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Abstract

Probabilistic record linkage regards the use of stochastic decision models to solve
the problem of record linkage (also known as record matching). Data quality has
became a key aspect in many institutions and the demand for novel, effective tech-
niques is increasing. Record linkage in general has been studied in the last three
decades and a solid probabilistic decision framework has been proposed along with
several extensions and specific estimation methods. This paper is a survey work
narrowed to the most recent and promising approaches also including a selection of
data cleansing tools based on probabilistic decision models.

1 Introduction

Heterogeneous and distributed data sources are often populated, manipulated and de-
ployed by several different agents or companies all over the world. It is indeed vital to
have effective methods for dealing with errors. The assessment of data quality is indeed
becoming a key process, also for modern enterprises and small Web service providers,
and not only for the management of large legacy databases of census or health agencies.
In such a scenario, the research community and the industry need for novel contributions
in terms of fast, optimized, and accurate data analysis and cleansing techniques.

Missing fields, records or integrity constraints, inconsistencies between tables, dupli-
cated data are examples of “symptoms” indicating poor or insufficient data quality.
Generally speaking, poor data quality is related to heterogeneity in the data. Hetero-
geneity can be either structural or semantic; structural heterogeneity occurs when the
data is inconsistent within the scope of the information systems under consideration,
which in practice means that different sources may store the (same) data using different
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representations (e.g., different fields, different types, slightly different field values, ty-
pography errors, etc.). Semantic heterogeneity occurs when the same, similar structure
is used to represent entities that are intrinsically different to each others. The latter is
subject of this paper; more precisely, we focus on one specific issue that can arise when
semantic inconsistencies occur: data duplication.

Duplicated records are obviously unwanted; in order to remove them the core problem
is how to detect similar records. Such a problem has been called record linkage [Fellegi
and Sunter, 1969], or record matching, and it is the task of accurately label records pairs
corresponding to the same entity from different sources. In other words, the goal of
a record linkage algorithm is to identify records that do not match completely. This
paper provides an expository analysis on the use of probabilistic decision models for
record linkage. In particular, we provide an overview of the basic theory of probabilistic
linkage [Fellegi and Sunter, 1969]. Such a theory is abstract and rigorous thus it has been
the main reference for the development of several proposals. Our goal is to survey and
compare both the classical methods and the more innovative techniques in the literature
of the last three decades.

The remainder of this paper is structured as follows. Narrowing the focus on prob-
abilistic methods, in Section 2 the problem of record linkage is stated and the basic
definitions are given as well as the notation that will be used; this section also contains
the main taxonomic dimensions utilized to classify record linkage algorithms. Section 3
introduces how the Bayesian decision model has been applied to the problem of record
linkage, including a detailed comparison of the most relevant variants proposed so far
in the literature. A descriptive list of the available data cleansing and record matching
tools is provided in 4 with particular attention to two of the most recent open source
applications.

2 Record Linkage and Probabilistic Matching: Notation and
Basic Definitions

The most rigorous mathematical framework to formalize the record linkage problem
has been proposed by [Fellegi and Sunter, 1969] as an extension of the early work of
[Newcombe and Kennedy, 1962]. In this paper, we draw the notation and the concepts
defined in the theory of Fellegi and Sunter (FS) to present the reviews of the selected
approaches.

Record linkage algorithms work on two sets (or files) of records denoted as A and
B; we will use lowercase letters to indicate records belonging to each set, a ∈ A and
b ∈ B. The available information regarding one record is denoted with α(a) and β(b),
respectively.

The comparison set A×B is partitioned into the two subsets

M = {(a, b) ∈ A×B | a = b}

of matching pairs and
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Figure 1: Partitioning of the decision space.

U = {(a, b) ∈ A×B | a 6= b}

of unmatching pairs. Note that M ∪ U = A×B and M ∩ U = ∅.
The two data-sets are compared by means of a comparison vector γ which is a vector

function of the records pairs (a, b) ∈ A×B (or, more precisely, (α(a), β(b))). The space
of all possible values of γ is Γ:

γj = [γ1, γ2, . . . , γi, . . . , γK ]T

with γi ∈ {0, 1}. In particular, γij = 0 if field i of the agrees (i.e., matches w.r.t. the
criterion specified by γ) for pair j, that is (α(a), β(b)).

