
DEI, Politecnico di Milano Dottorato in Ing. dell’Informazione

Ricerca Minore

Specification and Evaluation of an Efficient
Recognizer for Rational Trace Languages

Federico Maggi

XXII ciclo
Rapporto Interno TR-2008-23

Sommario

Proponiamo una versione ad una sola scansione di un algoritmo Earley-like per
il problema dell’appartenenza nei linguaggi traccia razionali. L’algoritmo, che rico-
nosce in tempo polimoniale, è inizialmente descritto attraverso la specifica formale
della Non Deterministic Buffer Machine (NDBM); in secondo luogo, la procedura
di riconoscimento è dettagliata attraverso un algoritmo deterministico, con alcu-
ni esempi per chiarirne il funzionamento. Inoltre, descriviamo l’implementazione
prototipale dell’algoritmo e dell’applicativo di test utilizzato per valutare empirica-
mente le performance e le caratteristiche della soluzione proposta. A questo scopo,
abbiamo costruito, ed ivi descriviamo, anche dei generatori di dati (e.g., automi,
stringhe, tracce) pseudo-casuali.

DEI, Politecnico di Milano Doctoral Program in Information Technology

Minor Research

Specification and Evaluation of an Efficient
Recognizer for Rational Trace Languages

Federico Maggi

Cycle XXII
Scientifical Report TR-2008-23

Abstract

An improved, one-pass version of a two-pass, Earley-like recognition algorithm
is here proposed to solve the Membership Problem for rational trace languages in
polynomial time. The algorithm is first described through the formal specification
of what we called a Non Deterministic Buffer Machine (NDBM); secondly, the
recognition is detailed through a deterministic algorithm along with some running
examples. In addition, we describe our prototype implementation of the algorithm
used to empirically evaluate the performances and the characteristics of the proposed
solution. To this end, we designed pseudo-random testing data generators that are
here described as well.

1 Introduction

The relevance of instruction parallelization and optimal event scheduling is currently
increasing, not only in the field of compiler and language translator design [Appel and
Palsberg, 2002] but also in the optimization of software pipelining [Lam, 1988] and trans-
actional processing of database operations. In particular, because of the high compu-
tational power available today, the industrial interest on automatic code parallelization
[Bacon et al., 1994] is increasing notably.

In the last years, several contributions have arisen in these fields, exploiting the theory
of traces [Mazurkiewicz, 1977; Cartier and Foata, 1969; Diekert and Rozenberg, 1995]
to approach the problem of translating a sequence of statements into a parallelized form
[Keller, 1973a,b] which execution leads to the same effect in the running environment.
Dated back around 1970 [Mazurkiewicz, 1977], the theory of traces provides a powerful
mathematical formalism that can be effectively used to model concurrent executions of
events, to study and proof properties of interest for the specific purposes.

1

The connection between the modeled phenomenon and the trace theory stands in
the use of traces to represent the behavior of the system under consideration. The
occurrences of permitted events are defined as symbols that are drawn from a finite set
called alphabet. Thus, each execution path is modeled as sequence of symbols: a string.
Relying on the definitions from set theory and formal languages, traces can be viewed
as a natural extension of the concept of strings: a trace is a string itself. Moreover, a
trace is (the representative element of) a class of strings, that is generated by applying
a finite number of allowed commutations on the representative element. Hence, without
going into the details, the behavior of a system can be represented by one trace which
somehow “embeds” all the runs allowed by the rules of the system itself. Such rules are
formalized by mean of a dependence relation, in terms of commutations among symbols.

The relevance of this formalism is twofold: first of all, it provides a plain and ab-
stract framework that can be applied to a wide variety of problems as it could virtually
characterize any kind of execution scheme. Secondly, the theory of traces has its origins
in combinatorics and formal languages; thus, from an algorithmic point of view, the
solution of decision problems with traces can effectively take advantage from results and
rich knowledge in both the two classic disciplines.

Despite the simplicity of its formulation and to the well established theoretical back-
ground, the research on traces and trace languages is still active. From a purely theo-
retical perspective, the research community has developed the theory of traces in strict
relationship with formal languages, combinatorics, data structures, graph theory and
algebra. There is also a non negligible amount of open problems that need to be fur-
ther investigated. Instead of focusing on a direct application of the contribution in the
literature, in this paper we analyze a common, shared problem in the theory of traces,
the Membership Problem (MP). Intuitively, the MP is the problem of deciding whether
or not a certain string belongs (i.e., is member of) a class of strings represented by a
trace, or a trace language. The MP is a relatively new challenge and thus the solutions
are limited to some basic approaches that will be reviewed in this paper. From the
perspective of formal languages, the MP can be solved by designing an efficient parsing
algorithm to decide whether a string is a valid sequence of symbols in the trace language;
indeed, almost all the approaches go in such a direction [Bertoni et al., 1989; Avellone
and Goldwurm, 1998; Breveglieri et al., 2005; Savelli, 2007].

Our contribution consists in an improved, one-pass version of a two-pass parsing al-
gorithm [Savelli, 2007] proposed to solve the MP in polynomial time. In addition, we
provide a formal specification of the abstract machine that decides the MP. Secondly,
we provide an algorithmic description and analysis of the proposed parsing procedure
and finally we investigate the empirical performances of a prototype implementation.

Before going into the details of the MP (Section 3) and the state-of-the-art, in Section
2 we introduce the basic definitions and the notation used throughout this paper. In
Section 4 we define our algorithm for solving the MP along with a few execution samples.
In Section 5 the prototype implementation is detailed and the experimental measurement
results are analyzed.

2

2 Basic definitions

The notation, the functions and the operators used in the following are slightly modified
and adapted versions taken from [Savelli, 2007; Avellone and Goldwurm, 1998; Pighizzini,
1994].

We will explicitly refer to string languages meaning the usual concept of a language
L: the set of strings belonging to a subset of the free monoid Σ∗ ⊇ L defined over the
finite alphabet of symbols Σ = {a, b, c, . . . }. Strings will be denoted by small letters:
u = a1a2 · · · an, v = b1b2 · · · bm, where n = |u|,m = |v| are the length | · | of u and v,
respectively.

A trace is denoted by a string t with square brackets

[t] = {t1, t2, . . . , tk} (1)

to indicate that t is actually the representative element of an equivalence class. The
elements of the equivalence class [t] are strings that are drawn from a partially commu-
tative monoid which is the quotient set Σ∗/≡I , called the trace monoid. I ⊆ Σ×Σ is a
symmetric and reflexive equivalence relation called independence relation.

The trace monoid is then the quotient of the free monoid Σ∗ w.r.t. the trace in-
dependency equivalence relation ≡I defined over I. For instance, if (a, b) ∈ I (or
a −− b ∈ I) then the two strings u = ab, v = ba are I-equivalent, thus we can write
u = ab ≡I v = ba. Hence, [t]≡I={(a,b)} = [ab]≡I={(a,b)} = {ab, ba} is an example of a
trace. Moreover, given Σ = {a, b, c, d}, we say that the string t = abcbad generates
[t]≡I = {abcbad, bacbad, abcabd, bacabd}.

In comparison to a string language, a trace language T is the set of all the traces
belonging to a subset of the trace monoid, F(Σ, I) = Σ∗/≡I ⊇ T , defined over the
commutative alphabet (or independence alphabet) 〈Σ, I〉. Hence, a trace language T is
(the representative element of) the equivalence class [L]≡I over the string language with
the same alphabet Σ, that is:

T = [L]≡I = {t ∈ F(Σ, I) | ∃u ∈ L : t = [u]} (2)

The corresponding dependence relation θ is also used instead of I to define a partially
commutative alphabet: θ = Ic = Σ × Σ\I is the complement of I. Note that since
(a, a) ∈ I, ∀a ∈ Σ, the reflexive relations are omitted if not strictly necessary (in Figure
1a are denoted by dotted arcs).

As for string languages, the product operator of the monoid F(Σ, I) is well defined;
it is such that ∀t1, t2 ∈ F(Σ, I), t1 · t1 = t1t1 = [uv], where t1 = [u] and t2 = [v]. The
product can be extended to trace languages: if T1 = [L1], T2 = [L2], then T1 · T2 = {t ∈
F(Σ, I) | t = t1 · t2, t1 ∈ T1, t2 ∈ T2}.

In a similar vein, the Kleene star operation on traces is defined as t∗ = ∪+∞
n=0t

n where
t0 = ε = [ε] is the empty trace, and tn = t · tn−1. This definition can be extended to
trace languages: T ∗ = ∪+∞

n=0T
n, T 0 = {ε}, and Tn = T · Tn−1.

The focus of this work is the family of rational trace languages Rat(Σ, I) that has
been proven [Szijarto, 1981] to be defined by the class of regular languages; the trace

3

b

a

c

d

(a) Independence

b

a

c

d

(b) Dependence

Figure 1: Graphical representation of (a) the independence relation I =
{(a, a), (b, b), (c, c), (d, d), (a, b), (b, d), (c, a), (d, a)}; and (b) the corresponding depen-
dence relation θ = Ic = {(b, c), (c, d)}.

language T is rational if and only if T = [L] for some language L ∈ Reg(Σ). Rat(Σ, I)
is the smallest class of trace languages containing all finite sets and closed under the
operations of union, product and star.

Given a partially commutative monoid F(Σ, I), the independence relation I, or its
complement θ, can be represented by an undirected graph G = 〈V,E〉 = 〈Σ, I〉, as show
by the example in Figure 1. In our proposed algorithm we will use the notion of clique
covering and maximal clique of a graph.

Definition 1 (Clique). Let G be an undirected graph. A clique Vi of G is any complete
subgraph Gi = 〈Vi, Ei〉.

In other words, it is a subset of the set of nodes V ⊇ Vi such that (a, b) ∈ Ei,∀a, b ∈ Vi
with a 6= b. A clique Vi is also maximal (w.r.t. the inclusion relation), if Gi is the
maximal complete subgraph of G, that is, if it does not have any subset that is a clique
itself: ∀Vj ⊂ Vi ⇒ i = j.

Definition 2 (Maximal clique covering). Let G = 〈V,E〉 be an undirected graph. The
maximal clique covering of G with respect to E is the set ME(V) = {V1, . . . , Vi, . . . , Vk}
containing all and only the maximal cliques.

