
A Recognizer of Rational Trace Languages

Federico Maggi

Dipartimento di Elettronica e Informazione
Politecnico di Milano

Milano
fmaggi@elet.polimi.it

Abstract—The relevance of instruction parallelization and
optimal event scheduling is currently increasing. In particular,
because of the high amount of computational power available
today, the industrial interest on automatic code parallelization
is raising notably. In the last years, several contributions have
arisen in these fields, exploiting the theory of traces that provides
a powerful mathematical formalism that can be effectively used
to model and study concurrent executions of events. However,
there is a quite large amount of open problems that need to be
further investigated in this area.

In this paper, we present a one-pass recognition algorithm
to solve the membership problem for rational trace languages,
that is the problem of deciding whether or not a certain string
belongs (i.e., is member of) a trace, or a trace language. Solving
this problem is fundamental for designing efficient parsers.
Our solution is detailed through the formal specification of
the Buffer Machine, a non-deterministic, finite-state automaton
with multiple buffers that can solve the membership problem in
polynomial time.

I. INTRODUCTION

Traces [1], [2], [3] can be exploited to model concurrency.
Trace languages can be considered as an extension of string
languages. For instance, while string languages can be used
to define the syntax of a certain computer program, trace lan-
guages can also capture the dependencies among the program
instructions.

In this work, we focus on the Membership Problem (MP) in
the case of trace languages. This problem plays a key role in
real-world applications where classical and expensive dynamic
programming techniques are used. Our contribution consists
in a one-pass version of a two-pass recognition algorithm
[4] we analyzed in details. The original algorithm requires
a pre-processing step before parsing. Although it consist in a
linear scan, a two phases recognition may be unpractical for
some real cases. We avoid this issue by incorporating the first
phase in the parsing algorithm itself. Our algorithm is defined
by means of an abstract machine we named Buffer Machine
(BM), a non-deterministic recognizer that solves the MP. In
addition, we evaluate the performances and characteristics
of the proposed solution using a testbed implementation we
released1, which also includes a pseudo-random generator of
strings, automata and dependency relations, which can be used
to experiment with the prototype, as detailed in [?].

1Source code available at http://qelme.googlecode.com

II. PRELIMINARIES

We use the conventional concept of language (or string
language) L: a (sub)set of strings generated by a free monoid
Σ∗ ⊇ L, where Σ is the alphabet. Strings are denoted by
smallcase letters: u = a1a2 · · · an, v = b1b2 · · · bm, where
n = |u|,m = |v| are the length | · | of u and v, respectively.

A trace is indicated as an equivalence class [t] =
{t1, t2, . . . , tk} represented by t. [t] contains strings drawn
from the trace monoid F(Σ, I), also called partially com-
mutative free monoid. More formally, F(Σ, I) = Σ∗/≡I ,
where I ⊆ Σ × Σ is the independence relation. I is a
symmetric and reflexive equivalence relation and ≡I is its
minimum congruence over Σ∗. The dependence relation θ is
also used as the complement of I: θ = Ic = Σ×Σ\I. Since
(a, a) ∈ I,∀a ∈ Σ, the reflexive arcs are omitted if not strictly
necessary.

A trace language T is a (sub)set of traces generated by
F(Σ, I) ⊇ T , defined over the commutative alphabet 〈Σ, I〉.
More formally, T = [L]≡I = {t ∈ F(Σ, I) | ∃u ∈ L :
t = [u]}. The family of rational trace languages Rat(Σ, I) is
the focus of this work. Rat(Σ, I) is proven to be generated
by regular string languages [5]; i.e., [L] = T ∈ Rat(Σ, I)
iif L ∈ Reg(Σ). It is the smallest class of trace languages
containing all finite sets and closed w.r.t. union, product and
star.

Prefixes Pref l(t) of length l of a trace t are the set of words
ti s.t. t = ti · v for some trace v. The product operator ‘·’ of
F(Σ, I) is s.t. ∀t1, t2 ∈ F(Σ, I) and t1 · t1 = t1t1 = [uv],
where t1 = [u] and t2 = [v]. On languages, if T1 = [L1], T2 =
[L2], then T1 · T2 = {t ∈ F(Σ, I) | t = t1 · t2, t1 ∈ T1, t2 ∈
T2}. The Kleene star on traces is t∗ = ∪+∞

n=0t
n where t0 =

ε = [ε] is the empty trace, and tn = t · tn−1. On languages:
T ∗ = ∪+∞

n=0T
n, T 0 = {ε}, and Tn = T · Tn−1.

