Bitlodine: Extracting Intelligence from the
Bitcoin Network

Michele Spagnuolo, Federico Maggi, and Stefano Zanero

Politecnico di Milano, Italy
michele.spagnuolo@mail.polimi.it, federico.maggi@polimi.it,
stefano.zanero@polimi.it

Abstract. Bitcoin, the famous peer-to-peer, decentralized electronic
currency system, allows users to benefit from pseudonymity, by generating
an arbitrary number of aliases (or addresses) to move funds. However, the
complete history of all transactions ever performed, called “blockchain”,
is public and replicated on each node. The data it contains is difficult to
analyze manually, but can yield a high number of relevant information.
In this paper we present a modular framework, BITIODINE, which parses
the blockchain, clusters addresses that are likely to belong to a same
user or group of users, classifies such users and labels them, and finally
visualizes complex information extracted from the Bitcoin network.
BITIODINE labels users (semi-)automatically with information on their
identity and actions which is automatically scraped from openly available
information sources. BITIODINE also supports manual investigation by
finding paths and reverse paths between addresses or users.

We tested BITIODINE on several real-world use cases, identified an address
likely to belong to the encrypted Silk Road cold wallet, or investigated
the CryptoLocker ransomware and accurately quantified the number of
ransoms paid, as well as information about the victims.

We release an early prototype of BITIODINE as a library for building more
complex Bitcoin forensic analysis tools.
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1 Introduction

Bitcoin is a decentralized monetary system based on an open-source protocol and
a peer-to-peer network of participants that validates and certifies all transactions.
It aims to become the digital equivalent of cash, as its transactions do not
explicitly identify the payer nor the payee.

Some features of Bitcoin, such as cryptographically guaranteed security of
transactions, negligible transaction fees, no set-up costs and no risk of charge-back,
along with its surging conversion rates to USD, convinced several businesses to
adopt it. At the same time, its apparent anonymity and ease of use attracted
also cybercriminals [5], who use it as a way of monetizing botnets and extorting
money (e.g., we discuss the CryptoLocker case in §4.3).

The decentralized accounting paradigm typical of Bitcoin requires each node
of the network to keep in memory the entire history of every transaction ever



happened, called blockchain. Although Bitcoin identities are not explicitly tied to
real-world individuals or organizations, all transactions are public and transparent,
and since each one is tied to the preceding one(s), anyone can see the flow of
Bitcoin from address to address.

Some bitcoin addresses are known and tied to entities such as gambling
sites, forum users or marketplaces. By analyzing the blockchain and correlating
it with this publicly available meta data, it is possible to find addresses used
(e.g., for gambling, mining, or for scams). Addresses can be algorithmically
grouped in clusters that correspond with entities that control them (but do not
necessarily own them) [1,2,5,9]. Collapsing addresses into clusters simplifies the
huge transaction graph, creating edges that correspond to aggregate transactions
(i.e., money exchanges) between entities or users. From hereinafter we refer to
such clusters and entities as users. The interesting outcome for investigators is
that it is possible to simply retrieve valuable information about an entity from
one of its addresses.

In existing approaches, clusters are labeled mostly manually, and the whole
process is not automated. In this paper, we propose BITIODINE, a collection
of modules to automatically parse the blockchain, cluster addresses, classify
addresses and users, graph, export and visualize elaborated information from
the Bitcoin network. In particular, we devise and implement a classifier module
that labels the clusters in an automated or semi-automated way, by using several
web scrapers that incrementally update lists of addresses belonging to known
identities. We create a feature-oriented database that allows fast queries about any
particular address to retrieve balance, number of transactions, amount received,
amount sent, and ratio of activity concerning labels (e.g., gambling, mining,
exchanges, donations, freebies, malware, FBI, Silk Road), or, in an aggregated
form, for clusters. It is possible to query for recently active addresses, and filter
results using cross filters in an efficient way.

BITIODINE has been tested on several real-world use cases: we describe how
we used it to find the transaction that, according to the FBI, was a payment by
Dread Pirate Roberts, founder of the Silk Road, to a hitman to have a person
killed [11]. We find a connection between Dread Pirate Roberts and an address
with a balance exceeding 111,114 BTC?, likely belonging to the encrypted Silk
Road cold wallet. Finally, we investigate the CryptoLocker ransomware, and,
starting by an address posted on a forum by a victim, we accurately quantify the
ransoms paid (around 1226 BTC as of December 15, 2013), and get information
about the victims.