If F(Σ, I) is represented by G = 〈V,E〉, then MI(Σ) is such that ∀i, j ∈ [1, |MI(Σ)|] |
i 6= j ∧ Vi, Vj ∈ MI(Σ)⇒ Vi 6⊆ Vj . The cliques are actually the subsets of the alphabet
Σ1,Σ2, ...,Σk ⊆ Σ, with k ≥ 1. To summarize, MI(Σ) will denote the independence
clique covering of F(Σ, I), while Mθ(Σ) will indicate the dependence clique covering; if
not explicitly stated, M(·) = Mθ(·) (maximal). For instance, according to the relation
represented in Figure 1a, Σ = {a, b, c, d} is covered by MI(Σ) = {{a, c}, {a, b, d}}, while
θ (Figure 1b) leads to Mθ(Σ) = {{a}, {b, c}, {c, d}}.

Cliques covering of an alphabet is necessary to introduce one of the two formalisms
used in the following to represent the traces, i.e., trace projection. The straightforward
way to represent a trace is by choosing the representative element, within the equivalence
class, according to the lexicographic order of strings: for instance, in the equivalence class

4

{abcbad, abcabd, bacabd, bacbad} the lexicographic order is abcbad < abcabd < bacabd <
bacbad, thus the trace is conveniently represented by [abcbad]. This form is called lex-
icographic normal form. A trace can be also represented by a morphism πΣ′(·) called
projection, defined as a translation mapping between strings, πΣ′ : Σ∗ 7→ Σ′∗. It elimi-
nates from the input string all the symbols not belonging to the given Σ′. Formally, for
each a ∈ Σ and u ∈ Σ∗, the morphism is recursively defined as follows:

πΣ′(u) =

ε u = ε
πΣ′(w)a u = wa, a ∈ Σ′

πΣ′(w) u = wa, a /∈ Σ′

Thus, πΣ′(u) = u′ ∈ Σ′∗. It is important to highlight that Σ′ ∈ M(Σ), thus Σ′ are
cliques. For instance, let us consider F(Σ = {a, b, c, d}, θ) (with θ as depicted in Figure
1b), M(Σ) = {Σ1 = {a},Σ2 = {b, c},Σ3 = {c, d}} the trace t = abcbad ∈ F(Σ, θ) can be
represented by both its equivalence class [t]≡θ = {abcbad, bacbad, abcabd, bacabd}, and
its projections on cliques: πΣ1(t) = aa, πΣ2(t) = bcbm, πΣ3(t) = cd, which can possibly
overlap on one or more symbols (c, in this case). Note that πΣ′(t) maintains the order of
the symbols of t; that is, ∀ai, aj ∈ πΣ′(t)∧ i < j ⇒ ∃i′ < j′ | ai′ = ai∧aj′ = aj ∧ai′ , aj′ ∈
u.

Finally we define the following function.

Definition 3 (Index function). Let Σ be an alphabet, MI(Σ) a clique covering of Σ
w.r.t. the independence relation I, and ℘(MI(Σ)) its powerset.

The index function I : Σ 7→ ℘(MI(Σ)) is defined as:

I(a) = {Σ′ ∈MI(Σ) | a ∈ Σ′} (3)

The index function is a convenience operator that indicates the set of all the cliques
containing a certain symbol. For instance, I(b) = {{a, b, d}}. In the same way we define
the index function for the dependence relation: Iθ : Σ 7→ ℘(MI(Σ)).

3 The Membership Problem for Program Code Rescheduling

The Membership Problem (MP) is fundamental for any study of formal languages and in
particular for traces, as we mentioned in Section 1. The MP is the problem of deciding
whether or not a given string u ∈ Σ∗ is such that u ∈ [u] with [u] ∈ T , a given trace
language.

The common characteristic of the problems that can be modeled using traces —and
reduced to the MP— is the fact that they can all be formalized as a set of binary,
symmetric constraints among a finite set of symbols. Despite the simplicity of its formu-
lation, the MP plays a key role in real applications where classical dynamic programming
techniques are used. For instance, consider the problem of determining whether a certain
sequence of program instructions is actually an acceptable schedule: in this case, each
statement, except for control flow statements, is represented by a symbol of the alpha-

5

1 a = b;
2 c = a + b;
3 x = 0;
4 while (x % c) {
5 i f (x % 2)
6 y = x + 1;
7 else
8 x = y + 2;
9 z = z + x + 1;

10 }

1

2

3

4

5

6

8

9

1

2 5

6

3

48

9

θ = {

Σ = {1, 2, 3, 4, 5, 6, 8, 9}

}

0 1 2 3 4

68

9

1 2 3 4

68

9 9

4

(a) Code (b) DDG (c) Dependence relation (d) Automaton

Figure 2: The trace representation of a snippet of code.

bet Σ while the Data Dependency Graph (DDG) is transformed into θ. The dependece
relation is actually the symmetric and reflexive closure of the DDG.

A more precise analysis on the translation of the DDG into a dependence alphabet is
reported in [Breveglieri et al., 2000]. The author also shows how to obtain the Concrete
Dependency Graph (CDG) from a dependece alphabet. The CDGs differ from the DDGs
since they are derived by unfolding loops and thus loop-carried dependencies are explicit;
they are parametric w.r.t. the number of iteration, k, of each loop. For instance,
considering the code snipped in Figure 2, we can unfold the while () loop two times
(k = 2): it generates the string 5(1)6(1)8(1)9(1)5(2)6(2)8(2)9(2) ∈ ∆∗k=2, where ∆k = {c(i) |
c ∈ Σ, i ∈ 1, ..., k} is obtained by adding subscript indexes 1, ..., k to each symbol of Σ.
This of course apply to non-loops instructions as well, since a non-iterated instruction
is executed once, by definition. Given the above string, the CDG is created by directly
linking all the dependent symbols (c(i), c(j)) ∈ θ that have subsequent indexes (i < j).
Finally, [Breveglieri et al., 2000] is interesting example on which the MP is applied is the
study of the maximal parallelization of loops, that often are the most critical structure
to be parallelized by optimizing compilers.

Figure 2 depicts a first example of how to derive the trace language representing
a sample code. The data dependencies among code instructions are given by means
of the DDG. In this this simplified example (i.e., no nested loops), solid −− arcs of
the DDG indicate direct data dependencies while dotted · · · arcs are the loop-carried
dependencies [Bacon et al., 1994]. The resulting θ, show in Figure 2, is obtained by the
reflexive symmetric closure of the DDG taking into account both dotted and solid arcs.

Also, it can be noticed that, if i −− j ∈ θ means that both instruction i depends on
j and vice-versa, while i (or j) does not necessarily depend on j (or i). For instance,
in the DDG of Figure 2, 1 −− 2 ∈ θ but 1 does not depend on 2. Thus, with traces,
Read After Write (RAW) dependencies are transformed into Write After Write (WAW)
dependencies. For instance, let us consider the three code samples in Figure 3: (a)
instruction 2, which reads a, depends on 1, which writes the same variable; the vice-
versa is shown in (b). The first dependence is modeled by a direct arc 1→ 2 in the DDG
while the second would be 2 → 1; the corresponding θ would carry less information,
making case (a) indistinguishable from case (b). WAW dependencies are not an issue

6

1 a = 0
2 b = z + a

1 b = z + a
2 a = 0

1 a = 1
2 a = 0

(a) RAW (b) WAR (c) WAW

Figure 3: Examples of different types of data dependencies: (a) Read After Write (RAW),
(b) Write After Read (WAR), and Write After Write (WAW).

since they remains WAW.

Note (Control Dependencies and Program Dependencies) Even though this topic is
slightly out from the scope of this paper, we point out that the concept of dependence
among code instructions is complex and by no means limited to the analysis of data de-
pendencies through the DDG. In order to take into account all the types of dependence,
the complete Program Dependence Graph (PDG) [Natour, 1988] should be considered.
However, to the best of our knowledge, control dependencies or other kind of dependen-
cies among code instructions have not been studied in correspondence of trace languages,
yet. For convenience, we remind that the PDG is a super-graph of the DDG including
both control and data dependencies.
Control dependence describes how each program statement affects the other statements,
by taking into account dependencies carried by control structures. The Control Depen-
dence Graph (CDG) is a representation of the control flow of a program, thus an edge
between two statements i, j exists iff the control flow can directly reach i from j. For
instance, given the code in Figure 2, some control dependence are 4→ 9, 5→ 6: indeed,
the execution of instruction 9 is control dependent on the condition “x % c” (line 4),
and instruction 6 depends on the condition “x % 2” (line 5). In the remainder of this
paper, for the sake of simplicity, we will compute θ by taking into account DDG only.

The trace theory have been shown to be effective for representing reschedules of pro-
grams instructions, especially if exploited for the purpose of automatic code paralleliza-
tion. The traces augment the expressive power of the string languages in such a way
that dependency relations are taken into account. The framework of string languages
captures the structure (i.e., the syntax) of computer programs while the traces capture
the dependencies among instructions; from this point of view, we could state that the
traces extend the string language framework by adding the ability of specifying simple
semantic constraints (e.g., data dependencies).

As we mentioned, the automata are exploited to model the structure of each program
(i.e., string of a language). In particular, automata of local type can be used [Savelli,
2007; Berstel and Pin, 1996]. As shown in Figure 2, in such machines each arc enters a
state labeled with the same symbol of the arc itself.

Definition 4 (Local Language). Let L ⊂ Σ∗ be a language. L is a local language if
there exist three subsets P ⊂ Σ∗, S ⊂ Σ∗, and N ⊂ Σ2 such that:

L\{q0} = (PΣ∗ ∪ Σ∗S)\Σ∗NΣ∗.

7

This definition is due to [Berstel and Pin, 1996]; the authors detail that P = {a ∈ Σ |
aΣ∗ ∪ L 6= ∅}, S = {a ∈ Σ | Σ∗a ∪ L 6= ∅}, F (L) = {x ∈ Σ2 | Σ∗xΣ∗ ∪ L 6= ∅}, N =
Σ2\F (L) and also prove that local languages are recognized by local automata. A local
automaton is such that ∀Σ, |{q.a | q ∈ Q}| > 0, where Q is the set of the states of the
automaton and q0 is its initial state.

All the program statements are mapped to Σ with a bijective function, so |Σ| equals
the number of all possible program instructions. The execution of an instruction is thus
represented by a transition entering a state that is labeled with the same symbol.

3.1 State of the Art

The contributions in this area are limited to a few key approaches, being the MP a rela-
tively new topic. Notable examples are the studies published in [Savelli, 2007; Breveglieri
et al., 2005; Avellone and Goldwurm, 1998; Bertoni et al., 1989]. Furthermore, some
properties of trace languages with particular attention to the MP have been reported in
[Rytter, 1984] and in the early work by M. Clerbout and M. Latteux currently included
in the comprehensive [Diekert and Rozenberg, 1995].