Both I and θ can be represented with undirected graphs.
Formally, in case of I, G = 〈V,E〉 = 〈Σ, I〉. The notion
of clique covering and maximal clique of a graph (i.e., of a
relation) will be used. A clique Vi ⊆ of G is any complete
subgraph Gi = 〈Vi, Ei〉, i.e., (a, b) ∈ Ei,∀a, b ∈ Vi with a 6=
b. A clique Vi is also maximal (w.r.t. the inclusion relation)
if Gi is the maximal complete super-graph of G; or, in other
words, if there is no super-set that is a clique itself: ∀Vj ⊃
Vi ⇒ i = j. The maximal clique covering of G with respect
to E is the set ME(V) = {V1, . . . , Vi, . . . , Vk} containing all

978-0-7695-4108-2/10 $26.00 © 2010 IEEE

DOI 10.1109/CIT.2010.77

257

2010 10th IEEE International Conference on Computer and Information Technology (CIT 2010)

978-0-7695-4108-2/10 $26.00 © 2010 IEEE

DOI 10.1109/CIT.2010.77

257

2010 10th IEEE International Conference on Computer and Information Technology (CIT 2010)

978-0-7695-4108-2/10 $26.00 © 2010 IEEE

DOI 10.1109/CIT.2010.77

257

1 a = b;
2 c = a + b;
3 x = 0;
4 while (x % c) {
5 i f (x % 2)
6 y = x + 1;
7 else
8 x = y + 2;
9 z = z + x + 1;

10 }

1

2

3

4

5

6

8

9

1

2 5

6

3

48

9

θ = {

Σ = {1, 2, 3, 4, 5, 6, 8, 9}

}

0 1 2 3 4

68

9

1 2 3 4

68

9 9

4

(a) Code (b) DDG (c) Dependence relation (d) Automaton

Figure 1: The trace representation of a snippet of code.

and only the maximal cliques.
Being F(Σ, θ) represented by G = 〈V = Σ, E = θ〉, then

Mθ(Σ) is such that ∀i, j ∈ [1, |Mθ(Σ)|] | i 6= j ∧ Vi, Vj ∈
Mθ(Σ) ⇒ Vi 6⊆ Vj . The (maximal) cliques are subsets of Σ,
Σ1,Σ2, . . . ,Σk ⊆ Σ, with k ≥ 1. Similarly, M(Σ, I) can be
defined for I.

A projection of a trace on Σ′ is a morphism πΣ′(·) defined
as πΣ′ : Σ∗ 7→ Σ′∗: given u = wa, πΣ′(u) = πΣ′(w)a
if a ∈ Σ′; otherwise πΣ′(u) = πΣ′(w), or πΣ′(ε) = ε.
Thus, πΣ′(u) = u′ ∈ Σ′∗. Since Σ′ ∈ M(Σ), then Σ′ are
cliques. πΣ′(t) maintains the order of the symbols of t; that
is, ∀ai, aj ∈ πΣ′(t) ∧ i < j ⇒ ∃i′ < j′ | ai′ = ai ∧ aj′ =
aj ∧ ai′ , aj′ ∈ u.

III. THE MEMBERSHIP PROBLEM FOR TRACE LANGUAGES

We describe the MP, motivate why it is important in the
context of traces, and detail the specification of the machine
to solve it. Due to space limitations, proofs are omitted.

The MP is the problem of deciding whether or not a given
string u ∈ Σ∗ is s.t. u ∈ [t] where [t] ∈ T is a given trace
language. Despite the simplicity of its formulation, the MP
plays a key role in real-world applications where classical
dynamic programming techniques are used. Problems that can
be described by means of a set of binary and symmetric
constraints among a finite set of symbols (e.g., events, actions)
also find an effective formalization in the framework of traces.
For instance, consider the problem of determining whether or
not a certain sequence of program instructions is an acceptable
schedule. Each instruction is represented by a symbol in Σ
while the dependency (e.g., Data Dependency Graph (DDG),
Concrete Dependency Graph (CDG)) relations among them
are approximated with θ. Figure 1 gives a simplified (i.e.,
no nested loops) example of the trace language associated
to a program. Direct and loop-carried [6] data dependencies
are represented by solid and dotted arcs, respectively. The
resulting θ is the reflexive symmetric closure of the DDG with
both the types of arcs are taken into account.

However, it must be noted that θ “encodes” less constrains
than the DDG since i −− j ∈ θ implies that the instruction i
depends on j and vice-versa. In other words, Read After Write
(RAW) dependencies of the DDG are transformed into Write
After Write (WAW) dependencies of θ; WAW dependencies-
remain WAW.

A. Solving the MP for Rational Trace Languages

The BM (Figure 2) has one input tape, a finite set of First-
In First-Out (FIFO) buffers, and a finite-state control device.
Each buffer is an infinite sequence of adjacent cells while
the input tape is left-bounded. The BM moves by consuming
one symbol at a time from the leftmost position of the input
tape (pop), dispatches it onto an appropriate buffer (enqueue)
and updates the state of the control device, accordingly. More
formally, a buffer is defined as follows.

