategy to the agents, that is indeed related to the implementation
of both functions detailed above.

The agreement coefficient, αi ∈ (0, 1), expresses the willingness of agent Mi

to propose its offer versus the counter-offer received from the mediator. When
αi → 0 each agent tends not to modify its offer, while αi → 1 causes each agent to
agree with the counter-offer. We compute the agreement coefficient as a function
of the trust level of the agent’s embedded model. If the trust level is close to 0,
then its evaluation would not be reliable; thus, during the negotiation session
its influence should be minimized to “ignore” its offers. On the other hand, a
trust level close to 1 means maximum reliability. A sigmoid-shaped function
fα(wi) = 1

1+eh(wi−k) is a good implementation of the above rationale, where h is
the smoothness and k is the central value.

It can be shown that h has negligible impact on the final agreement (in our
experiments, we used h = 7.5) and only influences the speed of the negotiations.
We adopted k = 0.5 to express that all the agents have neutral impact on the
agreement against the mediator, and such impact only depends on the trust
levels computed from data during training. In other words, 0.5 is the natural
value of k if one needs to avoid biased detections. It can be shown that also k
has a negligible impact on the results. We demonstrate both observations with
an experiment described in Section 4.2.

The cooperative negotiation mechanism described is proved to be connec-
tively stable in [25]. This means that agents will reach a stable agreement on
attack probability, regardless of their initial offer and for any n. In order to
prove our point that just by modifying the negotiation protocol we could im-
prove the quality of the results, we did not modify the original detection phase
of the system any further. In particular, we have not modified the way global
anomaly thresholds are calculated and used to raise alerts.

In addition to the traditional sensitivity parameter, used in every anomaly-
based detector to trade off False Positive Rate (FPR) versus Detection Rate
(DR), h and k are the only parameters strictly required by our approach, and
their choice has a very limited impact on the system performance. W and ε are
required only for optimized learning.

Effective multimodel anomaly detection using cooperative negotiation 7

4 Evaluation

To validate our approach, we conducted two experiments on the traffic2 captured
during the International Capture the Flag 2008, organized by the University of
California, Santa Barbara. The traffic, mostly HTTP, contains 0-day vulnera-
bilities, and the majority of the players were skilled hackers, able to prepare
custom and diverse exploits. Unfortunately, this causes the lack of any ground
truth other than the list of (known) attacks detectable with the Snort misuse-
based system. To alleviate this issue we used the portion of the dataset that
contains clean background traffic, and injected custom, real-world attacks dur-
ing detection. In this way, the ground truth is perfectly known. The background
traffic contains 44,102 HTTP messages, i.e., 22,051 request-response couples. We
cross-validated our system by using 14,961 request-response couples for training
and 7,090 for detection. More precisely, we injected instances of the three most
common types of attacks against web applications3, such as cross-site scripting
(XSS) (e.g., CVE-2009-0781), SQL injections (e.g., CVE-2009-1224), and com-
mand injections (e.g., CVE-2009-0258). The XSS attacks are variations on those
listed in [26], the SQL injections were created similarly from [27], and the com-
mand execution exploits are variations of common command injections against
the Linux and Windows platforms. In addition to cross-validation, to avoid bi-
ased experiments on the same attack instances, the injected strings are randomly
drawn from a set of alternatives. In particular, we used 14 different SQL injec-
tion vectors, 4 command injections, and 94 XSSs. Note that, this is similar to
the use of variants of the same dataset, as it avoids using the same exact set
of attacks over and over. To this end, using a uniform probability distribution,
we randomized (1) the type of attack, (2) the HTTP parameter to use for the
injection, and (3) the vector (of a given type) to inject. The resulting traffic
contains 1,000 randomized attacks in every experiment.

4.1 Benefit of cooperative negotiation

This experiment aims at showing that our approach can effectively mitigate de-
tection errors better than a technique based solely on value aggregation (i.e.,
weighted average). To this end, we ran the original prototype in its original
configuration, as described in [12], then with the modifications described in Sec-
tion 3, and finally implementing also the optimization for the learning phase
briefly described in Section 3.1 (which is optional).

The comparison is show in Fig. 1, with a ROC curve showing DR and FPR for
different working points. As it can be seen, the cooperative negotiation dramati-
cally improves the classification accuracy with respect to the simplistic weighted
average. For instance, at FPR = 0.1, the cooperative negotiation yields an in-
crement of about 54% on the DR. It must be noted that, in the paper that

2 available for download at http://ictf.cs.ucsb.edu/data/ictf2008/
3 http://owasptop10.googlecode.com/files/OWASPTop10-2010.pdf

8 Volpatto et al.

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4

D
R

FPR

Weighted average
Cooperative negotiation

Cooperative negotiation and optimized learning

Fig. 1. ROC curve of the original prototype (solid line) and with the modifications we
propose (dashed line), and with optimized training (dotted line).

describes the original prototype, the experiments leveraged a completely artifi-
cial, small dataset, comprising only a limited number of attacks: this explains
why the original system performs significantly worse in this experiment.