3.1.1 Exploiting the trace prefixes

The first solution was given in [Bertoni et al., 1989]. The authors proposed an algorithm
that exploits the notion of prefixes of a trace. Similarly to the strings, prefixes Pref l(t)
of length l of a given trace t are defined as the set of words ti such as t = ti · v for
some trace v. The approach requires the trace language T = [L] to be rational, thus
L ∈ Reg(Σ); in turn, this implies that the automaton A = 〈Q,Σ, δ, q0,QF 〉 that defines
L = L(A) is known.

First, the algorithm inductively computes the set of prefixes Pref(t) = {t1, t2, . . . , ti}
by exploiting the fact that ∀t′ ∈ Pref l(t) ⇒ ∃t′′ ∈ Pref l−1(t) | t′ = t′′ · [a], a ∈ Σ. The
MP (i.e., deciding whether there exists a string v ∈ L that is θ−equivalent to the given
trace string t = [u] ∈ T = [L]) is reduced to checking for the existence of at least one
acceptance state q ∈ QF ∩ Qt that must be reachable by running the automaton on
words θ-equivalent to u. Such a set of states Qt=[u] ⊆ Q is efficiently computed while
constructing the set of prefixes: let Qtj be the set of states reachable by reading the
trace prefixes Pref |t|−1(t) = {t1, . . . , ti} = {tj | t = tj · [aj], aj ∈ Σ, j = 1, . . . , i}. Thus,
Qt = ∪ij=1{q ∈ Q | q ∈ δ(t′, aj), t′ ∈ Qtj}.

The time complexity of this algorithm is proven by the authors to be in O(|t|σ),
with σ = maxΣ′∈MI(Σ) |Σ′|; while the space complexity is in O(|t|σ−1). The bottleneck
of the algorithm is the procedure for obtaining the set of prefixes of a trace, which
is efficient because the authors use a particularly efficient data graph-based structure.
More precisely, the set of prefixes of t is stored as the set of nodes V = Pref(t) and an
edge is created for each pair of nodes t′, t′′ such that t′ = t′′ · [a].

On the same direction, the algorithm recently proposed in [Avellone and Goldwurm,
1998] does not require the language L to be regular; instead, L is assumed to be a context-
free language. It is based on the pre-computation of trace prefixes. Surprisingly, the

8

performances of this algorithm are still comparable w.r.t. the aforementioned approach.
In the worst case, the time complexity is still polynomial with the size of the biggest
clique of the independence relation: it requiresO(|t|3σ) time andO(|t|2σ) space. However,
as underlined in [Savelli, 2007] such a time complexity is unacceptable for practical
purposes. Indeed, an empirical analysis of the independence relation of some common
programs consisting of some hundredths of instructions |t| ∝ 102 has shown that σ
may grow with the same order of magnitude, turning the complexity in an exponential
function.

3.1.2 Earley-like recognition

The recent works [Breveglieri et al., 2005; Savelli, 2007] focused on both rational and
local trace languages. The authors first present an alternative way to calculate trace
prefixes and, based on it, design an algorithm for the MP which cost O(|t|σ). The second
contribution shows how the worst-case time complexity can be significantly reduced by
restricting the problem to local automata and by further limiting the iterations to nested
cycles. The algorithm we developed and the abstract machine specified in our paper is
based on the first of the two contributions, which is analyzed in the reminder of this
section.

[Savelli, 2007] presents an algorithm for solving the MP following the scheme of the
Earley context-free grammar parser [Earley, 1970]. Beside requiring T = [L] to be a
rational trace language (and thus L ∈ Reg(Σ)) the algorithm assumes that the trace
t = [u] is represented by R(t) that is the set of its projections on maximal cliques (see
Section 2, Definition 1, 2). The representation R(t) of the trace is computed by a linear
scan of the input string t, which is translated from the lexicographic normal form into
R(t) = {πΣi(u) | Σi ∈Mθ(Σ), u : t = [u]}.

Based on R(t), the algorithm constructs an array of |t| + 1 = n + 1 elements, E[0],
E[1], . . . , E[n + 1], following a procedure driven by the automaton A which defines
L = L(A). Such a procedure simultaneously consumes one symbol at time on each
projection according to the current state of A. For instance, if the trace t is represented
by R(t) = {πΣ1(t) = abb, πΣ2(t) = bdd, πΣ3(t) = cec} and both a and c can be read on the
current state of A, then the procedure advances on both the first and the third clique
projections; it also keep tracks of such a transition by storing one marker per clique,
indicating the current position on each projection, and the state reached by reading the
last symbol on each projection.

More precisely, a cell E[i] is instantiated for each computational step i. The cell
E[i], i = 1, . . . ,m, where m = |Mθ(Σ)|, contains a sort of “working list”, that is, a list
of elements used to keep the information required to proceed to the next step, i+ 1. An
element ej ∈ E[i], is a data structure storing (1) ej .state ∈ Q the current state on A,
and (2) ej .cursors ∈ {0, 1, . . . , σ}m, which holds the length of the prefix that has been
read so far on each of the m projections.

For instance, if ej ∈ E[2], ej .cursors = 〈1, 0, 1〉 and ej .state = q3, then at the com-
putational step 2 there exist a path on the automaton such that one symbol has been
consumed on the first and the third projection, while no symbols are read on the second

9

one; and this leads to the state q3. In other words, the markers c are cursors. To indi-
cate such elements we will use the shorthand notation ej = qh〈1, 0, . . . , 1〉 meaning that
ej .state = qh and ej .cursors = 〈1, 0, . . . , 1〉.

To efficiently increment the cursors and to store such elements the approach relies on
a zeroed matrix of dimension |Σ|×|t| × · · · × |t|︸ ︷︷ ︸

σ

; every time an element is added to a cell,

a “one” is stored in the corresponding cell. In this way, checking for the existence of an
element (i.e., checking whether the corresponding position on the matrix holds a “one”
or a “zero”) always takes constant time. On the other hand, the cost for initializing the
matrix to all zeros is not fixed as it grows with |Σ| and σ.

A complete sample run of the algorithm is presented in Section 4.3, Example 4.
Observation 1 From another point of view, this algorithm constructs a parallel machine
consisting on m copies of A, one for each clique. The automata move simultaneously
on the inputs, that are, the projections on cliques. The string is accepted if all the
projections are read and all the automata make a joint move to a final state.

The total cost of the procedure, detailed and exemplified in [Savelli, 2007, Section
3.2], is polynomial with the size of the biggest clique of the dependence relation. More
precisely, it costs O(|t|σ) time in the worst case. In addition, we provide another ex-
ample detailed in Section 4.3 in order to provide a side-by-side comparison between our
approach and the original one.

Note that, this approach relies on maximal cliques of the dependence relation θ while
[Bertoni et al., 1989; Avellone and Goldwurm, 1998] required the independence relation
I to compute the trace prefixes.

The main disadvantage of this algorithm is due to the fact that it requires the trace
t to be pre-processed into its representation R(t). From one hand, this is actually a
minor issue being it just a matter of a linear scan that would cost O(|t|) and can be
performed in advance. On the other hand, such an approach is still requiring two scans
and thus does not permit the code to be processed as a stream. This may be unpractical
for certain real cases, especially if the code is not available for pre-processing, or simply
because multi-pass parsing algorithms are not suitable for the particular application
requirements.

Our algorithm avoid this issue by computing the projections of the trace as the parsing
goes on. Our approach shares some similarities with both [Savelli, 2007] and [Avellone
and Goldwurm, 1998]. Furthermore, our proposal differs from the previous approach as
we followed a threefold approach: (i) from a theoretical point of view, we designed and
formally specified an abstract non-deterministic machine to decide the MP (Section 4);
from a practical point of view we (ii) implemented such a machine into a deterministic
algorithm (Section 5) and (iii) empirically tested its performance using an ad-hoc testbed
and data generator that have been developed for this purpose.

10

3.1.3 Other works

Toward a slightly different line, [Breveglieri et al., 2000] presents an analysis of the
maximal parallelization of loops that can be achieved under certain hypotheses and by
regular approximation of a language defined to model code loops. Strictly speaking,
such a topic is not necessarily related to the MP. However, it is worth including it the
reviewed approaches since our focus is on solving the MP but under the realistic assump-
tions of computer programs. The work in [Breveglieri et al., 2000] was one of the first
studies regarding the exploitation of the theory of traces for program transformation,
with particular attention to loop parallelization, the most rewarding region of a proce-
dure. This work has been already mentioned in this section since it provide some useful
formalizations on the connection between the theoretical framework of traces and the
practical aspects of programming. Finally, such a study is complementary to our paper;
they both study the recognizability exploiting different properties of different normal
forms to represent the traces. The former uses the Foata normal form while our work
present a recognizer for trace language exploiting the characteristics of the projection
form.

4 An Algorithm for the Membership Problem

Here we describe our decision algorithm to solve the MP by defining what we called the
Non-Deterministic Buffer Machine (NDBM). Also, we provide some execution examples
used to both clarify the behavior of the NDBM and to compare it with the original
Earley-like recognizer.

Informally, the NBDM has one input tape a finite set of internal First-In First-Out
(FIFO) buffers and a control device with a finite number of states. Each buffer is an
infinite sequence of cells while the input tape is unbounded to the right. Note that there
is no real need for more multiple tapes and buffers as it can be proved that multiple
tapes and internal buffers can be mapped into one single tape with proper marking, with
the same computational power; however, to specify the NDBM we prefer keep them
separated for the sake of clearness. The NDBM consumes one symbol at time from
the leftmost position of the input tape (pop), dispatches it onto an appropriate internal
buffer (enqueue) and updates the current state of the control device, accordingly. The
computation terminates when there are no symbols left, neither on the input buffer nor
in any of the internal buffers. If there are symbols left on internal buffers, the machine
continues the computation until a decision is reached.

Before going into the details of the specification of the NDBM, we define the fun-
damental building blocks of the recognizer along with proper examples to clarify the
concepts.

4.1 Preliminary Definitions

First of all, we precisely define the concept of buffer used by the machine to perform
both reading and writing operations.

11

Definition 5 (Buffer). Given an alphabet Σi, called the buffer alphabet, a buffer bi is
a FIFO queue containing only symbols in Σi:

bi := aI · · · aj · · · aO

where “〉aI · · · ” is the input side while “· · · aO〉” is the output side.
A buffer which contains no symbols is said to be empty and is indicated as bi =〉ε〉 = ∅.