From a probabilistic point of view, γ is an event thus a conditional probability can be
attached to the vector:

m(γ) = P (γ | (a, b) ∈M) = P (γ |M)

u(γ) = P (γ | (a, b) ∈ U) = P (γ | U)

that are, respectively, the probability of observing γ given a “match” and the proba-
bility of observing γ given a “non match”.

A record linkage algorithm labels record pairs as A1, if they match, A3, if they do
not match, and A2 if they possibly match. Hence, a linkage rule is a decision function
d(γ) : Γ 7→ D which assigns probabilities to each of the there decisions:

d(γ) = {P (A1 | γ), P (A3 | γ), P (A2 | γ)}

and it is such that P (A1 | γ) + P (A3 | γ) + P (A2 | γ) = 1. D denotes the set of all
possible decisions.

As for every classification algorithm, there are two kind of errors: type I errors, and
type II errors. The first refers to a false match, denoted by

µ = P (A1|U) =
∑
γ∈Γ

u(γ)P (A1|γ)

while the second refers to a false non-match and it is denoted by
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λ = P (A3|M) =
∑
γ∈Γ

m(γ)P (A3|γ).

Without going into the details, given µ and λ, the theory of FS proves that there
exist an optimal linkage rule (i.e., an optimal decision function d(γ)). Such a rule
minimizes the amount of records requiring manual review, that is the probability of
labeling a record with A2. The decision function relies onto two thresholds Tµ, Tλ which
partition the decision space into the three areas A1, A2, A3. Given the likelihood ratio
l(γ) = m(γ)

u(γ) , if µ =
∑n

i=1 u(γi) and λ =
∑|Γ|

i=n′m(γi), with n < n′, the optimal thresholds
are Tµ = l(γn) and Tλ = l(γn′). Figure 1 gives a graphical view of of how the decision
space is partitioned.

To make the algorithm feasible in practice, Fellegi and Sunter state that if the com-
ponents of γ are assumed to be mutually statistically independent w.r.t. each of the
conditional distributions, the likelihood function can be rewritten as logarithms as:

wk(γk) = logm(γk)− log u(γk)

to obtain a suitable test statistic

w(γ) = w1 + w2 + · · ·+ wK

and w1 +w2 + · · ·+wK are called weights. The different linkage techniques differs in
the specific algorithm used to compute weights, for instance the one described in Section
3.1.4.

Finally, it must be noticed that for agreement configurations m(γk) tends to one and
u(γk) tends to zero; on the other hand, for disagreement configurations m(γk) is close
to zero while u(γk) is close to one.

2.1 Classical Hypothesis Test

For the sake of clarity, the above defined decision framework can be reformulated using
the theory classical hypothesis test. In particular, if α is the test significance and G is
the rejection region, one can write:

H0 : (a, b) ∈ U vs. H1 : (a, b) ∈M α = µ,G = A1

or, symmetrically:

H0 : (a, b) ∈M vs. H1 : (a, b) ∈ U α = λ,G = A2

In this formalization, the linkage rule is indeed a likelihood ratio test (Neyman-
Pearson) which is the uniformly most powerful test that can be designed for a couple of
hypotheses.

At this point it is even more clear that fixing the values of µ and λ (i.e., the significance)
is equivalent to bound the admissible error in the decision process.
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Searching methods Comparison functions Decision models

Sorted Neighborhood Hamming distance Probabilistic
Blocking Edit distance – EM based
– Sorting Jaro’s algorithm – Error based
– Hashing N-grams – Cost based

Induction
Clustering
Hybrid

Table 1: Taxonomic dimensions to classify record linkage algorithms.

2.2 Classifying Record Linkage Techniques

Even though there are different approaches to the record linkage problem, a standard
layout for a generic algorithm can be detailed:

probability estimation — the probabilities m(γ) and u(γ) are estimated,

weight computation — the estimations computed at the previous step are used to cal-
culate the weight associated to the comparison vector γ,

weight aggregation — a composite score is computed using an aggregation function
which takes all the weights in input,

decision — each record pair is classified into either M or U , according to the value of
the composite score and the threshold levels chosen.