Definition 1 (Buffer): Given an alphabet Σi, called the
buffer alphabet, a buffer bi is a FIFO queue containing only
symbols in Σi:bi := 〉aI · · · aj · · · aO〉 where “〉aI · · · ” is the
input side while “· · · aO〉” is the output side. A buffer with no
symbols is empty and is indicated as bi = 〉ε〉 = ∅.

Each buffer bi, short bΣi , is associated to a subset Σi ⊂ Σ of
symbols and thus uniquely identified by their own alphabet, i.e.
∀bi, bj : Σi = Σj ⇒ bi = bj . For instance, if Σi = {a, c} ⊂
Σ = {a, b, c, d, e}, then bi = bΣi={a,c} holds symbols drawn
from Σi only. Buffers are associated to the following functions.

Definition 2 (Buffer functions): Let bΣi be a buffer. The
functions Empty(bΣi), Dequeue(bΣi), and Enqueue(bΣi , a)
are said to be buffer functions.
• Empty(bΣi) = > iff bΣi = 〉ε〉 and ⊥ otherwise.
• Dequeue(bΣi) is defined only if Empty(bΣi) = ⊥. It

removes the rightmost symbol ao from bΣi = 〉 · · · aO〉,
and returns it as {aO}.

• Enqueue(bΣi , a) inserts the symbol a ∈ Σi into bΣi .
Example 1: This example illustrates how each buffer func-

tion works.
• It is straightforward that if bΣi={a,c} = 〉ab〉 and
bΣj={d,e} = 〉ε〉, then Empty(bΣi) = ⊥ while
Empty(bΣj) = >.

• If bΣi={a,c} = 〉aaca〉, Dequeue(bΣi) returns {a} and,
as a result, bΣi = 〉aacε〉.

• Given bΣi = 〉aac〉, Enqueue(bΣi , a) would result
in bΣi = 〉aaac〉. This function is such that if
bΣi = 〉aac〉, invoking Enqueue(bΣi , ε) results in
bΣi = 〉εaac〉 = 〉aac〉.

Moreover, we define the concept of family of buffers as
either one of the following definitions.

Definition 3 (Family of buffers specific to a symbol): Let
bΣ1

, . . . , bΣk be a set of buffers. A family of buffers Ba

258258258

· · · b d c a · · · a · · · e Control
device

a b · · · a a

...

b d · · · d d

e d · · · e e

TI

bΣK={a,b}

bΣi

bΣ2={b,d}

bΣ1={d,e}

Figure 2: A visual representation of a BM. A sample trace language having K cliques in its dependence relation, ϑ, is used.

specific to the symbol a ∈ Σ is defined as the set of all
buffers whose alphabet contains the symbol a ∈ Σ. That is:
Ba = {bΣi | a ∈ Σi}.

For instance, consider Mθ(Σ) = {Σ1 = {a},Σ2 =
{b, c},Σ3 = {c, d}} and its associated buffers {bΣ1

, bΣ2
, bΣ3
}.

The family of buffers specific to c is Bc = {bΣ1
, bΣ3
}, i.e.,

a set of those buffers belonging to the subset of the clique
covering induced by the symbol c. A more general definition
is the following.
Definition 4 (Family of buffers specific to a set of alphabets):

Let bΣ1 , . . . , bΣk be a set of buffers and Γ = {Σi}N a set
of N alphabets. A family of buffers BΓ specific to a set of
alphabets Γ is defined as the set of all the buffers bΣi whose
alphabet Σi is in Γ: BΓ = {bΣi | Σi ∈ Γ}.

The buffer functions are extended to families of buffers as
follows.

Definition 5 (Extended buffer functions): Let B′ be a fam-
ily of buffers. The extended buffer functions are:
• Empty(B′)⇐⇒

∧
bΣi∈B′ Empty(bΣi).

• Dequeue(B′) returns the set of symbols Σ′ = {ai |
{ai} = Dequeue(bΣi) ∧ bΣi ∈ B′}.

• Enqueue(B′, a) is such that Enqueue(bΣi , a) is exe-
cuted ∀bΣi ∈ B′.

Given the above definitions, it is straightforward to define
the input tape.

Definition 6 (Input Tape): Let Σ be an alphabet. The input
tape is TI := bΣ.

The input tape is denoted as TI = a1a2 · · · an =
|an · · · a2a1〉 and can hold any symbol drawn from Σ. The
Enqueue(TI , a) function is undefined for TI while the other
operations are as in Definition 2. Without loss of generality, we
assume that the input string is already on TI and its symbols
are consumed in the same order of placement. No further
enqueues are allowed.