Thus, each buffer bi is associated to a subset Σi ⊂ Σ of symbols. For instance, if
Σi = {a, c} ⊂ Σ = {a, b, c, d, e}, bi = bΣi={a,c} holds symbols drawn from Σi only. Buffers
are uniquely identified by their own alphabet, meaning that ∀i∀j : bi = bj ⇒ Σi = Σj .
For the aforementioned reason, we will also use the self-explanatory notation bΣi to
indicate bi, the buffer with alphabet Σi.

Each buffer is then characterized by a set of allowed operations, which defines how
the symbols are handled by the control device.

Definition 6 (Buffer functions). Let bΣi be a buffer. The functions empty(bΣi), dequeue(bΣi),
and enqueue(bΣi , a) are said to be buffer functions.

• empty(bΣi) = > iff bΣi = ∅ and ⊥ otherwise;

• dequeue(bΣi) is defined only if empty(bΣi) = ⊥. It removes the rightmost symbol
ao from bΣi =〉 · · · aO〉, and returns it as {aO}.

• enqueue(bΣi , a) inserts the symbol a into bΣi .

Example 1 This example clarifies how each buffer function works.

• It is straightforward that if bΣi={a,c} = {a, b} and bΣj={d,e} = {}, then empty(bΣi) =
⊥ while empty(bΣj) = >.

• If bΣi={a,c} =〉aaca〉, dequeue(bΣi) returns {a} and, as a result, bΣi =〉aacε〉.

• Given bΣi =〉aac〉, enqueue(bΣi , a) would result in bΣi =〉aaac〉. This function is
such that if bΣi =〉aac〉, invoking enqueue(bΣi , ε) would result in bΣi =〉εaac〉 =
〉aac〉.

Moreover, we specify the concept of family of buffers as follows.

Definition 7 (Family of buffers specific to a symbol). Let bΣ1 , . . . , bΣk be a set of buffers.
A family of buffers Ba specific to the symbol a ∈ Σ is defined as the union of all the
buffer whose alphabet contains the symbol a ∈ Σ. That is:

Ba = {bΣi | a ∈ Σi}. (4)

12

For instance, consider the following set of alphabets Mθ(Σ) = {{a}, {b, c}, {c, d}} and
the corresponding set of buffers {bΣ1 , bΣ2 , bΣ3}. The family of buffers specific to the
symbol c is Bc = {bΣ1 , bΣ3}, that is the set of the buffers belonging to the subset of the
clique covering induced by the symbol c.

The definition of family of buffers can be further generalized, introducing the concept
of family of buffers specific to a set of alphabets.

Definition 8 (Family of buffers specific to a set of alphabets). Let bΣ1 , . . . , bΣk be a set
of buffers and Γ = {Σi}N a set of N alphabets. A family of buffers BΓ specific to a set
of alphabets Γ is defined as the union of all the buffers bΣi whose alphabet Σi is in Γ:

BΓ = {bΣi | Σi ∈ Γ}. (5)

Hence, a family of buffer B′ can be specific either to a symbol or to a set of alphabets.
The above functions we defined for buffers can be generalized to families of buffers in
the following manner.

Definition 9 (Family of buffer functions). Let B′ be a generic family of buffers. The
functions empty(B′), dequeue(B′), and enqueue(B′, a) are said to be family of buffer
functions.

• empty(B′)⇐⇒
∧
bΣi∈B′ empty(bΣi).

• dequeue(B′) returns the set of symbols Σ′ = {ai | {ai} = dequeue(bΣi)∧bΣi ∈ B′}.

• enqueue(B′, a) is such that enqueue(bΣi , a) is executed ∀bΣi ∈ B′.

Given the above definitions, it is straightforward to define the input tape.

Definition 10 (Input Tape). Let Σ be an alphabet. The input tape TI is

TI := bΣ

where bΣ is the buffer associated to Σ. The operation enqueue(TI , a) is not defined
for TI while the other buffer operations are defined as in Definition 6.

The input tape must indeed accept any symbol drawn from Σ. Moreover it can be
assumed, with no loss of generality, that the symbols on the input tape are consumed in
the same order as they are positioned; that is, the first symbol is consumed before the
second, and so on. Then it can be deduced that the input tape is a special FIFO queue:
once positioned in a given order, the symbols can be just consumed; further enqueue
operations are not allowed. Hence, the input tape is a buffer associated to the alphabet
Σ. Since the input tape is a special type of buffer, it can be indicated with both of the
following, equivalent notations: TI = a1a2 · · · an = |an · · · a2a1〉.

13

· · · b d c a · · · a · · · e︸ ︷︷ ︸
x

Control
device

a b · · · a a

...

b d · · · d d

e d · · · e e

TI
bΣK={a,b}

bΣi

bΣ2={b,d}

bΣ1={d,e}

Figure 4: A pictorial representation of a NDBM.

4.2 The Non-Deterministic Buffer Machine

Formally, given a rational trace language T = [L] ⊆ F(Σ, θ), the NDBM M to decide
the membership problem for that specific language is defined as follows.

Definition 11 (Non-Deterministic Buffer Machine). A Non-Deterministic Buffer Ma-
chine (NDBM) M is a 4-ple 〈A, τ,B, TI〉, where TI is the input tape, and:

• B = BMθ(Σ) = {b1, b2, . . . , bi, . . . , bK} = {bΣ1 , bΣ2 , . . . , bΣi , . . . , bΣK} is the family
of buffers specific to the set of alphabets Mθ(Σ).

• A = 〈Q,Σ, δ, q0,QF 〉 is the deterministic recognizer of the string language L =
L(A) that defines the trace language T = [L(A)]. A is a finite state automaton
with:

– Q and QF ⊆ Q are the finite set of states and acceptance states, respectively;

– q0 is the initial state;

– δ is the transition function.

• τ : Q × Σ × B 7→ ℘(Q × B) is the transition function of the control device. The
current symbol on TI is denoted by a ∈ Σ. Three transition modes are defined:

– Read: is triggered if a 6= ε (i.e., empty(TI) = ⊥) and is such that

τ(q, a,B) = 〈q,B〉

and it is followed by a BufferWrite.

– BufferWrite: is such that

B′ : enqueue(b{Σi|a∈Σi}, a)
τ(q, a,B) = 〈q,B′〉

– BufferRead: is triggered if dequeue(b{Σi|a∈Σi}) = {a′}:

τ(q, ε,B) = 〈q′ = δ(q, a′),dequeue(b{Σi|a′∈Σi})〉

The choice of the buffer(s) bΣi is assumed to be non-deterministic.

14

The choice among the three modes is non deterministic.

The initial configuration of M is such that:

• B = {∅,∅, . . . ,∅},

• A on the initial state q0, and

• the reading head of TI pointing to the first symbol.

Similarly, the acceptance configuration is such that:

• B = {∅,∅, . . . ,∅},

• A on a final state q ∈ QF , and

• the reading head of TI pointing to the last symbol of the input.

The Read transition is a normal read operation: it consumes one symbol from TI ; if
this transition cannot be performed because a = ε (i.e., there is no symbols left on TI ,
then a BufferRead is performed. On the other hand, if a Read is performed, it must be
followed by the corresponding BufferWrite which enqueues the current symbol a on all the
buffers identified by an alphabet Σi such that a ∈ Σi (in other words, the current symbol
is pushed onto all the buffers belonging associated to the clique the symbol belongs to).

The BufferRead reads from one or more of the internal buffers; this transition consumes
the symbol a from all the buffers having a on the output side. The following example
illustrates how the transition functions works.

Example 2 (NDBM transitions) Let us assume the NDBM M1 = 〈A1, τ,B, TI〉 where
A1 is depicted on Figure 5a; TI = |bdca〉, B = {bΣ1 , bΣ2}:

• bΣ1 = b{a,b,c} =〉abb〉

• bΣ2 = b{b,d,e} =〉dbbed〉

In this configuration:

• A BufferRead cannot be performed from any of the buffers since @bΣi ∈ B :
dequeue(bΣi) = {a′} ∧ q′ = δ(q0, a

′) for some q′.

• A Read is performed and the current symbol a is consumed from TI .

• Thus, a BufferWrite is performed: the symbol a is enqueued to all the buffers bΣi
such that a ∈ Σi. In this case bΣ1 becomes b′Σ1

= a〉abb〉 hence:

B = {〉aabb〉, 〉dbbed〉}

On the other hand, if we assume that:

• bΣ1 = b{a,b,c} =〉abcc〉

15

• bΣ2 = b{b,d,e} =〉dbed〉

then a BufferRead can be performed on bΣ1 =〉abc〉c and the configuration of M1 changes:

B = {〉abc〉, 〉dbbed〉}

and the current state of the machine becomes q′ = q0.

It must be noticed that the cardinality of B is determined by the (size of the clique
covering of the) dependence relation, K = |Mθ(Σ)|, since one buffer is instantiated for
each clique of the dependence relation, by definition.

A first property of the NDBMs can be proven.

Property 1. B is a family of buffers specific to the set Γ of alphabets, such that⋃
Σi∈Γ

Σi = Σ.

Proof. It is straightforward to notice that the clique covering Mθ(Σ) of the commutative
alphabet F(Σ, θ) is a covering of all the alphabet: ∪Σi∈Mθ(Σ) = Σ. Note that, Γ = Mθ(Σ).

By definition of NDBM, one buffer bΣi exists for each Σi ∈ Mθ(Σ) = Γ. Thus, each
buffer bΣi ∈ B is such that a ∈ Σi ⇔ a ∈ Σ. If ∃a′ /∈ Σ then a′ does not belong
to any of the cliques Σi ∈ Mθ(Σ) otherwise it would belong to Σ as well, raising a
contradiction. �

Note that the above property does not assume the cliques to be non-overlapping (i.e.,
Σi∩Σj 6= ∅ for some i, j) since the union eliminates the symbols contained in more than
one alphabet (i.e., clique). In other words, {a, b} ∪ {b, c, d} ≡ {a, b} ∪ {c, d}.

The reader might have noticed the following observation.
Observation 2 An NDBM can be seen as a multi-tape Turing Machine (TM) but with
a restricted set of operations allowed. However, there are two key differences between
multi-tape TMs and NDBMs. In a NDBM:

1. there is no concept of non-terminal symbol; indeed, by definition, symbols are just
buffered but no intermediate representations are used.

2. all the symbols contained in each buffer are dependent to each others. This is
derived by the fact that each buffer is associated to an alphabet Σi ⊆ Σ which is
a clique of the dependence relation θ.