This basic layout underlines the essential components that are relevant to compare
and classify different probabilistic record linkage methods; this is by no means complete
nor exhaustive. Even though it would be out from the scope of this paper, Table [Elfeky
et al., 2002] reports a wider range of taxonomic dimensions.

In Section 3 we will refer to the aforementioned dimensions to present the selected
approaches; more precisely we will investigates two different Bayesian decision models,
error based and cost based, two different weight estimation algorithms, Jaro and Winkler,
and a brief reviews of other models that are not derived from the FS theory.

3 Existing Models and Techniques

In this section we present review of the selected approaches based on the probabilistic
framework introduced. Firstly, we distinguish between the two main Bayesian decision
models, error based and cost based; then we investigate two different approaches to
calculate the FS weights (see Section 2). Moreover, other methods along a slightly
different direction are reviewed as well.
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3.1 Bayesian Decision Models

Both the FS theory and [Newcombe and Kennedy, 1962] are based on the Bayes theorem
to calculate suitable probabilities used to decide whether or not two records refer to the
same entity according to user-set thresholds. The hypothesis under which the following
decision models can be applied is that the conditional Probability Density Function
(PDF) and the a priori matching probabilities must be known.

3.1.1 Error Based

This model is error based since it calculates the decision thresholds Tµ and Tλ by min-
imizing the error of incorrectly classify a record in either M or U . The record pairs in
A×B are sorted according to their composite weights and indexed according to such or-
der. Instead of referring to the record pairs, one can refer to the elements of comparison
vector γ ∈ Γ without losing generality.

The method ensures that the level of user-defined errors (µ, λ) are admissible. Given
the above defined ordering, two indexes are chosen n and n′ such that the action taken
among A1, A3 ensures the minimum error; if no better decision is achievable then A2 is
chosen. This intuition is formalized in the following condition for choosing n and n′:

|Γ|∑
i=n′

mi ≥ λ >
|Γ|∑

i=n+1

mi

n−1∑
i=1

ui < µ ≤
n∑
i=1

ui

Under the assumption of mutual statistical independency of the components of γ w.r.t.
each of the conditional distributions, the above conditions defines the decision function
for each γi:

d(γi) =


(1, 0, 0) 1 ≤ i ≤ n
(0, 1, 0) n < i < n′

(0, 0, 1) n′ ≤ i ≤ |Γ|

In practice, when the data sets do not represent real random samples of the whole
population, m(γ) and u(γ) (and thus, weights) can be calculated by two different meth-
ods proposed in [Fellegi and Sunter, 1969]. Furthermore, the authors also recall that
such probability values can be used on subsequent linkage processes working on sub-
populations A′ ⊆ A, B′ ⊆ B if the underlying process which generates the records is the
same (i.e., if the data sets are drawn from the same source of information).

Using prior information This method assumes that a priori information is available. In
other words, it assumes that the probability distributions of both (i) the errors contained
in the original records and (ii) the comparison characteristics are known for A and B.
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Indeed, the method estimates the respective error-free frequencies of each record field in
A and B, denoted as f(·).

For instance, if the field under consideration is “address”, it is required to count
all the records in which such field is reported correctly. Using the respective counts
NA, NB, NA∩B, the frequencies of each distinct address are estimated fA1 , fA2 , . . . , fAm ,
fB1 , fB2 , . . . , fm, f(A∩B)1 , f(A∩B)2 , . . . , f(A∩B)m

. Each Ak correspond to a record in A
where the field “address” is identified by “1”, while similarly Ak correspond to a record
where the field “address” is identified by “1”. The same holds for each (A∩B)k but the
counts span to the intersection of the two record sets.

Given the above frequencies and total counts, the authors provide examples on how
to estimate the probabilities m(·) and u(·); however, the following a priori probabilities
of error are required:

• εA, εB probability of misreporting an address into either the two files, A or B;

• εA− , εB− probability of not reporting an address into either the two files, A or B;

• εAB probability of reporting the address in the wrong set, regardless of the cor-
rectness of the value itself.