In summary, our contributions are:

— A future-proof and easily extendable framework for building complex ap-
plications for forensic analysis of the Bitcoin blockchain: http://miki.it/
downloads/bitiodine.zip.

— A system that labels clusters/users with little or no supervision.

— We test our system on real-world use cases that include investigations on the
Silk Road and on malware such as CryptoLocker.

! The common shorthand currency notation for Bitcoin(s)
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2 State of the art and motivation

Bitcoin transactions [7] do not explicitly identify payers nor payees, as they
are just cryptographically signed messages that “encode” a fund transfer from
one public key to another. No PKI is present. The private keys are needed to
authorize such transfer.

The decentralized paradigm of Bitcoin requires each node of the network
to retain the blockchain (i.e., entire transaction history). All transactions are
public, transparent, and permanently recorded since the origin. Therefore, a lot
of potentially interesting information can be mined from the blockchain. Some
addresses are known and tied to entities, such as for instance gambling sites, users
of the main Bitcoin-related forum, Bitcoin Talk, or Bitcoin-OTC marketplace.
By analyzing the blockchain, it is possible to automatically find out how much
an address is used for gambling activities or mining, if it was used for scamming
users in the past, if and how it is related to other addresses and entities. The idea
of algorithmically associating Bitcoin addresses to entities controlling them is
described in [1] and [2]. The first work investigates Bitcoin privacy provisions in a
simulated setting where Bitcoin is used for daily payments, and concludes that the
current implementation of Bitcoin would enable the recovery of user transaction
profiles to a large extent. The second work analyzes the Bitcoin network with
data mining and anomaly detection techniques, using simple network features,
to monitor the network for identify thefts.

Reid et al. [9] analyzed the anonymity in Bitcoin and advocated the need for
proper PKI-like mechanisms. The activity of known users can be observed in
detail using passive analysis only, but the authors take into consideration also
active analysis, where an interested party can potentially deploy marked Bitcoins
and collaborate with other users to discover even more information. Mixing
services (e.g., Bitcoin Fog) claim to obfuscate the origin of transactions, thus
increasing the users’ anonymity: their effectiveness is analyzed in [6]. Structural
patterns in the topology and dynamics of the Bitcoin transaction graph that
have implications for the users’ anonymity are shown in [8], whereas [3] collected
precious information about the Silk Road before the seizure by the FBI.

The forensic approach proposed in [5] focuses on investigating the use of
Bitcoin for criminal or fraudulent purposes at scale. Using a small number of
manually labeled transactions, the authors were able to identify major institutions
and the interactions between them, and demonstrated that this approach can
shed light on the structure of the Bitcoin economy and how it is used.

From the state of the art we conclude that labeling addresses and users
automatically will become a necessity as the Bitcoin network grows.

3 System design and implementation

BITIODINE is meant to be a modular, expandable and easily deployable framework
to build complex applications for forensic analysis of the Bitcoin blockchain.

3.1 Architecture and data flow overview
Fig. 1 describes in a simplified way the building blocks of BITIODINE and the
interactions between different modules.
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Fig. 1: Building blocks of BITIODINE

The Block Parser reads blocks and transactions from the local .bitcoin
folder populated by the official bitcoind client and exports the blockchain data
to the blockchain DB, which uses a custom relational schema that we designed
to obtain good performance (see §3.3). This allows for a fast updating of data
from the Bitcoin network.

The goal of the Clusterizer is to find groups of addresses that belong to
the same user. It incrementally reads the blockchain DB and generates-updates
clusters of addresses using two heuristics, detailed in §3.2. The first heuristic
exploits transactions with multiple inputs, while the second leverages the concept
of “change” in transactions (see §3.2). These clusters are stored in cluster files.