An extension to the Observation .2 is that, if no BufferRead operations were performed
by a given NDBM M , then the buffers bΣi , . . . , bΣK of M would represent the input trace
t = |u| in its projection representation, πΣ1(t), . . . , πΣK . It is indeed true the following
Proposition 1 Let M = 〈A, τ,B, TI〉 be a NDBM recognizing traces belonging to T =
[L] and t = |u| ∈ T . Let M ′ = A, τ,B′, T ′I be another machine M ′ ≡M that executes in
parallel to M performing all but BufferRead operations (i.e., enqueue only buffers). At
the end of the computation of M the buffers of M ′ are such that:

16

∀bΣi ∈ B′ ∧ bΣi = a1a2 · · · aki = wi =⇒ ∃πΣi(t) = w′i | w′i = wRi

where (·)R is the reverse string operator.

Proof (By construction). By definition, a trace t can be represented by its projections
{πΣ1(t), . . . , πΣ|Mθ(Σ)|(t)} on the cliques Mθ(Σ) of the dependence relation θ. All the
strings πΣi(t) = w′i contain all the symbols of t that belong to Σi, and such symbols are
in the same order as they appear in t (see p. 5). Obviously, all the strings s ∈ t = |u|
have the same projections (see [Pighizzini, 1994, Section 1.3.3, Theorem 1.5]).

Symbols of u are processed from left to right and enqueued into buffers according
to the alphabet associated to the buffers (see Definition 6). Performing no BufferRead
simply means that buffers of M ′ are never emptied, thus each buffer bΣi contains all the
symbols a′ ∈ u such that a′ ∈ Σi. Due to the FIFO policy, symbols are enqueued in the
reverse order as they appear into the string u; that is, ∀ai, aj ∈ bΣi ∧ i < j ⇒ ∃i′ > j′ |
ai′ = ai ∧ aj′ = aj ∧ ai′ , aj′ ∈ u. This, in turn, means that the string represented by the
buffer bΣi = a1a2 · · · aki = wi is the reverse of the projection πΣi(t). �

Example 3 (Buffers vs. Projection on cliques) This example gives an idea of the intu-
itive proposition we proved above. Let us consider the trace t = |u| = |a1b1b2c1c2d1c3d2d3e1e2| ∈
T = [L], the machine M recognizing the traces of language T ⊆ F(Σ, θ), and Mθ(Σ) =
{Σ1 = {a, b},Σ2 = {b, c, d},Σ3 = {e}}. Note that the subscript indexes are used to
mark the number of occurrences of the same symbol in the string, thus a2 means the
second occurrence of a in the string.

The trace is represented by Π(t) = {πΣ1(t), πΣ2(t), πΣ3(t)} and the buffers of M ′ are
the following bΣ1 , bΣ2 , bΣ3 :

πΣ1(t) = a1a2b1b2c1c2c3

πΣ2(t) = b1b2c1c2c3d1d2d3

πΣ3(t) = e1e2

⇐⇒
bΣ1 = c3c2c1b2b1a2a1

bΣ2 = d3d2d1c3c2c1b2b1
bΣ3 = e2e1

For instance, the first (leftmost) symbol of πΣ1(t) is a1 that is indeed the first (right-
most) symbol enqueued in bΣ1 .

4.3 Execution Examples

In order to give a more concrete and complete description of how our algorithm works,
a few runs of a sample NDBM, M , are here provided. To better compare our approach
vs. the original one that has inspired it, we first give an example of how the algorithm
described in Section 3.1.2, in addition to the sample run illustrated in [Savelli, 2007].

In the following, the trace language T1 = [L1] = {t ∈ F(Σ1, I1) | ∃u ∈ L1 : t = [u]}
is used; L1 = L(A1) is the language recognized by the automaton A1 in Figure 5a,
Σ = {a, b, c, d, e} and I1 = {a −− c, a −− b, a −− d, b −− d, a −− e, b −− e, c −− e}
(reflexive arcs are omitted), thus θ1 = Σ × Σ\I1 = {b −− c, c −− d, d −− e}. Slightly
modified versions of L1, T1, θ1 will be used in the following.

17

q0q3

q2

q1

b

a

a

c
ed

a
(a) A1 : L1 = L(A1)

q0q3

q2

q1

b

a

c

c
ad

e
(b) A2 : L2 = L(A2)

Figure 5: The automata A1 (a) and A2 (b) recognizing (i.e., defining) the languages L1

and L2, respectively, used in the examples.

Example 4 (Original Earley-like algorithm) Let us consider the string u1 = abcdbe and
check whether or not it is such that t1 = [u1] ∈ T1. We have that:

Mθ1(Σ) = { Σ1 = {a},
Σ2 = {b, c},
Σ3 = {c, d}
Σ4 = {e}}

R(t1) = { πΣ1(u1) = a,
πΣ2(u1) = bcb,
πΣ3(u1) = cd
πΣ4(u1) = e}

At the beginning, the working list is empty: E[0] = {q0〈0, 0, 0, 0〉}; in this configuration
there exist δ(q0, a) = q3, δ(q0, b) = q1 and δ(q0, d) = q2, thus the first symbol on the
first and the second projection can be read and consumed. This move lead to the
generation of two elements in the next step cell: E[1] = {q3〈1, 0, 0, 0〉, q1〈0, 1, 0, 0〉}
since neither of them existed in E[0]. At step 2, each of the elements in E[1] are
expanded and E[2] is populated accordingly: in this case, given q1〈0, 1, 0, 0〉, e can be
consumed from the fourth projection leading to q2〈0, 1, 0, 1〉; the same is for c except
for the fact that one single element is updated on two positions at once. Hence, E[2] =
{q3〈1, 0, 0, 0〉, q2〈0, 1, 0, 1〉, q0〈0, 2, 1, 〉)}. At this point, b and d can be consumed giving
E[3] = {q3〈1, 0, 0, 0〉, q2〈0, 1, 0, 1〉, q1〈0, 3, 1, 0〉, q2〈0, 2, 2, 0〉}, but the algorithm is blocked
since no further symbol can be read on either the projection. Thus, the trace is not
accepted. A valid string is u2 = aabcbe which leads to the following computation steps:

E[0] E[1] E[2] E[3] E[4] E[5] E[6]

q0〈0, 0, 0, 0〉 q3〈1, 0, 0, 0〉 q0〈2, 0, 0, 0〉 q1〈2, 1, 0, 0〉 q0〈2, 2, 1, 0〉 q1〈2, 3, 1, 0〉 q2〈2, 3, 1, 1〉
q1〈0, 1, 0, 0〉 q0〈0, 2, 1, 0〉 q1〈0, 3, 1, 0〉 q2〈0, 3, 1, 1〉 q2〈1, 3, 1, 1〉

q2〈0, 1, 0, 1〉 q2〈1, 1, 0, 1〉 q2〈2, 1, 0, 1〉

The trace string is recognized since q2 ∈ QF and 〈2, 3, 1, 1〉 is such that all the symbols
on each projection have been read.

The following example shows how the strings used in the previous case are parsed by
a NDBM.

18

Example 5 (Parsing with a NDBM - Invalid trace) The initial configuration of the
machine is M1 = 〈A1, τ, {∅,∅,∅,∅}, u1,∅〉 and A1 in its initial state. Here we show
the run that performs the correct calculation: however, the NDBM guesses this (correct)
run non-deterministically.

More precisely, the buffers are: bΣ1 = 〉ε〉, bΣ2 = 〉ε〉, bΣ3 = 〉ε〉, bΣ4 = 〉ε〉, TI = abcdbe.
At the first step, a Read is performed and a is consumed from TI , thus τ(q, a,B) =
〈q,B〉; a BufferWrite is issued and a is enqueued in the family of buffers specific to
a: enqueue(Ba, a) which consists in bΣ1 = a〉ε〉 =〉a〉. Since the current state on the
automaton is q0, the a that has been buffered can now be read as well with a BufferRead,
thus: τ(q0, ε,B) = 〈q3 = δ(q0, a), dequeue(Ba)〉. This last move equals to the creation
of the first element q3〈1, 0, 0, 0〉 ∈ E[1] (Example 4).

The second step performs exactly as the previous one: Read of b, BufferWrite of b into
bΣ2 , BufferRead by the same buffer, leading to empty(B) = >, TI = cdbe. Similarly,
when c is Read and written to Bc, it can be then read from Bc since δ(q1, c) = q0;
d follows the same process but the subsequent b cannot be read so it would remain in
Bb = {bΣ2 = 〉b〉}. The e is buffered as well and it is subsequently dequeued, though the
computation is blocked and the string is not accepted as expected. The set of buffers
evolves as follows:

0 1 2 3 4 5 6
bΣ1 = 〉ε〉 〉a〉 〉ε〉 〉ε〉 〉ε〉 〉ε〉 〉ε〉
bΣ2 = 〉ε〉 〉ε〉 〉b〉 〉c〉 〉ε〉 〉b〉 〉b〉
bΣ3 = 〉ε〉 〉ε〉 〉ε〉 〉c〉 〉d〉 〉ε〉 〉ε〉
bΣ4 = 〉ε〉 〉ε〉 〉ε〉 〉ε〉 〉ε〉 〉ε〉 〉e〉

Observation 3 As the reader may have noticed, the machine simulates the original
algorithm and it simultaneously creates the projections just in time.

Example 6 (Parsing with a NDBM - Valid trace) Let us consider the string u2 =
eeecacbbad and check the membership t2 = [u2] ∈ T2 = [L2] (Figure 5b), where T2 ∈
F(Σ, θ2) with θ2 = {a −− b, c −− d}, thus the cliques generate the following covering:

Mθ2(Σ) = { Σ1 = {a, b},
Σ2 = {c, d}
Σ3 = {e}}

The first three symbols eee cannot be Read thus they are buffered into bΣ3 = 〉eee〉;
indeed, according to θ2 the symbol e does not depend on either of the others. At this
point, A2 can read the substring cacb: this corresponds to four BufferWrites and four
BufferReads to enqueue-and-dequeue each symbol to the corresponding buffer. After
these moves, the machine is on state q1 where the (second) b (in the string) cannot be
read and thus it is enqueued into bΣ1 =〉b〉 and it is not dequeued immediately; then
a must enqueued as well into bΣ1 =〉ab〉 as it depends on b. The automata ends this
calculations in q2 where two possible moves can be chosen; either

• perform a dequeue operation on bΣ3 =〉eee〉, ending in q2, or

19

• enqueue the last symbol (the d) into bΣ2 and dequeue it, ending in q0.