The accuracy can be further improved by adopting the optimization of the
learning phase (see Section 3.1), although this is not required to apply the co-
operative negotiation.

4.2 Influence of the parameters

This experiment shows that the parameters introduced by our approach, i.e., the
smoothness, h, and the central value, k, of the alpha function, fα, only marginally
impact the detection quality. In addition, we provide guidance to choose these
parameters to minimize the negotiation overhead. To this end, we used all of
the modifications described in Section 3 (with optimized learning) at a fixed
ROC working point, and varied h ∈ {2.5, 5, 7.5, 10}, k ∈ {0.1, 0.3, 0.5, 0.7, 0.9}.
As shown in Fig. 2, the influence of these parameters on (a) DR and (b) FPR is
barely noticeable.

Rather than providing a theoretical complexity boundary to the computa-
tional overhead induced by the negotiation process, we estimate it under real
conditions. As shown in Fig. 2(c), h and k have significant impact on the com-
putational overhead (e.g., number of iterations I), necessary to complete the
negotiation. However, as seen in Fig. 2(a-b), these parameters have almost no
impact on the detection accuracy. Thus, setting k ≥ 0.5 and choosing a safe
value of h allows to limit the number of iterations. For example, in the experi-
ment discussed in Section 4.1 we used h = 7.5.

Effective multimodel anomaly detection using cooperative negotiation 9

 0.94

 0.945

 0.95

 0.955

 0.96

 0.965

 0.97

 0.975

 0.98

 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

D
R

k

h = 2.5
h = 5.0
h = 7.5

h = 10.0

(a) DR = DRh(k)

 0

 0.001

 0.002

 0.003

 0.004

 0.005

 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

F
P

R

k

h = 2.5
h = 5.0
h = 7.5

h = 10.0

(b) FPR = FPRh(k)

 0

 200

 400

 600

 800

 1000

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

Ite
ra

tio
ns

k

h = 2.5
h = 5.0
h = 7.5

h = 10.0
h = 12.5
h = 15.0
h = 17.5
h = 20.0
h = 22.5
h = 25.0

(c) I = Ih(k)

Fig. 2. Negligible influence of k and h on the detection quality of our system (a-b) and
noticeable influence on the length of the negotiation, I.

4.3 Discussion and limitations

It is important to clarify the main limitations of our approach. Firstly, an incor-
rect choice of h and k may cause the negotiation protocol not to terminate in
a reasonable amount of time. However, in Section 4.2, we show that these pa-
rameters do not influence the detection quality and, more importantly, provide a
guidance for setting h and k to safe values. Secondly, as described in Section 3.2,
the trust level is constant throughout all the negotiations. In our opinion, this
does not impact the detection accuracy significantly, although this needs to be
assessed thoroughly.

From our experiments we conclude, however, that the technique described in
Section 3 effectively improves the detection capabilities of a multimodel anomaly
detector.

5 Related work

Anomaly-based approaches have been proposed to protect computer systems
from attacks by exploiting learning algorithms in different veins. Ensembles of
simple models (e.g., character distribution) are effective at capturing the nor-
mal characteristics of computer programs [10, 11], network traffic [7], or HTTP
messages [9, 12], respectively. Unfortunately, due to space limitations, we must
refer the reader to a comprehensive survey on anomaly detection [28].

Multiagent systems are very useful for implementing complex systems [14]
and have been applied also to intrusion detection as a handy replacement of clas-
sic multimodel architectures. For instance, in [13] an agent is assigned to each
system component or task (e.g., network sniffing, stream reassembly). However,
in this type of approaches, only the architecture of a multiagent system is ex-
ploited. Instead, our approach exploits multiagent systems as a paradigm: not
only each agent embeds a detection procedure, but proper algorithms drawn from
artificial intelligence are leveraged to perform the decision. One of the first at-
tempts of translating the intrusion detection problem to an interaction between
agents appeared in [15], where the use different classes of agents, which do not
communicate to each other, is used to detect different types of anomalies, and to