A set of Scrapers crawl the web for Bitcoin addresses to be associated to
real users, automatically collecting, generating and updating lists of:

— usernames on platforms, namely Bitcoin Talk forum and Bitcoin-OTC mar-
ketplace (from forum signatures and databases)

— physical coins created by Casascius (https://www.casascius.com) along
with their Bitcoin value and status (opened, untouched)

— known scammers, by automatically identifying users that have significant
negative feedback on the Bitcoin-OTC and Bitcoin Talk trust system.

— shareholders in stock exchanges (currently limited to BitFunder)

Additional lists can be built with a semi-automatic approach which requires
user intervention. In particular, by downloading tagged data from https://
blockchain.info/tags, the tool helps users build lists of gambling addresses,
online wallet addresses, mining pool addresses and addresses which were subject
to seizure by law enforcement authorities. The user can verify tags and decide
to put the most relevant ones in the correct lists. Finally, a scraper uses Mt.
Gox trading APIs to get historical data about trades of Bitcoin for US dollars,
and saves them in a database called trades DB. This module is useful to detect
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interesting flows of coins that enter and exit the Bitcoin economy. The interface
is easily expandable, and adding scrapers for new services and websites is easy.

The Grapher incrementally reads the blockchain DB and the cluster file to
generate, respectively, a transaction graph and a user graph. In a transaction
graph, addresses are nodes and single transactions are edges. The Grapher has
several applications (e.g., finding successors and predecessors of an address). In
a user graph, users (i.e., clusters) are represented as nodes, and the aggregate
transactions between them are represented as edges.

The Classifier reads the transaction graph and the user graph generated by
the grapher, and proceeds to automatically label both single addresses and clusters
with specific annotations. Examples of labels are Bitcoin Talk and Bitcoin-OTC
usernames, the ratio of transactions coming from direct or pooled mining, to/from
gambling sites, exchanges, web wallets, other known BitcoinTalk or Bitcoin-OTC
users, freebies and donation addresses. There are also boolean flags, such as
one-time address, disposable, old, new, empty, scammer, miner, shareholder, FBI,
Silk Road, killer and malware. A complete list can be found in [10]. Classification
can take place globally on the whole blockchain, or selectively on a list of specified
addresses and clusters of interest. The results are stored in a database and can
be updated incrementally.

The Exporter allows to export and filter (portions of) the transaction graph
and the user graph in several formats, and support manual analysis by finding
simple paths (i.e., paths with no repeated nodes) on such graphs. More precisely,
it can export transactions that occurred inside a cluster, or that originated from a
cluster. It can also find either the shortest, or all the simple paths from an address
to another address, from an address to a cluster, from a cluster to an address, or
between two clusters. Moreover, it can find all simple paths originating from an
address or a cluster (i.e., the subgraph of successors), or to reverse such search,
by identifying the subgraph of predecessors of an address or cluster. Subgraphs
of successors or predecessors can be useful, for instance, in taint analysis, and
can assist manual investigation of mixing services, as we do in §4.1.

3.2 Algorithms and analysis approaches
Let N be the whole Bitcoin network. We denote with ng, ny, na, respectively,
the total number of blocks, users and addresses in the network. We also denote
as B = {b1,ba,...,by, } the set of blocks in the network N, and similarly as U =
{u1,uz, ..., un, } the set of users and as A = {ay, as, ..., an, } the set of addresses.
We also denote with 7;(S; — R;) a transaction with a unique index 4, and S; C A
and R; C A denote the sets of senders’ addresses and recipients’ addresses,
respectively. We define T = {71(S1 = R1),72(S2 = R2), ..., Tnyr(Sny — Rny)}
as the set of all ny transactions which took place. We also define T'|;, C T as the
subset of all the transactions contained in blocks with index k£ < ¢. Blocks are
uniquely identified by indexes starting from 0, for the genesis block, sequentially
increasing as they are appended to the blockchain.

We also define two functions. lastblock: T +— B, a function that maps the set
of transactions to the set of blocks, such that lastblock(r;) = b; if and only if
b; is the last block relayed by the network N as the transaction 7; is broadcast.



owns: A — U, a function that maps the set of addresses to the set of users, such
that owns(a;) = uy if and only if u; owns the private key of a;.