Both the choices bring to correct recognition in the same number of steps: in this
example, we assume that the machine performs the first of the two and iterates it for
three times since empty(bΣ3) = >. At this point, the d is enqueued/dequeued into/from
bΣ2 and the last two symbols remaining in bΣ1 =〉ab〉 can be dequeued as well, ending in
q2 ∈ QF . The content of the buffers is summarized in the following:

0 1 2 3 4 5 6 7 8 9 10 11 12
bΣ1 = 〉ε〉 〉ε〉 〉ε〉 〉ε〉 〉ε〉 〉a〉 〉ε〉 〉b〉 〉ab〉 〉ab〉 〉ab〉 〉ab〉 〉a〉
bΣ2 = 〉ε〉 〉ε〉 〉ε〉 〉ε〉 〉c〉 〉ε〉 〉c〉 〉ε〉 〉ε〉 〉ε〉 〉ε〉 〉d〉 〉ε〉
bΣ3 = 〉ε〉 〉e〉 〉ee〉 〉eee〉 〉eee〉 〉eee〉 〉eee〉 〉eee〉 〉eee〉 〉ee〉 〉e〉 〉ε〉 〉ε〉

Proposition 2 Let T = [L] ⊆ F(Σ, θ)∗ be a rational trace language defined by the
regular string language L = L(A) ∈ Reg(Σ), where A is a deterministic finite state
machine (that defines, i.e., recognizes L) and θ is the dependence relation. Also, let M
be a NDBM M = 〈A, τ,B, TI〉.
∀t = |u| ∈ T, ∀s ∈ |u|, the string s is accepted by M .

Proof (Reductio ad absurdum). Let us suppose that the hypotheses are satisfied and
∃t′ = |u′| s.t. ∃s′ ∈ t′ s.t. s′ is not accepted by M . Thus, it must be that, at the end of
the execution of M :

1. the current state of A is q 6∈ QF ; or

2. ∃bΣ′ ∈ B s.t. empty(bΣ′) = ⊥ ∧ q ∈ QF , where q is the current state of A; or

3. the reading head of TI is not pointing to the last input symbol.

Let us analyze the consequences of each case.

1. ⇒ s′ is not accepted by A, i.e. s′ 6∈ L, but this means that L 6= L(A).

2. ⇒ s′ is accepted by A since q ∈ QF . Also, ∃≥1a
′ ∈ bΣ′ that was not dequeued from

the buffer. In the case ∃>1 the symbol a′ prevents other symbols to be dequeued
as well, otherwise a′ is the only symbol on the buffer. In both of the cases, either:

a) a′ has been enqueued in the wrong buffer, but this contradicts the definition
of the BufferWrite operation of the transition function τ (Definition 11).

b) a′ cannot be dequeued, but this must be that, either:
i. @q′ | δ(q′, a′), but this implies that A is in q 6∈ QF .
ii. a′ 6∈ Σ′, but this implies that Σ′ is not the alphabet of bΣ′ , otherwise a′

would not be in bΣ′ .
c) (straightforward) the Read operation preceding the BufferWrite has read a

wrong symbol, that both contradicts the definition of Read and implies that
a′ 6∈ s′. Then, i. and ii. contradict the definition of BufferRead operation of
the transition function τ (Definition 11).

20

Then 2. leads to contradictions.

3. (straightforward) ⇒ the machine would not be at the end of the computation.

Finally, it also implies that a run with the correct sequence of operations does not
exist, but this would contradict the assumption of non-deterministic recognition as of
Definition 11. �

4.4 Time and Space Complexity

The time complexity of the NDBM depends on the number of cliques of the dependece
relation, that is Mθ(Σ), and obviously on the length of the input string, that is n = |u| =
|t|.

For each of the n symbols of u, after a Read, a BufferWrite is performed on all the
buffers the symbol belongs to; such buffers are |Mθ(Σ)|. Within that cycle, all the buffers
are scanned and a BufferRead is issued if possible, and this repeated |Mθ(Σ)| times. In
the worst case, the input strings is permuted in such a way that a complete buffering
is required; after the buffering phase is completed, all the buffers must be scanned and
each dequeued symbol must be further checked against all the buffers before actually
removing it. Overall, the time complexity is bounded by |Mθ(Σ)|·|Mθ(Σ)|·n; considering
that in the worst —but unrealistic and degenerative— case, the cliques are such that
|Σ| = |Mθ(Σ)|, the time complexity of the non-deterministic recognizer is bounded by
n|Σ|2.

The space required by the machine grows with the number and the size of cliques. In
the worst case there are |Σ| cliques of size 1. However, as the number of cliques grows,
the size of each clique decreases, and the space required by each buffer as well. In the
average case, with 1

2 |Σ| and equal probability for each symbol to occur in the string, the
memory required by an NDBM is proportional to n|Σ|.

As pointed out in Section 6, a further and more deep analysis of both the time and
space complexity is needed, also in order to refine this results and to calculate precise
upper/lower bounds. As for the implementation of the NDBM through a deterministic
algorithm (Section 5.1), it is straightforward to prove that Algorithm 1 simulates the
original two-pass algorithm presented in [Savelli, 2007, Section 3.2] which has been proven
to be O(nσ), where σ is the size of the larger clique.

5 Implementation and Results

This section describes the features of our Quick Earley-Like Membership Evaluator
(QELME), a deterministic algorithm implementing the NDBM. Moreover, the results
and the experimental setup are here investigated.

5.1 Implementing the Recognizer Through a Deterministic Algorithm

Before going into the details of the QELME architecture, a procedural description of
the Algorithm 1 executed by the deterministic implementation of the NDBM is given.

21

Algorithm 1 requires the clique covering C = Mθ(Σ) of the dependence relation, the
automaton A that defines the (string) language and the string u to be checked for
membership. The procedure needs some variables to perform intermediate computations,
namely:

• the variable decision holds the result, either > or ⊥;

• E is a set that contains structured elements e in the same form described in Section
3.1.2 and used in the examples in Section 4.3. We recall that e.cursors is a tuple
of m elements, thus e.cursorsj ∈ {0, . . . , |πΣj (u)|} indicates the j-th element (i.e.,
cursor), where |πΣj (u)| is the length of the projection of the string u on the j-th
clique.

• Π is the set of projection on cliques, used to emulate the buffers (see Definition 5
and 11);

• M is a matrix of dimension |C| × |Q| initialized to ⊥; as in [Savelli, 2007, Section
3.2], it is used to keep track of the actually existing elements in E, in order to
perform the union in constant time; as a shorthand, we will use the function
M : E 7→ {>,⊥} defined as M(e)⇔M(e.state, e.cursors);

• R is a vector of cursors, one per clique; each element of the vector is Rj ∈
{0, ..., |πΣj (u)|}, it points to the last symbol read from the j-th projection. Along
with each element in E, the vector R is used to represent a buffer; more precisely,
each buffer bj ∈ B of the NDBM is emulated by (1) one projection πΣj (u), (2) one
pointer to the head Rj and (3) one pointer to the tail e.cursorj .

Given the above variables, the buffer functions (see Definition 6 and 9) are emulated
as follows:

• enqueue(bΣj , a)⇔ enqueue(πΣj (u), a) ∧Rj ← Rj + 1

• dequeue(bΣj)⇔ e.cursorsj ← e.cursorsj + 1,∀e ∈ E

• empty(bΣj)⇔ ∀e ∈ E ⇒ e.cursorsj = Rj

Furthermore, Algorithm 1 relies on the shorthand procedure update(·) (Algorithm 2),
which is performed only if the current character us is on the tail of all (i.e., ∀Σk) the
buffers whose alphabet contains us itself. The tail of the buffer, according to the current
element e, is the symbol at position e.cursorsk of the k-th clique, that is the symbol
(π(u)Σk)e.cursorsk .

22

Input
A← 〈Q,Σ, δ, q0,QF 〉 /* The automaton */
C ← Σ1, . . . ,Σm /* Clique covering */
u← u1 · · ·un /* The string */

Variables
decision← ⊥
E ← {} /* The working list */
Π(u)← {πΣ1(u), . . . , πΣm(u)} = {ε, . . . , ε} /* The projections */
M : C ×Q 7→ {>,⊥} /* Initialized to ⊥ */

R← 〈0, . . . , 0︸ ︷︷ ︸
m

〉 /* Right cursors */

while i ≤ 2n ∧ ¬decision do
E′ ← {}
if i ≤ n then

forall Σ′ ∈ I(ui) do
enqueue(πΣ′(u), ui) /* Perform a BufferWrite */

end
end
forall e ∈ E do

if ∃j | e.cursorsj = Rj then E′ ← E′ ∪ e
for j ← 0; j < m; j ← j + 1 do /* For all the cursors */

if e.cursorsj < Rj then
us ← (πΣj (u))e.cursorsj /* Perform a BufferRead */

if ∃δ(e.state, us) then /* Check readability */
if ∀Σk ∈ I(us)⇒ (πΣk(u))e.cursorsk = us then

update(us, e, E′, C,R,M,A)
end

end
end

end
end
i← i+ 1 /* Move the virtual cursor one step ahead */
E ← E′ /* Update the next working list */

end
Algorithm 1: Deterministic algorithm implementing the NDBM.

The main cycle is executed 2n times in the worst case (O(n)): if the string is accepted
before 2n iterations (but after i iterations, at least), then the cycle exits with a positive
decision. Note that the condition i < 2n is required since, in the worst case, the string
u is fully permuted w.r.t. all the commutations allowed by θ and thus all the symbols
must be buffered before being read. This is equivalent to a double scan of the whole
string. Due to this, the buffering (i.e., BufferWrite) step is executed only if there are

23

Input
us /* Current symbol */
e′ /* Current element */
E′ /* The working list */
C /* Clique covering */
R /* Right cursors */
M /* Marking of E′ */
A← 〈Q,Σ, δ, q0,QF 〉 /* The automaton */

procedure update(us, e′, E′, C,R,M,A) begin
e′ ← e /* Temporary copy */
e′.state← δ(e′.state, us) /* Assign the new state to the element */
forall Σk ∈ I(us) do /* For all the cliques */

e.cursorsk ← e.cursorsk + 1 /* Update the left cursor */
end
if M(e′) = ⊥ ∧ ∃j | e′.cursorsj = Rj then /* If not existing */

E′ ← E′ ∪ {e′} /* Add it to the next working list */
M(e′)← > /* Mark it as existing */
decision← e′.state = q ∧ q ∈ QF ∧ ∀j ⇒ e′.cursorsj = Rj

end
end

Algorithm 2: The procedure update used by Algorithm 1.

symbols to be read, i < n; for this reason, we will call i a “virtual cursor”: it emulates
the real cursor on the input tape TI if 0 ≤ i ≤ n, while if n < i ≤ 2n it is used
to count the iterations of the outmost cycle. The main forall cycle iterates over the
existing element into the current working list E; for all the left cursors in the current e,
if there are symbols to read in the buffer (i.e., if e.cursorsj < Rj), then if the symbol
on the top of the buffer (i.e., projection) is read and an update is performed (only if the
aforementioned conditions are satisfied).