The BM M that solves the MP for a given trace language
Rat(Σ, θ) 3 T = [L] ⊆ F(Σ, θ) is formally defined as
follows. Note that A : L = L(A) is known.

Definition 7 (Buffer Machine): A Buffer Machine (BM) is
a 4-ple M := 〈A, τ,B, TI〉, where TI is the input tape, and:
• B = BMθ(Σ) = {b1, b2, . . . , bi, . . . , bK} =
{bΣ1

, bΣ2
, . . . , bΣi , . . . , bΣK} ∈ B is the family of buffers

associated to Mθ(Σ).
• A = 〈Q,Σ, δ, q0,QF 〉 is the deterministic recognizer of
L = L(A), a finite state automaton: Q and QF ⊆ Q are
the finite set of states and acceptance states, respectively;
and δ is the transition function.

• τ : Q×Σ× B 7→ ℘(Q× B) is the transition function of
the control device. The current symbol on TI is denoted
by a ∈ Σ. Three transition modes are defined:

– Read: fires if a 6= ε (i.e., Empty(TI) = ⊥) and is
s.t. τ(q, a,B) = 〈q,B〉. It is always followed by a
BufferWrite.

– BufferWrite: is s.t. B′ : Enqueue(Ba, a),
τ(q, a,B) = 〈q,B′〉.

– BufferRead: fires if Dequeue(Ba) = {a′} and it is
s.t. τ(q, ε,B) = 〈q′ = δ(q, a′),Dequeue(Ba′)〉

The choice among the buffer(s) bΣi and among the three
modes is non-deterministic.

Definition 8 (BM configuration): A configuration of a BM,
M , is a tuple MC = 〈q,B〉 ∈ ℘(Q×B) where q is the current
state of A. M I = 〈q0, {∅, . . . ,∅}〉 is the initial configuration
while MF = 〈 qF , {∅, . . . ,∅}〉 is the acceptance configura-
tion, where qF ∈ QF .

The Read transition reads one symbol from TI ; if it cannot
be performed because a = ε then a BufferRead is performed.
Each Read is followed by a BufferWrite which enqueues
the read symbol a on all the buffers in Ba (i.e., the current
symbol is pushed onto all the buffers associated to the clique
the symbol a belongs to). The BufferRead consumes an a
from all the buffers having a on the output side.

Example 2 (BM transition modes): Given M1 =
〈A1, τ,B, TI〉 where A1 is as follows.

q0q3 q1 q2
b

a

a

c
a

d a

Also, TI = |bdca〉, B = {bΣ1
, bΣ2
} and bΣ1

= b{a,b,c} =
〉abb〉, bΣ2

= b{b,d,e} =〉dbbed〉. In this configuration:

• A BufferRead cannot be performed from any of the
buffers since @bΣi ∈ B : Dequeue(bΣi) = {a′} ∧ q′ =
δ(q0, a

′) for some q′.
• A Read is performed and the current symbol a is

consumed from TI .
• Thus, a BufferWrite is performed: the symbol a is

enqueued to all the buffers bΣi such that a ∈ Σi. In
this case bΣ1 becomes b′Σ1

= a〉abb〉 hence: B =
{〉aabb〉, 〉dbbed〉}.

On the other hand, if buffers are such that: bΣ1
= b{a,b,c} =

〉abcc〉, bΣ2
= b{b,d,e} =〉dbed〉; then a BufferRead can

be performed on bΣ1 =〉abc〉c and the configuration of M1

259259259

changes: B = {〉abc〉, 〉dbbed〉}, and the current state of the
machine becomes q′ = q0.

Definition 9 (Extension of τ): The extension of τ to strings
is τ̂ : Q × Σ∗ × B 7→ ℘(Q × B). τ̂(q, ε,B) := 〈q,B〉,
and τ̂(q, ua,B) := ∪r∈τ̂(q,u,B′)τ(r, a,B′′), where B′,B′′

are determined according to the transition modes.
Note that |B| is determined by the (size of the clique

covering of the) dependence relation, K = |Mθ(Σ)|, since
one buffer is instantiated for each clique of the dependence
relation. Also note the following.

Proposition 1: B is a family of buffers specific to the set
Γ of alphabets, s.t.

⋃
Σi∈Γ Σi = Σ.

Proof: Mθ(Σ) is a covering of all the alphabet:
∪Σi∈Mθ(Σ) = Σ. Note that, Γ = Mθ(Σ). By definition, one
buffer bΣi exists for each Σi ∈ Mθ(Σ) = Γ. Thus, each
bΣi ∈ B is s.t. a ∈ Σi ⇔ a ∈ Σ. If ∃a′ /∈ Σ then a′ does not
belong to any of the cliques Σi ∈ Mθ(Σ) otherwise it would
belong to Σ as well, raising a contradiction. However, it could
be that Σi ∩ Σj 6= ∅ for some i, j.