First heuristic: Multi-input transactions grouping The first heuristic ex-
ploits multi-input transactions. Multi-input transactions occur when a user u
wishes to perform a payment, and the payment amount exceeds the value of
each of the available Bitcoin in u’s wallet. In order to avoid performing multiple
transactions to complete the payment, enduring losses in terms of transaction fees,
Bitcoin clients choose a set of Bitcoin from u’s wallet such that their aggregate
value matches the payment and perform the payment through multi-input trans-
actions. This means that whenever a transaction has multiple input addresses,
we can safely assume that those addresses belong to the same wallet, thus to the
same user.

More formally, let 7;(S; — R;) € T be a transaction, and S; = {a1, ag, ... ang, }
the set of input addresses. Let also |S;| = ng, be the cardinality of the set. If
ng, > 1, then all input addresses belong to the same (previously known or
unknown) user: owns(a;) = up Vi € S;.

Second heuristic: shadow address guessing The second heuristic has to do
with change in transactions. The Bitcoin protocol forces each transaction to spend,
as output, the whole input. This means that the “unspent” output of a transaction
must be used as input for a new transaction, which will deliver “change” back
to the user. In order to improve anonymity, a shadow address is automatically
created and used to collect the change that results from any transaction issued
by the user. The heuristic tries to predict which one of the output addresses is
actually belonging to the same user who initiated the transaction, and it does so
in two possible ways: the first one is completely deterministic, the second one
exploits a (recently fixed) flaw in the official Bitcoin client.

The completely deterministic and conservative variant works as follows: If
there are two output addresses (one payee and one change address, which is true
for the vast majority of transactions), and one of the two has never appeared
before in the blockchain, while the other has, then we can safely assume that the
one that never appeared before is the shadow address generated by the client to
collect change back.

More formally, let 7;(S; — R;) € T be a transaction, and R; = {al, az, .-, g, }
be the set of output addresses (with |R;| = np, being the cardinality of the set),
and let us consider T'|;qsspiock(r:), that is, the set T limited to the last block at
the time of transaction 7;. If ng, = 2, then the output addresses are a; and as.
If a1 & Tiastbiock(r;) and a2 € T'|jgstbiock(r;), then ay is the shadow address, and
belongs to the same user u; who owns the input address(es): owns(a;) = uy.

A bug in the src/wallet.cpp file of the official Bitcoin client allows to
improve upon this heuristic. When the client chooses in which slot to put the
shadow address, it passes to GetRandInt the number of payees. Thanks to an
off-by-one error, in the common case of one payee, GetRandInt will always return
0, and the change always ends up in the first output.

For transactions prior the fix was released (Feb 3, 2013), only 6.8% have the
shadow address provably in the second slot of two-outputs transactions. Therefore,




Number of clusters Cluster size
2,500,000 8

2,400,000
2,300,000 -

2,200,000 -

Heur. 1 Heur. 1+2

2,100,000 -

Addresses clustered
100%
75% -

50% - 607
25% -

Heur. 1 Heur. 1+2

Heur. 1 Heur. 1+2

B Average Median
Fig. 2: Statistics about clusters obtained with different heuristics.

for transactions before this date we can relax the heuristic, and consider a first
output that was previously unseen in any two-output transaction as a shadow
address, regardless of the second one. This allows for a much better coverage,
and generates much more compact clusters of users, as shown in Fig. 2.

3.3 Implementation details
Since BITIODINE deals with several gigabytes of data, and graphs with millions
of nodes and tens of millions of edges, there are significant scalability and
performance issues to overcome.

We used Python 3.3.3rcl for every module, except the Block Parser, which
is written in C++ for performance reasons. The block parser is a modified version
of the blockparser tool by znort9872, to which we added several custom callbacks:
our modified version is highly efficient in exporting all addresses on the network,
in performing taint analysis on an address, and in exporting to SQLite.

We opted for the use of embedded SQLite databases for storing the blockchain
and the features database because it is a zero-configuration, server-less, embedded,
stable and compact cross-platform solution. We do not need concurrency while
writing to database files, so the only possible disadvantage does not affect its
use in BITIODINE. In designing the custom database schema for BITIODINE we
had to find a good balance between size and performance, weighing the use of
indexes (see §4.4).