This point is critical in our opinion. [Fellegi and Sunter, 1969] assume that all the
addresses (i.e., different values for a field) have the same probability of being reported
erroneously. However, it is not uncommon that complicated addresses are more likely to
be mistyped/misreported; in addition, there are many factor, more or less related to the
data itself, influencing the probability of error which is all but uniform among different
values. Considering the following comparison vector:

γ = [“addresses disagree”, “addresses missing on either file”]

the actual probabilities are composed by means of the above defined error rates:

m(γ1) = [1− (1− εA)(1− εB)(1− εAB)](εA−)(1− εB−) =
= εA + εB + εAB

m(γ2) = 1− (1− εA−)(1− εB−) =
= εA− + εB−

u(γ1) =

1− (1− εA)(1− εB)(1− εAB)
∑
j

fAj

NA

fBj

NB

 (1− εA−)(1− εB−) =

u(γ2) = 1− (εA−)(1− εB−) =
= εA− + εB−

If two files are large enough and they are drawn from the same population one may

assume that
fAj

NA
=

fBj

NB
=

f(A∩B)j

NAB
. From a quantitative point of view, positive weighs
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contribute to a “match” decision while negative ones contribute to the opposite. Also,
it must be noticed that the weight of each field represents somehow the “rarity” of a
value: the rarer the value, the larger the weight. Finally, missing values tend to zero out
the weights.

To make this algorithm feasible in practice the authors point out that it is not required
to list all possible values for each field but, for the reason outlined above, the portion of
the most common one will lead to an optimal approximation.

Probability estimation This method estimatesm(γ) and u(γ) from the available records
and it is presented in [Fellegi and Sunter, 1969]. Not only it requires the independence
assumption but the two data sets must be large enough to make the estimates valid
and statistically significant. Beside the estimates of the probabilities, the algorithm also
outputs the number N of linked records.

The algorithm proposed by the author is direct and can be applied simply by instanti-
ating the given formulae with certain frequencies parameters which can be automatically
calculated from data. The assumption is that m and u must be such that:

m(γ) = m1(γ1) ·m2(γ2) · · ·mk(γK); K ≥ 3
u(γ) = u1(γ1) · u2(γ2) · · ·uk(γK); K ≥ 3

which means that γ must have at least three components and they have to be inde-
pendent to each other. The frequencies of each different configuration of γ is calculated
by direct comparison of A against B; the only frequencies of interest are those of “agree-
ments” configurations, denoted with Γ+

h ∈ Γ for the hth component. More precisely:

• F̂Mh−
= frequency of agreements in all components except the hth and any con-

figuration in the hth component. The associated probability is denoted as mh =∑
γ∈Γ+

h
m(γ).

• F̂Uh
= frequency of agreements in the hth component and any configuration in all

but the hth. The associated probability is denoted as uh =
∑

γ∈Γ+
h
u(γ).

• F̂M = frequency of agreements in all components;

The authors have proven that given the frequencies expressed in terms of m and u

F̂Mh−
=

N

NANB

3∏
j=1,j 6=h

mj +
NANB −N
NANB

3∏
j=1,j 6=h

uj h = 1, 2, 3

F̂Uh
=

N

NANB
mh +

NANB −N
NANB

uh h = 1, 2, 3

F̂M =
N

NANB

3∏
j=1

mj +
NANB −N
NANB

3∏
j=1

uj
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Error based

Prior Information (PI) Probability Estimation (PE)

Hypotheses Known PDF |γ| ≥ 3 (independent)
Input error probabilities frequency of values

Output m(·), u(·), N m(·), u(·)

Table 2: Brief comparison of differences, similarities and peculiarities of the two methods
for weights calculation in error based record linkage techniques. Note: N here
indicates the number of matching records.

and solving such equations in mh, uh and N , the estimates of m(γk) and u(γk) can
be computed after the direct observation of F̂Mh−

, F̂U1 , F̂U2 and F̂U3 for the specific
configurations γki , γ1

i , γ2
i and γ3

i , respectively. As the authors stress, this method requires
the sample to be large and representative of the whole population.

Comparison In this paragraph we compare the two techniques that have been reported
in Section 3.1.1 and Section 3.1.1, summarized in Table 2.

3.1.2 Cost Based

The cost based model can be seen as a generalization of the classical purely Bayesian
decision model we mentioned in the previous section. Instead of relating a link between
records only with a probability, this models attaches a cost function to each decision
(i.e., match vs. non-match). Thus, instead of minimizing the error, this method give
hints in designing decision rules based on the minimization of a cost.