10 Volpatto et al.

aggregate the decisions through a special agent. Unfortunately, some malicious
activity (e.g., distributed attacks or evasion attacks) are difficult to detect if the
agents do not communicate, since each agent has a limited view of the attacks.
This idea is improved in [16, 18] by introducing communication between agents
and by embedding a Bayesian network into each agent. Different decision tech-
niques have been embedded in the multiagent detector described in [17], where
special agents called “decisors” use fuzzy inference to bid for the most appropri-
ate actions to counteract the anomalies reported by other agents. CAMNEP [19]
has two important analogies with our work, since each agent (1) learns a dif-
ferent model (similar to those cited in Section 2) and, (2) is assigned a trust
level that reflects the completeness of its training. Unfortunately, this approach
do not fully exploit artificial intelligence algorithms as results from each agents
are simply averaged. The exploratory work described in [21] uses the intrusion
detection task as a case study to apply cooperative negotiation algorithms to
detect attacks. Although the results are promising, the approach reduces the
computation of the trust to a constant function. More importantly, the agree-
ment coefficient devised by the authors causes the agents to agree on results that
once again tend to approximate a weighted average. Recent proposals focused
on updating the learned specifications dynamically at run-time, hence requiring
no or little human intervention also in the case of concept drifts [29,30]. Among
this research line, the technique described in [31] is applied to the aforemen-
tioned CAMNEP multiagent anomaly detector. However, although these model-
updating techniques can certainly improve the accuracy of an existing detector
such as the one described in this paper, they do not constitute a new detection
mechanism per sé, while in this work we focused on multiagent algorithms for
designing effective detection strategies.

6 Conclusions

In this work, we have analyzed an issue that occurs in virtually any multimodel,
anomaly-based intrusion detection system: the detection errors caused when the
outputs of each partial model are aggregated together to form a global evalua-
tion, used to decide whether or not a certain event is an attack. We proposed to
embed detection models into separate agents, in a multiagent system, and then to
exploit cooperative negotiation to implement a more robust value-aggregation
strategy. To test our approach, we modified a web anomaly detection system
which used a simple weighted average, to use cooperative negotiation.

The results obtained by testing the original versus the modified system are
promising. More precisely, our approach can improve the detection rate dra-
matically at parity of false positive rate. In addition, the detection quality is not
influenced by new parameters we introduced, thus our approach does not require
any further tuning effort and could be effortlessly applied to any learning-based
anomaly detector that employs simpler aggregation approaches.

As future work, besides addressing the limitations discussed in Section 4.3,
we plan to evaluate the performance overhead introduced by our approach more

Effective multimodel anomaly detection using cooperative negotiation 11

thoroughly, with particular attention to the time necessary to complete the ne-
gotiation phase and the comparison to other simpler, yet less formal, aggregation
methods.

Acknowledgments

The authors are thankful to N. Basilico and F. Amigoni. This work has been par-
tially supported by the European Commission through IST-216026-WOMBAT
funded by the 7th FP. The opinions expressed in this paper are those of the
authors and do not necessarily reflect the views of the European Commission.

References

1. Carr, J.: Inside Cyber Warfare: Mapping the Cyber Underworld. O’Reilly Media,
Inc. (2009)

2. The SANS Institute: Zero-day vulnerability trends. http://www.sans.org/

top-cyber-security-risks/zero-day.php (September 2009)
3. Fishwick, P.A.: An integrated approach to system modeling using a synthesis of

artificial intelligence, software engineering and simulation methodologies. ACM
Trans. Model. Comput. Simul. 2(4) (1992) 307–330

4. Fishwick, P.A., Zeigler, B.P.: A multimodel methodology for qualitative model
engineering. ACM Trans. Model. Comput. Simul. 2(1) (1992) 52–81

5. Denning, D.E.: An Intrusion-Detection Model. IEEE Transactions on Software
Engineering 13(2) (1987) 222–232

6. Lee, W., Stolfo, S.J.: A framework for constructing features and models for intru-
sion detection systems. ACM Transactions on Information and System Security
3(4) (2000) 227–261

7. Kruegel, C., Toth, T., Kirda, E.: Service-Specific Anomaly Detection for Network
Intrusion Detection. In: Proceedings of the Symposium on Applied Computing
(SAC 2002), Spain (March 2002)

8. Kruegel, C., Mutz, D., Valeur, F., Vigna, G.: On the detection of anomalous
system call arguments. In: Proceedings of the 2003 European Symp. on Research
in Computer Security, Gjøvik, Norway (Oct. 2003)

9. Kruegel, C., Robertson, W., Vigna, G.: A Multi-model Approach to the Detection
of Web-based Attacks. Journal of Computer Networks 48(5) (July 2005) 717–738

10. Mutz, D., Valeur, F., Kruegel, C., Vigna, G.: Anomalous System Call Detection.
ACM Transactions on Information and System Security 9(1) (February 2006) 61–
93

11. Maggi, F., Matteucci, M., Zanero, S.: Detecting intrusions through system call
sequence and argument analysis. IEEE Transactions on Dependable and Secure
Computing 99(PrePrints) (2008)