The Clusterizer is designed to be incremental, and it is also possible to
pause the generation of clusters at any time, and resume it from where it stopped.

Internally, graphs are handled by NetworkX, a Python library to create,
manipulate, and study the structure, dynamics, and functions of complex networks.
NetworkX objects can be serialized and written to a file with ease, and in-memory
querying for successors and predecessors of nodes is efficient. Is it also possible
to embed an arbitrary number of additional data labels to nodes and edges (e.g.,
we added transaction hashes).

2 http://github.com/znort987/blockparser
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Our Exporter supports a multiplicity of output formats, allowing results to
be fed into visualization software such as Gephi or exported to a graph database
such as Neo4j.

4 Experiments and case studies

The goal of our experiments is to evaluate the correctness (§4.1, 4.2, 4.3) and
the performance (§4.4) of BITIODINE. Since BITIODINE builds novel knowledge,
there is no ground truth data available to validate our findings. However, we
were able to confirm our findings thanks to contextual information found on the
web resources cited in each case study.

4.1 Investigating activity involving Dread Pirate Roberts

On October 1st, 2013, 29-year-old Ross William Ulbricht was arrested on suspicion
of being the creator and operator of the infamous “Silk Road” black market,
under the alias of “Dread Pirate Roberts” (DPR) [11]. From February 6th, 2011
to July 23rd, 2013, sales through the market totaled 9,519,664 BTC (spread
across 1,229,465 transactions), of which 614,305 BTC went directly to the accused
as commissions. Prosecutors said they seized approximately 173,600 BTC (at
date equivalent to approximately USD 30,000,000), in the largest seizure of the
digital currency ever.

The seizure happened in two phases. At first, 29,600 BTC held in a so called
hot wallet (i.e., an operating pool for the website) were seized. But Ulbricht held
the majority of his funds separately in an encrypted “cold wallet”. On October
25th, an additional 144,000 BTC were seized (an approximate amount of USD
120,000,000).

The seizure was operated by transferring the seized coins to two addresses
controlled by the FBI. These addresses are publicly known®. On the other hand,
the addresses which formed the cold wallet are not public yet (as of January 28,
2014).

Using BITIODINE alone, we are able to find an interesting connection between
an address known to belong to DPR and 1933phfhK3ZgFQNLGSDXvqCn32k2b-
uXY¥8a, an address with a balance exceeding 111,114 BTC (more than USD
22,000,000), likely belonging to the cold wallet. The investigation is as follows.
DPR used to post on the Bitcoin Talk forum as altoid: the message at https://
bitcointalk.org/index.php?topic=47811.0 seeks a “lead developer ... [for a]
Bitcoin startup”, and refers to his email address (rossulbricht@gmail.com). In a
previous post (https://bitcointalk.org/index.php?topic=6460.msg94424),
he asked help on the PHP Bitcoin API, pasting one of his addresses, 1LDNLreK-
J6GawBHPgB5yfVLBERi18g3SbQS, as a parameter of sendfrom method. This can
be found out by manual investigation.

By running BITIODINE on these data points, we found that Ulbricht’s known
address belongs to a cluster of 6 addresses, all empty. Thanks to our path finders in
the Exporter module, we automatically found a connection between the leaked
address and a very wealthy address, 1933phfhK3ZgFQNLGSDXvqCn32k2buXY8a,
as shown in Fig. 3.

3 1F1tAaz5x1HUXrCNLbtMDqcw605GNn4xqX, 1FfmbHfnpaZjKFvyilokTjJJusN455paPH
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first input transaction of the address on the right
-> only input transaction of the address on the right
only significative input transaction of the address on the right
address on the left spent all its coins to address on the right exclusively