Generally speaking, the “cost” models the fact that a misclassification has different
impacts on the organization data, depending on many factors influencing the whole data
flow.

Linear loss method [Tepping, 1968] proposed a method based on a linear loss func-
tion, g(Ai, (a, b)), defined for each action Ai on the pair (a, b). Given the conditional
probability P (M |γ) = P ((a, b) ∈ M |γ[α(a), β(b)]), defined as above, the authors de-
fine the expected loss G as a function of the action and the conditional probabil-
ity: G(Ai, P (M |γ)) = E[g(Ai, (a, b))]. Hence, the total expected loss is

∑
P (γ) ·

G(Ai, P (M |γ)), which is minimized in order to obtain the optimal linkage rule.
The authors have shown that under the assumption of linearity of G, the interval

(0, 1) for the probability of a match is partitioned into a fixed number of possible actions
(e.g., 4, A1, A2, A3, A4 but it could be any number). The so called action interval is the
interval in which the loss function G is minimal w.r.t. the same function evaluated in
all other action:

G(P ) = min
Ai

G(Ai, P (M |γ))

9



so, in the case of three actions, the decision rule is similar to d(·) presented in Section
3.1.1. Here is an example taken from [Tepping, 1968] (Fig. 1):

Take action A4 if 0 ≤ P (M |γ) ≤ P1

Take action A2 if P1 < P (M |γ) ≤ P2

Take action A4 if P2 < P (M |γ) ≤ 1

Even if the authors do not show the modifications, this method can be adapted without
the hypothesis of linearity of the loss function; however, the above intervals would not
be intervals in general.

Cost matrix method The approach presented in [Verykios et al., 2003] can be inter-
preted as a generalization of the early effort proposed by [Tepping, 1968]. Misclassifica-
tion costs are stored into a so called cost matrix C; a single element of C is ci,j where
i ∈ {1, 2, 3} (i.e., actions A1, A2, A3, respectively) is the predicted class while j ∈ {0, 1}
(i.e., classes M,U , respectively) is the actual class the sample belongs to. Even though
it can be done automatically, populating the cost matrix is application specific and often
requires domain experts.

In this model, each cost value is twofold. The first component of the cost has to
do with the decision process itself (e.g., what is the cost of collecting the information
required to undertake a certain decision?); the second part is related to the cost of the
consequences of a decision. Under the hypothesis of knowing the PDF fj for each jth
component of the comparison vector, this method minimizes the average cost c̄ for a
given action. If the cost matrix is:

C =

cA1M cA1U

cA2M cA2U

cA3M cA3U


the average total cost results in:

c̄ = cA1MP (A1|M) + cA1UP (A1|U) +
+ cA2MP (A2|M) + cA2UP (A2|U) +
+ cA3MP (A3|M) + cA3UP (A3|U).

Knowing that πM = P (M) and πU = P (U) are the a priori probabilities of matching,
then:

c̄ = cA1MP (A1|M)πM + cA1UP (A1|U)πU +
+ cA2MP (A2|M)πM + cA2UP (A2|U)πU +
+ cA3MP (A3|M)πM + cA3UP (A3|U)πU .
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Cost based

Linear Loss Function (LLF) Cost Matrix (CM)

Hypotheses Loss as a linear function Known PDF
Input Conditional probabilities Per-action cost

Output Decision intervals Decision thresholds

Table 3: Brief comparison of differences, similarities and peculiarities of the two methods
for cost based record linkage techniques. Note: N here indicates the number of
matching records.

Skipping the details reported in [Tepping, 1968], it can be proved that three thresholds
exist in the decision space. In particular, referring to λ, µ defined by the FS theory the
thresholds are:

λ = πU
πM
· cA2M−cA1M

cA1U−cA2U
κ = πU

πM
· cA3M−cA1M

cA1U−cA3U
µ = πU

πM
· cA3M−cA2M

cA2U−cA3U
.

According to the actual values of such thresholds, the decision space depicted in Figure
1 is divided into two or three areas. In particular, the authors show that the sufficient
and necessary condition for A2 to exist is that λ ≤ µ. Furthermore, if it holds, they
have shown that λ ≤ κ ≤ µ. Otherwise (i.e., λ > µ) λ > κ > µ but κ is such that
A2 disappears and there are only two decision areas. This happens because A2 have a
higher cost w.r.t. A1 and A3 because it results in manual classification.