Proposition 2 (Correctness): Let M be a BM, [t] ∈ T =
[L] ∈ Rat(Σ, θ) a trace, and u ∈ L. If u ∈ [t] then
τ̂(q0, u, {∅, . . . ,∅}) ∩MF 6= ∅.

Proof: Let us assume that u ∈ [t] but
τ̂(q0, u, {∅, . . . ,∅}) ∩ MF = ∅. Thus, at the end of
all the runs of the non-deterministic machine, one of the
following conditions must hold:

1) M ends up at configuration MC′
= 〈q, {∅, . . . ,∅}〉

where q 6∈ QF ;
2) M ends up at configuration MC′′

= 〈qF ,B〉 s.t. ∃bΣ′ ∈
B′′ | Empty(bΣ′) = ⊥ ∧ q ∈ QF ;

3) the reading head of TI is not pointing to the last symbol
of u.

Let us analyze the implications of each case.

1) ⇒ u is not accepted by A, i.e. u 6∈ L, but this means
that L 6= L(A).

2) ⇒ u is accepted by A since qF ∈ QF . Also, ∃≥1a
′ ∈

bΣ′ that has not dequeued from bΣ′ . If ∃>1a
′, then the

a′ also prevents other symbols to be dequeued. If ∃=1a
′,

then a′ is the only symbol on the buffer. In both of the
cases, either:

a) a′ has been enqueued in the wrong buffer, but this
contradicts the definition of the BufferWrite mode
of τ (Definition 7).

b) a′ cannot be dequeued, but this must be that, either:
i) @q′ | δ(q′, a′), but this implies that q 6∈ QF .

ii) a′ 6∈ Σ′, but this implies that Σ′ is not the
alphabet of bΣ′ , otherwise a′ would not be in
bΣ′ .

Thus, i. and ii. contradict the definition of Buffer-
Read mode of τ (Definition 7).

c) (straightforward) the Read preceding the Buffer-
Write has read a wrong symbol, that contradicts the
definition of Read and also implies that a′ 6∈ u.

Hence, 2. leads to contradictions.

3) (straightforward)⇒ the machine is not at the end of the
computation.

Note 1: An alternative way to proof Proposition 2 consists
in showing that it implements Algorithm 1, which can ben
shown to be equivalent to the algorithm presented in [4,
Section 3.2].

IV. IMPLEMENTATION DETAILS

This section describes the technical aspects of Quick Earley-
Like Membership Evaluator (QELME), the tool we released to
experiment with one of the possible deterministic algorithms
that implement the non-deterministic BM.

A. Implementing the Buffer Machine Through a Deterministic
Algorithm

Before going into the details of the QELME architecture,
a description of the deterministic algorithm used is given.
Algorithm 1 requires the clique covering C = Mθ(Σ) of the
dependence relation, the automaton A that defines the (string)
language and the string u to be tested. The procedure needs
some variables to perform intermediate computations, namely:
• E is a set that contains structured elements e in the

same form described in Section V and used in [4].
We recall that e.cursors is a tuple of m elements,
thus e.cursorsj ∈ {0, . . . , |πΣj (u)|} indicates the j-th
element (i.e., cursor), where |πΣj (u)| is the length of the
projection of the string u on the j-th clique.

• Π is the set of projection on cliques, used to emulate the
buffers (see Definition 1 and 7).

• M is a matrix of size |C| × |Q| initialized to ⊥. As
in [4, Section 3.2], it is used to keep track of the
elements actually existing in E, in order to perform the
union in constant time. As a shorthand, we will use
the function M : E 7→ {>,⊥} defined as M(e) =
M(e.state, e.cursors).

• R is a vector of cursors, one per clique. Each element
of the vector is Rj ∈ {0, ..., |πΣj (u)|} and points to the
last symbol read from the j-th projection. Along with
each element in E, the vector R is used to represent a
buffer. More precisely, each buffer bj ∈ B of the BM is
emulated by (1) one projection πΣj (u), (2) one pointer Rj
to the head of the buffer (i.e., beginning of the projection)
and (3) one pointer e.cursorj to its tail (i.e., end of the
projection).

The buffer functions (see Definition 2 and 5) are emulated
as shown in Table I

BUFFER FUNCTION IMPLEMENTED EMULATION

Enqueue(bΣj , a) Enqueue(πΣj (u), a) ∧Rj ← Rj + 1
Dequeue(bΣj) e.cursorsj ← e.cursorsj + 1, ∀e ∈ E
Empty(bΣj) ∀e ∈ E ⇒ e.cursorsj = Rj

Table I: Emulation of buffer functions.