1LDNLreKJ6GawBHPgBS5yfVLBERi8g3SbQS
-> 1BG9jDV3pAlMsJUnvRyWuA2b7PfGd4MzZaw
5000 BTC 2011-04-30 18:32:55
-> 12h6TzwPNBvDnppbsqpyXwiW4oo5UUKaKSa
2000 BTC 2011-05-07 14:12:51 in a multi-input TX for 9067.32 BTC
1EGY9HJIGY9aGqzgGuj £NQMiNbygpKnFxafvE
9067.32 BIC 2011-06-19 23:04:29 in a multi-input TX for 37420.09314115 BTC
-> 1AHk15AbZYiz4fHKGSTVKN3T1Tv5PwZpnh
37420.09314115 BTC 2011-06-19 23:29:01 in a multi-input TX for 37421.09314115 BTC
15TEAWEMXVS3BK718HhwgJg7nxwyJ2ib9y
37421.09314115 BIC 2011-06-22 02:48:45
1933phfhK3ZgFQNLGSDXvqCn32k2buX¥8a
37421.09314115 BTC 2011-07-02 02:42:15 in a multi-input TX for 40954.56541907 BTC

Fig. 3: Connection between DPR’s address and a 111,114 BTC address

The chain is particularly interesting because every address appears in the
blockchain with its first input coming from the previous one in the chain, and
often addresses spend all their inputs to addresses on the right exclusively. In our
opinion, this is a manual, rudimentary mixer or tumbler, and BITIODINE found
a meaningful connection between the addresses, leading us to argue (with some
grounding) that 1933 was part of the cold wallet of the Silk Road.

Although in this scenario there is some manual investigation, it would have
been difficult to find significant links manually, given the millions of nodes
involved.

4.2 Payment to a killer?

In March 2013, the Silk Road vendor FriendlyChemist supposedly attempted to
blackmail DPR, via Silk Road’s private message system, providing proof that he
had names and addresses of thousands of vendors. He demanded USD 500,000 for
his silence. DPR asked another user, redandwhite, to “execute” FriendlyChemist,
supplying him/her his full name and address. On March 31st, 2013, after having
agreed on terms, DPR sent redandwhite 1,670 BTC to have FriendlyChemist
killed.

Using BITIODINE, we easily identify the transaction? to the alleged hitman,
by querying the blockchain DB for transactions of 1,670 BTC on that day.
The killer’s address is 1MwvS1idEevZ5gd428TjL3hB2kHaBHIWTL. This 1,670 BTC
transaction is the first input it receives. On April 8, 2013 it receives another 3,000
BTC, and on April 12, 2013 another 2,555 BTC. Investigators could not find any
record of somebody in that region being killed around that date or matching
that description. This possibly implies that DPR was scammed, and that he was
not the only one.

In this use case, BITIODINE helps the investigation by allowing to filter
transactions by amount and date in an efficient way. Remarkably, having no
addresses nor transaction hashes, it would have been hard to spot the transaction
manually.

4.3 Ransomware investigation with Bitlodine
CryptoLocker [4] is a recent ransomware that encrypts the victim’s personal files
with strong encryption. The criminals retain the only copy of the decryption key

4 420a5b6036c0da84c3eb9c2a884b6ad72416d1758470e19fb1d2fa2a145b5601
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Fig. 4: Cryp&)i.;ocker infection rate (computed in [4]) plotted vs. ransoms paid in
Bitcoin, computed with BITIoDINE

on their server and ask for a ransom to be paid with MoneyPak or Bitcoin within
72 hours in order to de-crypt the files.

We used BITIODINE to detect the CryptoLocker cluster(s), belonging to the
malware authors, and compute some statistics about ransoms paid by the victims.
By searching on Google for extracts of the text in the request by the malware
and by reading a Reddit thread where victims and researchers post addresses®,
we collected several addresses that were known to belong to CryptoLocker. The
Classifer confirmed that they belonged to several clusters, which comprised
a total of 2118 addresses. We identified 771 ransoms, for a total of 1226 BTC
(approximately USD 1,100,000 on December 15, 2013). Some addresses received
a single payment, others were reused for several ones. Tables listing the detailed
data are in [10].

Dell SecureWorks Counter Threat Unit Research Team have been monitoring
the CryptoLocker botnet since Sep 18, 2013 and analyzed various data sources,
including DNS requests, sinkhole data, and client telemetry, publishing a report [4]
overlaying daily infection rates to the ransoms in Bitcoin detected by BITIODINE
(84). Spikes coinciding with Cutwail spam campaigns that resulted in increased
CryptoLocker infections are indicated in the overlay, including the period of
high activity from October through mid-November. Likewise, periodic lulls in
activity have occurred frequently, including a span from late November through
mid-December.