However, the method is proven by the authors to be optimal w.r.t. the cost, in the
sense that it minimizes a cost function; but on the other hand, no proof is given of its
optimality in general. In other words, no clues are given to prefer this method over the
others available.

Comparison In this paragraph we compare the two techniques that have been reported
in Section 3.1.2 and Section 3.1.2, summarized in Table 3.

The method by [Tepping, 1968] requires slightly stronger assumption w.r.t. to the
one recently proposed in [Verykios et al., 2003]. However, the idea of using cost as a
criterion was originally due to [Tepping, 1968], in which the theoretical framework has
been defined and detailed. The rigorous theory proposed in [Fellegi and Sunter, 1969]
was significant in the construction of the more complete and directly applicable approach
by [Verykios et al., 2003].

3.1.3 Comparing Error Based and Cost Based Decision Models

It is interesting to compare the two decision models at a generic level. In particular,
it could be proven that the former is a special case of the latter. First of all, it must
be remarked that they are both likelihood ratio tests with thresholds computed on the
basis of the available information, that is the a priori probabilities.
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Error based Cost based

PI PE LLF CM

Hypotheses Known PDF |γ| ≥ 3 (inde-
pendent)

Loss as a linear
function

Known PDF

Input error probabili-
ties

frequency of
values

Conditional
probabilities

Per-action cost

Output m(·), u(·), N m(·), u(·) Decision inter-
vals

Decision
thresholds

Table 4: Comparison of differences, similarities and peculiarities of error based vs. cost
based record linking methods.

As we pointed out in Section 2, in the case of error minimization the likelihood test
can be computation of thresholds relies on the following ratio:

l(γ) =
m(γ)
u(γ)

Tµ = l(γn), Tλ = l(γn′)

while on the other hand, the cost minimization criterion can be reduced to the esti-
mation of

lc(γ) =
(c21 − c11) ·mc(γ)
(c12 − c22) · uc(γ)

T cµ = lc(γn), T cλ = lc(γn′)

If the cost of a misclassification is equal c12 − c22 = c21 − c11 in both the cases then
l = lc. In other words, the selection of the cost function is equivalent to changing the a
priori probabilities.

Finally, it curious to notice how the two methods have been compared together [Tep-
ping, 1968]: the authors claim that cost based methods are better than error based
methods, when no further clue is available to properly assign error probabilities. Contra-
dictorily, in the experimental results, they show and conclude that the error probability
is always lower if error based methods are used instead of cost based methods.

Table 4 summarizes the differences, the similarities and the peculiarities of the two
approaches.

3.1.4 EM Algorithm Based

In this section, a technique using the Expectation Maximization (EM) algorithm [Demp-
ster et al., 1977] is investigated. We separate the review of the method based on this
algorithm from the others because it is along a different line and it has been developed
using a generic and widely-applied estimation method. However, in Section 3.1.5, a
comprehensive comparison is presented including this technique.

The use of the EM algorithm for record linkage have been proposed by [Jaro, 1989]
and recently re-investigated in [Winkler, 1988]. It is based on likelihood estimators and
it can be potentially used in any kind of probabilistic model to find the parameters, even
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in the presence of unobservable variables or missing data. Given these premises, it is
straightforward to notice that the EM algorithms perfectly fits the probabilistic model
defined by the FS theory.

To avoid misunderstandings, we will use the v to indicate that v is a vector. The
parameters of interests are Φ = 〈m,u, p〉 where m,u denotes the probability vectors
m(·), u(·), respectively; and, p denotes the proportion of the matched records w.r.t. the
total: p = |M |

|M∪U | . The data vector is defined by γ and the function g:

gj =
{

(1, 0) (a, b)j ∈M
(0, 1) (a, b)j ∈ U

The data vector is then x = 〈γ, g〉; we recall that (a, b)j indicates the generic jth
record pair. An independence model is assumed at this step, thus:

P (γj |M) =
n∏
i=1

mi(γ
j
i )(1−mi)1−γj

i

P (γj |U) =
n∏
i=1

ui(γ
j
i )(1− ui)