5.2 Prototype implementation

The abstract NDBM has been implemented into a highly configurable, parametric, and
scalable testbed application written in Python 2.5. The high-level structure is of the
main components depicted in Figure 6.

Sigma — This module implements Σ. The internal representation is a Python List.
Beside a method to generate random strings of given length, a method to generate
a random covering of the alphabet is provided and it is particularly important for
conducting mass tests and evaluations. The covering is generated w.r.t. a given
density, which is an aggregated indicator to characterize the clique covering.

24

Sigma

repr:List

rndCover(density:float):Covering
rndString(len:int):String

Covering

density:float
alphabet:Sigma
repr:Dict

cliquesOf(a:Char):int
getClique(i:int):String
toDotCode():PNG

FSM

Q:List
initial:String
finals:List
alphabet:Sigma
delta:Dict

isReadable(q:String, a:Char):Bool
rndLocal(alph:Sigma, bSize:int):FSM
rndString(avglen:int):String
rndTrace(c:Covering, swaps:int):String
test(u:String):Bool
toDotCode():PNG

Decisor

automaton:FSM
u:String
C:Covering
profile:Bool
projections:List
E:Set

run():Bool
runAndProfile():Bool
onAllHeads(a:Char):Bool

Element

state:String
left:List

clone():Element
existEqual(R:List):Bool
equals(R:List):Bool
inc(a:Char,
c:Covering):None

Figure 6: High-level structure of the main components of the Python implementation of
QELME, the deterministic algorithm running the abstract NDBM.

Definition 12 (Clique covering density). Let M(Σ) be a clique covering of the
alphabet Σ. The density of M(Σ) = {Σ1, . . . ,Σm} is

d(M(Σ)) =
|M(Σ)|
|Σ|

. (6)

The definition is given in general, regardless of the type of relation (e.g., depen-
dence, independence). The density not only captures the size of the covering, but
also the degree of overlapping among cliques, which is an important measure for
evaluation. For instance, if a covering of size m contains a symbol a that belongs
to all the m cliques, each operation (e.g., BufferWrite, BufferRead) regarding a
must be iterated O(m); on the other hand if the degree of overlapping is zero, then
each operation regarding a must be iterated O(1) times. d is such that:

d =
{

1 M(Σ) = {{a} | a ∈ Σ}
1
|Σ| M(Σ) = {Σ′ | Σ′ = Σ}

Covering — This module implements M(Σ) and requires Sigma. To be efficient, it has

25

been implemented with an indexed mapping, exploiting Python hash tables (i.e.,
the Dict data type). The index is such that accessing all the cliques the symbol a
belongs to, always takes O(1); this obviously requires slightly more space. Instead
of representing a clique covering with a direct hash table only, such as {0: [a, b,
c], 1: [c, d], ...}, we also store an index {a: [0], b: [0], c: [0,1],
d:[1]}. The first of the two data structures is accessed less often w.r.t. the latter.
A convenience method is also provided to generate a visual representation of the
clique covering using Graphviz.

FSM — This module implements A. It has an instance of Sigma that represents the
alphabet, while (final) states are stored as a List of strings, i.e., q0, q1, etc.
The transition function is a Dict that implements the Q× Σ 7→ Q mapping. The
Cartesian product is a Python Tuple; for instance, {(q0, a): q3, (q3, a):
q0, ...}. The module also provides convenience methods to test the readability
of a character and the membership of a string.

The most important methods are those used to generate random testing data:
strings, traces, automaton (of local type).

• The method rndString(avglen:int) generates an accepted string which length is
approximately avglen; this approximation is due to the randomization strategy
we chosen to traverse the automaton. All the transitions have the same
probability to be chosen (uniform distribution over all the possible δ(q, a), for
each q) ; at each state, one of the output arcs is picked up at random and
the corresponding symbol a is appended to the final string. Since the string
must be accepted, then it is not known in advance whether the last symbol is
appended to the final string exactly at the given length; thus, when the target
length is reached, the string is returned at the next transition to a final state.
• The output of rndString is used by rndTrace(c:Covering, swaps:int) to generate

a random trace; given a random, accepted string, and a clique covering of the
dependence relation, the method permutes digrams swaps times. This allows
somehow to tune a certain measure of “distance” between the random trace
and the original string, representative of the whole class.
• Last but not least, rndLocal(alph:Sigma, bSize:int) is used to generate random

automata of local type, given the alphabet, which determines the number
of states (|Q| = |Σ| + 1), and the parameter bSize; it represents, for each
state, the average number of arcs pointing to preceding states. We call this
indicator the “back size” as such arcs are backward directed. If bSize = 0
then the automaton is a chain, recognizing the string a1a2 · · · a|Σ| where all
ai ∈ Σ and δ : ∃δ(ai, ai+1) = ai+1, ∀ai ∈ Σ. In general, ∀ai ∈ Q⇒ ∃=bSizeaj :
j ≤ i, δ(ai, aj) = aj . Obviously, the bSize parameter influences the length of
the strings generated by randomly traversing the automaton.

Element — This module implements elements of E. It stores the current state as a
string (e.g., q0, q1) and the left cursors as a List of integers. Given an instance

26

of this class, the method inc(a:Char, c:Covering) increments of one unit all the left
cursors the symbol a belongs to. Given another List of cursors R (i.e., the right
cursors) the methods existsEquals and equals implements ∃j | e.cursorsj = Rj and
∀j ∈ e.cursors | e−1

j = Rj , where left implements e.cursors.

Decisor — This module implements Algorithm 1 in two fashions: with and without
code profiling. Code profiling records detailed information regarding the amount
of time consumed by each single function point, to the granularity of one line of
code. Also, the module provides the method onAllHeads(a:Char) which implements
the innermost if, with us = a.

Example 7 (Random generation and recognition) Here we provide a quick overview of
what can be done with QELME. In the following, the available options are shown. If one
or more options are missing, the tool either randomizes such values (if it makes sense)
or guesses them according to the other options. For instance, one may specify only the
alphabet: the string are randomized as well as the automaton and the clique covering.
This gives full control to the user to experiments with all the possible combinations of
parameters that are important to the topic of the analysis.

QELME - Quick Earley-Like Membership Evaluator.

Ver. 0.6.1

(c)2007-2008 Federico Maggi, Stefano Crespi Reghizzi, Alessandra Savelli

Usage: qelme.py options

Options:

--version show program’s version number and exit

-h, --help show this help message and exit

-a AUTOMATON, --automaton=AUTOMATON

The automaton.

-c COVERING, --covering=COVERING

The clique covering.

-l RANDOM_STRING_LENGTH, --random-string-length=RANDOM_STRING_LENGTH

The length of the random generated string.

-u STRING, --string=STRING

The string, comma separated!

-p, --code-profiling Turn on profiling. Off by default.

-e EVALUATIONS, --evaluations=EVALUATIONS

Turn on performance evaluation (none or positive

integer). Example (non-default): 10 (ten simulations)

-f MIN_SIGMA_SIZE, --min-sigma-size=MIN_SIGMA_SIZE

Random alphabet minimum size.

-s MAX_SIGMA_SIZE, --max-sigma-size=MAX_SIGMA_SIZE

Random alphabet maximum size.

-b BACK_SIZE, --back-size=BACK_SIZE

The number of back edges in the generated local

automaton: it does make sense in eval-mode only.

-g, --save-automaton Save the automaton in PNG. Off by default.

-m STRING_RANDOMIZATION, --string-randomization=STRING_RANDOMIZATION

Test the algorithm on mutated string: choices are

’random’, ’accepted’ (default), ’mutated’, ’trace’

-z ALPHABET, --alphabet=ALPHABET

Specify a fixed alphabet to be used in the evaluation.

-o OUTPUT_FILE, --output-file=OUTPUT_FILE

Output file (prefix) for saving simulation results.

Only in evaluation mode. Example (non-default): "foo"

27

0

200

400

600

800

1000

1200

1400

0

20
0

40
0

60
0

80
0

10
00

12
00

T
im

e
(s

)

(a) String length |u|

Measurements
Poly fit ∝ x2.9

0.
28 0.
3

0.
32

0.
34

0.
36

0.
38 0.
4

0.
42

0.
44

(b) Clique density d = |Mθ(Σ)|
|Σ|

Measurements
Exp. fit

Figure 7: Time versus (a) input length and (b) clique covering density. We measured
the execution time of 570 recognitions on valid (random) traces: each point corresponds
to a fixed string length versus the average time calculated on 10 to 100 instances of the
same experiment run on different input data, at each length.

-d COVERING_DENSITY, --covering-density=COVERING_DENSITY

In the case of random generated covering, a "density"

metric can be specified as the float |C|/|Alphabet|.

Example (non-default): 0.6

-v, --verbose Be verbose

-V, --more-verbose Be even more verbose

For instance, one may want to perform 1000 different experiments to evaluate the
recognition of the trace strings (randomly) generated given a fixed alphabet, to see how
different clique covering can influence the speed of the recognition. In this case, setting
up such an experiment is as easy as typing:

qelme.py -e 1000 -p -z ’a,b,c,d,e,f,g,h,i,l,m,n,o’ -b 5 -m ’trace’ -v

The switch -m is particularly useful as it allows to generate random (1) accepted traces,
(2) accepted strings, (3) random strings (high unacceptance rate), and (4) randomly
mutated strings (likely to be unaccepted). This can be used to quickly set up targeted
tests against specific cases. Results are exportable to Comma Separated Values (CSV)
files for maximum portability and ease of post processing.

5.3 Experimental setup and results

We conducted several experiments and a reasonable amount of data has been collected.
We mainly focused on the time required by the algorithm to recognize the input string.
It is our care to recall that the measurements have been performed using a prototype
implementation, which has been created with the goal of experimenting; in addition, the

28

0

10

20

30

40

50

60

70

80
10

0

20
0

30
0

40
0

50
0

60
0

70
0

80
0

90
0

10
00

11
00

T
im

e
(s

)

String length |u|

(a) Fixed covering

Measurements
Poly fit - ∝ |u|1.8

-4

-2

0

2

4

6

8

10

12

0 10 20 30 40 50 60 70

String length |u|

(b) Accepted vs. not accepted

(i) Trace accepted
(ii) Trace not accepted

Figure 8: Time versus string length measured (a) with a fixed clique covering such that
|Σ| = 100 and σ = 7 (larger clique size); (b) in case of (b-i) accepted and (b-ii) not
accepted trace string. In (b) the execution time of 3000 recognitions on both valid and
invalid (random) traces has been measured: each point corresponds to a fixed string
length versus the average time calculated on several instances of the same experiment
run on different input data, at each length.

scripts running the experiments have been executed on slow machines. Thus, the results
must not be taken absolutely as they have been set up to find empirical hints about
what the parameters influencing the performance of the recognition can be.