260260260

Input
A← 〈Q,Σ, δ, q0,QF 〉 /* The automaton */
C ← Σ1, . . . ,Σm /* Clique covering */
u← u1 · · ·un /* The string */

Variables
decision← ⊥
E ← {} /* The working list */
Π(u)← {πΣ1

(u), . . . , πΣm(u)} = {ε, . . . , ε} /* The projections */
M : C ×Q 7→ {>,⊥} /* Initialized to ⊥ */
R← 〈0, . . . , 0︸ ︷︷ ︸

m

〉 /* Right cursors */

while i ≤ 2n ∧ ¬decision do
E′ ← {}
if i ≤ n then

forall Σ′ ∈ I(ui) do
Enqueue(πΣ′(u), ui) /* Perform a BufferWrite */

end
end
forall e ∈ E do

if ∃j | e.cursorsj = Rj then E′ ← E′ ∪ e
for j ← 0; j < m; j ← j + 1 do /* For all the cursors */

if e.cursorsj < Rj then
us ← (πΣj (u))e.cursorsj /* Perform a BufferRead */
if ∃δ(e.state, us) then /* Check readability */

if ∀Σk ∈ I(us)⇒ (πΣk(u))e.cursorsk = us then
Update(us, e, E

′, C,R,M,A)
end

end
end

end
end
i← i+ 1 /* Move the virtual cursor one step ahead */
E ← E′ /* Update the next working list */

end

Algorithm 1: Deterministic algorithm implementing the BM.

Furthermore, Algorithm 1 relies on the shorthand procedure
Update(·) (Algorithm 2), which is performed only if the
current character us is on the tail of all the buffers whose
alphabet contains us. The tail of the buffer, according to the
current element e, is the symbol at position e.cursorsk of the
k-th clique, that is the symbol (π(u)Σk)e.cursorsk .

The main cycle is executed 2n times in the worst case
(O(n)). If the string is accepted before 2n iterations (but
after i iterations, at least), then the cycle exits with a positive
decision. Note that the condition i < 2n is required since,
in the worst case, the string u is fully permuted w.r.t. all
the commutations allowed by θ and thus all the symbols
must be buffered before being read. This is equivalent to a
double scan of the whole string. Due to this, the buffering
(i.e., BufferWrite) phase is executed only if there are symbols
to be read, i < n. For this reason, we will call i a “virtual

cursor”: it emulates the real cursor on the input tape TI if
0 ≤ i ≤ n, while if n < i ≤ 2n it is used to count the
iterations of the outmost cycle. The forall cycle iterates over
the existing element into the current working list E. For all
the left cursors hold by the current element e, if there are
symbols to read in the buffer (i.e., if e.cursorsj < Rj), then
the symbol on the top of the buffer (i.e., projection) is read
and Update is invoked.

B. Prototype implementation
The abstract BM has been implemented into a highly con-

figurable, parametric, and scalable testbed application, written
in the Python language. The open-source code is available for
download at http://qelme.googlecode.com. The application can
be decomposed into the following components.

Sigma: This module implements Σ. The internal represen-
tation is a Python List. Methods to generate random strings

261261261

Input
us /* Current symbol */
e′ /* Current element */
E′ /* The working list */
C /* Clique covering */
R /* Right cursors */
M /* Marking of E′ */
A← 〈Q,Σ, δ, q0,QF 〉 /* The automaton */

procedure Update(us, e
′, E′, C,R,M,A) begin

e′ ← e /* Temporary copy */
e′.state← δ(e′.state, us) /* Assign the new state to the element */
forall Σk ∈ I(us) do /* For all the cliques */

e.cursorsk ← e.cursorsk + 1 /* Update the left cursor */
end
if M(e′) = ⊥ ∧ ∃j | e′.cursorsj = Rj then /* If not existing */

E′ ← E′ ∪ {e′} /* Add it to the next working list */
M(e′)← > /* Mark it as existing */
decision← e′.state = q ∧ q ∈ QF ∧ ∀j ⇒ e′.cursorsj = Rj

end
end

Algorithm 2: The procedure Update used by Algorithm 1.

of given length and random coverings of the alphabet are
provided. The generation of the coverings can be controlled
through the following parameter.

Definition 10 (Clique covering density): Let M(Σ) be a
clique covering of the alphabet Σ. The density of M(Σ) =
{Σ1, . . . ,Σm} is

d(M(Σ)) =
|M(Σ)|
|Σ|

.