Finally, it is interesting to analyze the cluster related to the very first ransom
paid®, on Sep 13, four days before the others, because it could be some sort of
“test” of the payment mechanism by the malware authors. BITIODINE was not
able to associate that cluster to a known identity due to a lack of useful data for
that particular cluster. Manual analysis confirmed that no known nickname is
linked to addresses belonging to that cluster. Therefore, this is not a limitation
of our approach: the cluster might get labelled in the future as new transactions
are broadcast.

5 http://www.reddit.com/r/Bitcoin/comments/1053hl/disturbing_bitcoin_
virus_encrypts_instead_of/
S http://tinyurl.com/cl-first-ransom
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4.4 Performance evaluation

The generation of the database takes approximately 30 minutes on a Quadruple
Extra Large High-Memory AWS EC2 instance (26 ECU, 68.4 GB of RAM), and
its size is around 15GB.

The Clusterizer generates 4,077,114 clusters, grouping together 18,153,279
addresses, and takes approximately 45 minutes to process the whole blockchain
using the same machine.

Scalability issues may arise as the blockchain grows, in particular for operations
involving the transaction graph, which has to be loaded in memory. A solution
would be to move the graphs to a graph database such as Neo4j, at the expense of
slower queries (because of slower disk I/O with respect to memory) and a space
occupation on disk almost five times higher. In our tests, a transaction graph
updated to November 1, 2013 is 7 GB in NetworkX format and more than 30
GB with a Neod4j database. While Neod4j, thanks to the Cypher Query Language,
allows complex queries that fully exploit graph structures, we opted for a simpler
and leaner in memory solution at this stage.

5 Limitations and future work

The main limitation is that the first heuristic presented in §3.2 works under the
assumption that owners do not share private keys. This does not always hold:
for example, some web wallets have pools that would be mistakenly grouped as a
single user. This is why we defined the owns relation as owns(a;) = uy, if and
only if ug owns the private key of a;.

Moreover, the current implementation of the Classifier module needs to
load the transaction graph and the clusters in memory, making classification a
memory-intensive task. Also, BITIODINE keeps data in two different fashions:
in a relational database (the blockchain and features database) and in a graph
(transaction and user graphs). This can be seen as redundant. In a future release,
a single, efficient graph solution could replace the relational blockchain DB. In
general, we see an on-disk graph database such as Neo4j needed if BITIODINE is
used in production, even with the drawbacks detailed in §3.3.

Furthermore, currently we label users in a (semi-)automated way by scraping
information on known addresses from the web. In future extensions of this work,
we envision to mine behavioral patterns of users on the network with unsupervised
clustering or classification techniques.

6 Conclusions

BITIODINE is a modular framework that parses the Bitcoin blockchain, clusters
addresses likely to belong to a same entity, classifies such entities and labels
them, and visualizes complex information extracted from the Bitcoin network.
Using BITIODINE it is possible to label users and addresses automatically or
semi-automatically thanks to scrapers that crawl the web and query exchanges
for information, thus allowing to attach identities to users and to trace money
entering and exiting the Bitcoin economy. BITIODINE also supports manual



investigation by finding paths and reverse paths between two addresses or a user
and an address.

We tested BITIODINE on several real-world use cases. We discovered a con-
nection between the founder of Silk Road and an address likely belonging to the
encrypted Silk Road cold wallet. We found the transaction that, according to
the FBI, was a payment by the founder of Silk Road to a hitman. Finally, we
investigated the CryptoLocker ransomware, and starting by an address posted
by a victim, we accurately quantified the number of ransoms paid, and got
information about the victims, with very limited manual analysis. Even at this
early stage of development, we were able to support investigation of malware
activity.

We released BITIODINE to allow the community of researchers to enhance
it. Our hope is that it can become the framework for building more complex
Bitcoin forensic analysis tools. For example, an engineer at Banca d’Ttalia (Italy’s
central bank) is currently developing, using BITIODINE as a base, VIREXBC
(Visual Interactive REaltime eXplorer), a realtime visualization software of the
Bitcoin blockchain for interactively presenting complex imagery and infographics
generated on-the-fly.
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