12. Criscione, C., Maggi, F., Salvaneschi, G., Zanero, S.: Integrated detection of attacks
against browsers, web applications and databases. In: European Conference on
Computer Network Defence - EC2ND 2009. (2009)

13. Helmer, G., Wong, J.S.K., Honavar, V.G., Miller, L., Wang, Y.: Lightweight agents
for intrusion detection. J. Syst. Softw. 67(2) (2003) 109–122

14. Jennings, N.R.: An agent-based approach for building complex software systems.
Commun. ACM 44(4) (2001) 35–41

12 Volpatto et al.

15. Spafford, E., Zamboni, D.: Intrusion detection using autonomous agents. Computer
Networks 34(4) (2000) 547–570

16. Ghosh, A., Sen, S.: Agent-based distributed intrusion alert system. In: Distributed
Computing - IWDC 2004. Volume 3326/2005 of Lecture Notes in Computer Sci-
ence., Heidelberg, Springer Berlin (2004) 240–251

17. Dasgupta, D., Gonzalez, F., Yallapu, K., Gomez, J., Yarramsettii, R.: CIDS: An
agent-based intrusion detection system. Computers & Security 24(5) (2005) 387–
398

18. Gowadia, V., Farkas, C., Valtorta, M.: PAID: A probabilistic agent-based intrusion
detection system. Computers & Security 24(7) (2005) 529–545

19. Rehak, M., Pechoucek, M., Celeda, P., Novotny, J., Minarik, P.: Camnep: agent-
based network intrusion detection system. In: AAMAS ’08: Proceedings of the 7th
International Joint Conference on Autonomous Agents and Multiagent Systems,
Richland, SC, International Foundation for Autonomous Agents and Multiagent
Systems (2008) 133–136

20. Allan, R.J.: Survey of agent based modelling and simulation tools. Technical report,
STFC Daresbury Laboratory, Daresbury, Warrington WA4 4AD (May 2010)

21. Amigoni, F., Basilico, F., Basilico, N., Zanero, S.: Integrating partial models of
network normality via cooperative negotiation: An approach to development of
multiagent intrusion detection systems. In: WI-IAT ’08, Washington, DC, USA,
IEEE Computer Society (2008) 531–537

22. Lippmann, R., Haines, J.W., Fried, D.J., Korba, J., Das, K.: The 1999 DARPA
off-line intrusion detection evaluation. Comput. Networks 34(4) (2000) 579–595

23. Song, Y., Stolfo, S., Keromytis, A.: Spectrogram: A Mixture-of-Markov-Chains
Model for Anomaly Detection in Web Traffic. In: Proc of the 16th Annual Network
and Distributed System Security Symposium (NDSS). (2009)

24. Kittler, J., Hatef, M., Duin, R.P., Matas, J.: On combining classifiers. IEEE
Transactions on Pattern Analysis and Machine Intelligence 20 (1998) 226–239

25. Amigoni, F., Gatti, N.: A formal framework for connective stability of highly decen-
tralized cooperative negotiations. Autonomous Agents and Multi-Agent Systems
15(3) (2007) 253–279

26. Robert Hansen (RSnake): XSS (Cross Site Scripting) Cheat Sheet. http://ha.

ckers.org/xss.html (June 2009)
27. Robert Hansen (RSnake): SQL Injection cheat sheet. http://ha.ckers.org/

sqlinjection/ (June 2009)
28. Chandola, V., Banerjee, A., Kumar, V.: Anomaly detection: A survey. ACM

Computing Surveys (CSUR) 41(3) (2009) 15
29. Cretu-Ciocarlie, G.F., Stavrou, A., Locasto, M.E., Stolfo, S.J.: Adaptive anomaly

detection via self-calibration and dynamic updating. In: RAID ’09: Proceedings
of the 12th International Symposium on Recent Advances in Intrusion Detection,
Berlin, Heidelberg, Springer-Verlag (2009) 41–60

30. Maggi, F., Robertson, W., Kruegel, C., Vigna, G.: Protecting a moving target:
Addressing web application concept drift. In: RAID ’09: Proceedings of the 12th
International Symposium on Recent Advances in Intrusion Detection, Berlin, Hei-
delberg, Springer-Verlag (2009) 21–40

31. Rehák, M., Staab, E., Fusenig, V., Pěchouček, M., Grill, M., Stiborek, J., Bartoš,
K., Engel, T.: Runtime monitoring and dynamic reconfiguration for intrusion
detection systems. In: RAID ’09: Proceedings of the 12th International Symposium
on Recent Advances in Intrusion Detection, Berlin, Heidelberg, Springer-Verlag
(2009) 61–80