The density not only captures the size of the covering, but
also the degree of overlapping among cliques, which is an
important measure for evaluation. For instance, if a covering of
size m contains a symbol a that belongs to all the m cliques,
each operation (e.g., BufferWrite, BufferRead) regarding a
must be iterated O(m). On the other hand if the degree of
overlapping is zero, then each operation regarding a must be
iterated O(1) times. d is such that:

d =

{
1 M(Σ) = {{a} | a ∈ Σ}
1
|Σ| M(Σ) = {Σ′ | Σ′ = Σ}

Covering: This module implements M(Σ) and requires
Sigma. It has been implemented with an indexed mapping
exploiting Python hash tables (i.e., the Dict data type). This
allows to access in O(1) time any cliques that contain the
symbol a. Instead of representing a clique covering with a
direct hash table only, such as {0: [a, b, c], 1: [c,
d], ...}, we also store an index {a: [0], b: [0],
c: [0,1], d:[1]}. The first of the two data structures is
accessed less often w.r.t. the latter. A debugging method is
also provided to generate a visual representation of the clique
covering using the Graphviz library.

FSM: This module implements A. It holds an instance
of Sigma to represents the alphabet, while (final) states
are stored as a List of strings, i.e., q0, q1, etc. The
transition function is a Dict that implements the Q×Σ 7→ Q
mapping. The Cartesian product is a Python Tuple; for
instance, {(q0, a): q3, (q3, a): q0, ...}. The
module also provides shorthand methods to test the readability
of a character and the membership of a string.

The most important methods are those used to generate
random testing data: strings, traces, automaton (of local type).
• The method rndString(avglen:int) generates an accepted

string which length is approximately avglen. The ran-
domization is obtained by assigning all the transitions the
same probability to be trigger (uniform distribution over
all the possible δ(q, a), for each q). At each state, one of
the transitions is chosen at random and the corresponding
symbol a is appended to the string being constructed.
Since the string must be accepted, then it is not known
in advance whether the last symbol is appended to the
final string exactly at the given length; thus, when the
target length is reached, the string is returned at the next
transition to a final state.

• The output of rndString is used by rnd-
Trace(c:Covering, swaps:int) to generate a random
trace. Given a random accepted string and a clique
covering of the dependence relation, the method
performs swaps permutations on randomly chosen
digrams. The swap parameter allows to control a
measure of “distance” between the random trace and the
original string.

• Last but not least, rndLocal(alph:Sigma, bSize:int) is

262262262

used to generate random automata of local type given
the alphabet — which determines the number of states
(|Q| = |Σ| + 1) — and the parameter bSize. For each
state the bSize parameter indicates the average number
of arcs pointing to preceding states. If bSize = 0 then the
automaton is a chain, recognizing the string a1a2 · · · a|Σ|
where all ai ∈ Σ and δ : ∃δ(ai, ai+1) = ai+1,∀ai ∈ Σ.
In general, ∀ai ∈ Q ⇒ ∃=bSizeaj : j ≤ i, δ(ai, aj) =
aj . Obviously, the bSize parameter influences the length
of the strings generated by traversing the automaton at
random.

Element: This module implements elements of E. It stores
the current state as a string (e.g., q0, q1) and the left cursors
as a List of integers. Given an instance of this class, the
method inc(a:Char, c:Covering) increments of one unit all
the left cursors the symbol a belongs to. Given another List
of cursors R (i.e., the right cursors) the methods existsEquals
and equals implements ∃j | e.cursorsj = Rj and ∀j ∈
e.cursors | e−1

j = Rj , where left implements e.cursors.
Decisor: This module implements Algorithm 1 in two

fashions: with and without code profiling. Code profiling
records detailed information regarding the amount of time
consumed by each single function point, to the granularity
of one line of code. Also, the module provides the method
onAllHeads(a:Char) which implements the innermost if, with
us = a.

V. RELATED WORK

The contributions in this area are limited to a few, key
approaches [4], [7], [8], [9]. Also, properties of traces focuseed
on the MP are presented in [10], [3].

In [9] trace prefixes are exploited to solve the MP for
trace languages in Rat(Σ). First, the algorithm inductively
computes the prefixes Pref(t) = {ti} as ∀t′ ∈ Pref l(t) ⇒
∃t′′ ∈ Pref l−1(t) | t′ = t′′ · [a], a ∈ Σ. The MP is reduced
to checking whether the state ∃q ∈ Q | q ∈ QF ∩ Qt. The
set Qt=[u] ⊆ Q is efficiently computed while constructing
the prefixes: let Qtj be the set of states reachable by reading
the trace prefixes Pref |t|−1(t) = {t1, . . . , ti} = {tj | t =
tj · [aj], aj ∈ Σ, j = 1, . . . , i}. Thus, Qt = ∪ij=1{q ∈ Q |
q ∈ δ(t′, aj), t

′ ∈ Qtj}. Prefixes are efficiently computed
and stored as graph nodes V = Pref(t); an edge exists for
each pair of nodes t′, t′′ s.t. t′ = t′′ · [a]. The time and
space complexity are proven to be in O(|t|α) and O(|t|α−1),
respectively, with α = maxΣ′∈Mθ(Σ) |Σ′|.