The first experiment investigates how the input length affects the time required for
recognition. In this session, we used QELME to generate about 570 different valid traces,
alphabets, clique covering and automata. For each of the eight different string lengths
(i.e., 10, 20, 40, 80, 160, 320, 640, 1200), 10 to 100 different samples have been generated;
this allowed us to measure the time required in the average case with high-precision with
an error as low as 0.009–1.234%. The results are plotted in Figure 7(a). The interesting
result of this experiment is that the recognition seems to be independent from the size σ
of the largest clique in the covering of Σ; instead, according to the the analysis in [Savelli,
2007, Section 3.2] (reported in Section 3.1.2), the time was expected to be t ∝ |u|σ. On
the other hand we found that the time in function of the input length can be perfectly
fitted with σ = 2.9, even if we used a wide range of values of σ.

A more accurate analysis confirmed the above intuition. We fixed the clique covering
(and thus |Σ| = 100) such that σ = 7. Figure 8 shows the execution time versus string
length; the time is still polynomial w.r.t. the string length even if the two exponents
slightly differs (2.9± 0.002vs.1.8± 0.1314) due to the reduced amount of measurements.
However, the important result is that we confirmed that t 6∝ |u|σ, otherwise σ should be

29

0

0.05

0.1

0.15

0.2

0.25

2 4 6 8 10 12 14 16 18 20 22

T
im

e
(s

)

Size of the largest clique σ

Figure 9: Time versus the size of the largest clique σ. The string length and the alphabet
size are fixed (i.e., |u| = 50, |Σ| = 50) while the size of the larger clique increases from 3
up to 21 < |Σ|/2.

σ = 1.8, which is obviously a contradiction since we used 7.
A further experiment has been conducted in order to see how the execution time varies

if the string length and the alphabet size are fixed (i.e., |u| = 50, |Σ| = 50) while the size
of the larger clique increases from 3 up to 21 < |Σ|/2. Results are plotted on Figure 9:
we avoided σ > |Σ|/2 in order to keep the covering significant. Unsurprisingly, the time
required decreases as the size of the largest clique increases; this happens because, if the
alphabet is fixed, it is less probable for each symbol to belong to more than one clique.
Thus, for each symbol, a limited group of cliques (likely to be only the largest one) are
inspected at each scan.

The second experiment investigates how the characteristics of the clique coverage
affects the time required for recognition. We re-used the same data collected for the first
experiment and calculated the average time required at different clique density values
(see Definition 12). Results are plotted on Figure 7(b); if the string length varies, as
the execution time increases exponentially with the covering density d (up to 0.45) and
exhibits a quick grow for values of d ∈ [0.42, 0.45]. That was expected, even if the precise
function between time and density was unknown by the theory.

The last experiment regards the comparison between valid and non-valid traces w.r.t.
the time required to compute the result. Figure 8(b) shows how, in the average case and
with a certain degree of unavoidable errors, the algorithm is able to stop the computation
in advance if the string is not a valid trace. This is a detail of the first version of the

30

implementation and allows the stop of the execution when no valid elements are found
in the working list E; that is, none of the elements contain a symbol that can be read
according to the automaton.

6 Conclusions

In this paper we proposed a one-pass version of the two-pass, Earley-like recognizer for
rational trace languages, previously described in [Savelli, 2007, Section 3.2]. More pre-
cisely, our contribution is threefold: we formally define the Non Deterministic Buffer
Machine (NDBM), an abstract buffer machine to solve the membership problem for ra-
tional trace languages. Secondly, we describe the implementation of the NDBM through
a deterministic algorithm; the details on how each component of the machine is simu-
lated by the real algorithm are provided as well. Thirdly, we present the results obtained
on real experiments conducted on arbitrarily long inputs and arbitrarily complex com-
mutative alphabets. We also suggest a metric to quantify such a “complexity”.

The first contribution is the result of an accurate analysis conducted on the existing
algorithms proposed in the literature [Bertoni et al., 1989; Avellone and Goldwurm, 1998;
Breveglieri et al., 2005; Savelli, 2007]. In Section 4.2 we define a buffer machine to solve
the membership problem. The machine can be viewed as a multi-tape Turing machine
which operates on buffers instead of on tapes; regardless of this similarity, we noticed
two important differences between a normal Turing machine and a NDBM (Observation
4.2). Beside the description the main blocks, i.e., the buffers, we provide more useful
definition to specify the behavior of (1) each buffer and (2) the families of buffers. The
second concept is used to give a more compact description of the procedures invoked
on groups of buffers. In addition, all the operations to access the symbols are given for
both single buffers and families of buffers. We also provide examples of executions of
the machine, in comparison to the original two-pass algorithm.

The non-determinism operates at two levels: first, at each computational step, the
choice of the buffer(s) bΣi is assumed to be non-deterministic (see Definition 11); sec-
ond, the choice among the three possible modes (i.e., BufferRead, BufferWrite, Read)
is assumed non-deterministic as well. Even though a more deep study about the non-
deterministic recognition of trace languages is needed, at a first glance it seems that such
a machine will not be able to recognize all the rational trace languages. This intuition
arises by observing that the an implementation of the NDBM through a deterministic
algorithm requires polynomial time, n3σ (where σ depends on the language); on the
other hand, a quick analysis of the time complexity of the NDBM shows that it can
recognize in n|Σ|2. However, it is important to remark that a further and more deep
analysis of both the time and space complexity is needed, also in order to refine this
results and to calculate precise upper/lower bounds.

Another important point that require further studies is the implementation of a smart
procedure capable of look-ahead on both the next symbol on the input string and the
automaton transitions. Observing the moves of the NDBM it is quite evident that some
sort of parallelism could be added. In particular, it seems that when an enqueue op-

31

eration is performed, a dequeue operation can be invoked on the same step, without
affecting the soundness. However, this improvement would require to calculate, in ad-
vance, which buffers are enabled to dequeue symbols from, given the dependence relation
and the currently enqueued symbol.

The second contribution consist in QELME, the testbed application we developed
using the Python programming language. The purpose of QELME is to provide an
easy-to-use (see Example 7) tool to aid the researcher to quickly set up a large amount
of experiments with minimal effort. To the other end, QELME is a deterministic imple-
mentation of the NDBM and gave us deep understandings about the practical aspects
and barriers that must cope with while trying to feel the gap between traces and real-
world applications. Last but not least, it is our care to remark that QELME was not
developed with the goal of realizing the most efficient implementation of a parsing al-
gorithm for traces, in an absolute sense; instead, we preferred to focus on the ease of
setting up experiments to investigate what are the factors (e.g., clique structure) that
influence the algorithm.

The third contribution of this work is the experimental section we conducted to com-
plement the theoretical part. We found that the size of the largest clique influences the
computation time only if the alphabet size is fixed; on the other hand, according to our
experiments the time is still a polynomial function of exponent between 1.8 and 2.9.
It must be underlined that the string length is, as expected, more influencing than the
characteristics of the clique covering, in terms of both the density (see Definition 12) and
the size of the largest clique. To complete our experimental sessions, a more detailed
profiling of the memory requirements of the algorithm have to be performed.

Acknowledgments

The author is thankful to Alessandra Savelli for the initial help and to Prof. Stefano
Crespi Reghizzi for the constant help, suggestions and reviews.

References

Appel, A. W. and Palsberg, J. (2002). Modern Compiler Implementation in Java. Cam-
bridge University Press.

Avellone, A. and Goldwurm, M. (1998). Analysis of algorithms for the recognition of
rational and context-free trace languages. RAIRO Informatique théorique et Applica-
tions, 32:141–152.

Bacon, D. F., Graham, S. L., and Sharp, O. J. (1994). Compiler transformations for
high-performance computing. ACM Comput. Surv., 26(4):345–420.

Berstel, J. and Pin, J.-E. (1996). Local languages and the Berry-Sethi algorithm. Theor.
Comput. Sci., 155(2):439–446.

32

Bertoni, A., Mauri, G., and Sabadini, N. (1989). Membership problems for regular and
context-free trace languages. Information and Computation, 82(2):135–150.

Breveglieri, L., Crespi Reghizzi, S., and Garatti, M. (2000). Maximal parallel scheduling
and trace theory. Technical report, Politecnico di Milano.

Breveglieri, L., Crespi Reghizzi, S., and Savelli, A. (2005). Efficient Word Recognition
of Certain Locally Defined Trace Languages. In Proceedings of the 5th International
Conference on WORDS, Montréal (QC) Canada. Université du Québec a Montréal.

Cartier, P. and Foata, D. (1969). Problèmes combinatoires de commutation et
réarrangements.

Diekert, V. and Rozenberg, G. (1995). The Book of Traces. World Scientific.

Earley, J. (1970). An efficient context-free parsing algorithm. Commun. ACM, 13(2):94–
102.

Keller, R. M. (1973a). Parallel Program Schemata and Maximal Parallelism I. Funda-
mental Results. Journal of the ACM (JACM), 20(3):514–537.

Keller, R. M. (1973b). Parallel Program Schemata and Maximal Parallelism II: Con-
struction of Closures. Journal of the ACM (JACM), 20(4):696–710.

Lam, M. (1988). Software pipelining: an effective scheduling technique for vliw machines.
SIGPLAN Not., 23(7):318–328.

Mazurkiewicz, A. (1977). Concurrent program schemes and their interpretations. DAIMI
Rep. PB, 78.

Natour, I. A. (1988). On the control dependence in the program dependence graph.
In CSC ’88: Proceedings of the 1988 ACM sixteenth annual conference on Computer
science, pages 510–519, New York, NY, USA. ACM.

Pighizzini, G. (1994). Linguaggi traccia riconoscibili ed automi asincroni. PhD thesis,
Università degli Studi di Milano, Università degli Studi di Torino.

Rytter, W. (1984). Some properties of trace languages. Fundamenta Informaticae,
7:117–127.

Savelli, A. (2007). Two contributions to automata theory on parallelization and data
compression. PhD thesis, Politecnico di Milano and Université de Marne-la-Vallée.

Szijarto, M. (1981). A classification and closure properties of languages for describing
concurrent system behaviours. Fundam. Inform., 4(3):531–550.

33