On the same direction, [8] assumes L ∈ CF (Σ) and pro-
poses an algorithm having performances comparable w.r.t. the
aforementioned approach. The worst case time complexity is
still polynomial: O(|t|3α). However, as underlined in [4] such
a time complexity is unacceptable for practical purposes since
the independence relation of common programs consisting of
hundredths of instructions (|t| ∝ 102) may turn the complexity
in an exponential function.

A recent work in [7], [4] focuses on both rational and local
trace languages. An alternative prefix calculation technique is
presented. An algorithm that solves the MP in O(|t|σ) time is

given. More precisely, our work is based on [4], which focuses
on local languages. An algorithm based on the scheme of the
Earley parser [11] is given to solve the MP. It assumes that
T = [L] ∈ Rat(Σ) and requires a linear scan of the input to
calculate the set of projections R(t) on maximal cliques. Based
on R(t), an array of |t|+1 = n+1 elements, E[0], E[1], . . . ,
E[n + 1] is constructed following a procedure driven by the
automaton A : L = L(A). One symbol at a time is consumed
on each projection according to the current state of A. For
instance, t is represented by R(t) = {πΣ1

(t) = abb, πΣ2
(t) =

bdd, πΣ3
(t) = cec} and both a and c can be read on the

current state of A, then the procedure moves on both the first
and the third projections. Formally, a cell E[i] is created at
step i. E[i], i = 1, . . . ,m, where m = |Mθ(Σ)| holds the
data required by step i+ 1. An element ej ∈ E[i], stores (1)
ej .state ∈ Q the current state on A, and (2) ej .cursors ∈
{0, 1, . . . , σ}m, the length of the prefix that has been read
untill step j on each of the m projections. For instance, if
ej ∈ E[2], ej .cursors = 〈1, 0, 1〉 and ej .state = q3 (shorten
ej = q3〈1, 0, 1〉), at step 2 there exist a path on the automaton
—reaching state q3— s.t. one symbol is consumed on the first
and the third projection and no symbols are read on the second
one. The algorithm requires O(|t|σ) time in the worst case.
Note that, this approach exploits θ while [9], [8] utilizes I.

VI. CONCLUSIONS

We defined the BM (Buffer Machine), a non-deterministic
machine to solve the MP for rational trace languages. A testbed
implementation we released have been used to set up exper-
iments on arbitrarily long inputs and complex commutative
alphabets. As expected from theory the BM can solve the MP
in polynomial time. In addition, we found that the size σ of
the largest clique of the dependence relation influences the
computation time only if the alphabet size is fixed. Otherwise,
time is independent from σ.

A deeper analysis of both time and space complexity is
planned as future work, also in order to refine our results and to
proof the existence of upper and lower bounds. Furtherermore,
parallelism among BM’s transition modes will be taken into
account. In particular, we believe that some enqueue and
dequeue operations can be executed concurrently without
affecting the soundness of the machine. This improvement
requires static analysis of the automaton and dependence
relation.

REFERENCES

[1] Mazurkiewicz, A.: Concurrent program schemes and their interpreta-
tions. DAIMI Rep. PB 78 (1977)

[2] Cartier, P., Foata, D.: Problèmes combinatoires de commutation et
réarrangements. (1969)

[3] Diekert, V., Rozenberg, G.: The Book of Traces. World Scientific (1995)
[4] Savelli, A.: Two contributions to automata theory on parallelization and

data compression. PhD thesis, Politecnico di Milano and Université de
Marne-la-Vallée (2007)

[5] Szijarto, M.: A classification and closure properties of languages for
describing concurrent system behaviours. Fundam. Inform. 4(3) (1981)
531–550

[6] Bacon, D.F., Graham, S.L., Sharp, O.J.: Compiler transformations for
high-performance computing. ACM Comput. Surv. 26(4) (1994) 345–
420

263263263

[7] Breveglieri, L., Crespi Reghizzi, S., Savelli, A.: Efficient Word Recog-
nition of Certain Locally Defined Trace Languages. In: Proceedings of
the 5th International Conference on WORDS, Montréal (QC) Canada,
Université du Québec a Montréal (September 2005)

[8] Avellone, A., Goldwurm, M.: Analysis of algorithms for the recognition
of rational and context-free trace languages. RAIRO Informatique
théorique et Applications 32 (1998) 141–152

[9] Bertoni, A., Mauri, G., Sabadini, N.: Membership problems for regular
and context-free trace languages. Information and Computation 82(2)
(1989) 135–150

[10] Rytter, W.: Some properties of trace languages. Fundamenta Informat-
icae 7 (1984) 117–127

[11] Earley, J.: An efficient context-free parsing algorithm. Commun. ACM
13(2) (1970) 94–102

264264264