1−γj
i

Given the log-likelihood of the data vector:

log f(x|Φ) =
N∑
j=1

gj · (logP (γj |M), logP (γ|U))T +

+
N∑
j=1

gj · (log p, log(1− p))T

the algorithm consists in the iteration of two steps called Expectation (E) and Max-
imization (M); the iteration begins with the initial (even casual) estimates 〈m̂, û, p̂〉
continues until the required precision is not reached. The estimation of u is less difficult
w.r.t. u since |U | > |M |, thus the ui can be estimated by ignoring the contribution of
M . Regarding m, the g function can be estimated in the (E) step as follows:

ĝm(γj) =
p̂ · P (γj |M)

p̂ · P (γj |M) + (1− p̂) · P (γj |U)

ĝu(γj) =
p̂ · P (γj |U)

p̂ · P (γj |U) + (1− p̂) · P (γj |M)

Note that gj is estimated by 〈ĝm(γj), ĝm(γj)〉. The (M) step, in the case of m̂, it is
based on:

m̂j =

∑sn

j=1 ĝm(γj)γji F̂ (γj)∑sn

j=1 ĝm(γj)F̂ (γj)
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Error based Cost based
EM Based

PI PE LLF CM

Hypotheses Known
PDF

|γ| ≥ 3 (in-
dependent)

Loss as a
linear func-
tion

Known
PDF

Independency

Input error proba-
bilities

frequency of
values

Conditional
probabili-
ties

Per-action
cost

frequency of
values and
cond. prob.

Output m(·), u(·), N m(·), u(·) Decision in-
tervals

Decision
thresholds

m̂(·), û(·), p̂

Table 5: Summary of the main methods for parameter estimation used in probabilistic
record linkage techniques.

where F̂ (γj) indicates the frequency count for the jth component of the comparison

vector γ. The estimate of p is then p̂ =
Psn

j=1 gm(γj)F̂ (γj)Psn

j=1 F̂ (γj)
.

The author underlines that the method is extremely easy to implement, stable, and
negligibly sensitive to initialization values. It is also highlighted that all the frequency
counts have to be obtained after a blocking phase, but, this detail is out from the scope
of this survey so we refer the reader to [Cochinwala et al., 2001] for a more general
overview of all the steps of a liking algorithm.

This algorithm have been used to detect duplicates in the census data of Tampa,
Florida in 1985 [Jaro, 1989] and lately on public health data [Jaro, 1995].

3.1.5 Overall comparison

Cost based methods have been already compared with error based techniques. Table 5
summarizes all the (variants of the) approaches that have been reviewed.

One may have noticed that the EM method shares slightly the same hypotheses and
the same input/output w.r.t. the PE method. However, the latter also requires the
comparison vector γ to have at least three components while the former does not have
this limitation.

3.2 Other Models and Methods

In the previous sections we investigated and reviewed the most solid and promising
methods that are also implemented into bleeding edge tools (see Section 4). For the
sake of completeness, in this section we provide list of other approaches that have been
proposed in the literature so far.

In particular, a different way to model the error in the data is to explicitly model
the errors in each attribute, as proposed in [Copas and Hilton, 1990]. The algorithm is
based on the statistical characteristics of the errors that are expected to arise; however,
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the error distribution needs large training data sets of already matched pairs in order to
be correctly estimated.

Also, in [Larsen and Rubin, 2001] a Bayesian method is proposed based on mixture
models and marginal information; the method allows to label manually reviewed data,
if available.

In [Fortini et al., 2001] another Bayesian model is proposed using two different al-
gorithms to derive the marginal posterior distribution of the configuration of matches
between the two data sets.

Along a different line, the methods reported in [Bilenko and Mooney, 2002, Pinheiro
and Sun, 1998, Tejada et al., 2001] uses a prediction approach to estimate model param-
eters. In particular, [Bilenko and Mooney, 2002] is based on support vector machines,
[Pinheiro and Sun, 1998] relies on logistic regression and [Tejada et al., 2001] utilizes de-
cision trees. As pointed out by [Winkler, 1999], such algorithms requires a non-negligible
amount of training data.

Finally, Du Bois Jr [1969] shows how the precision of a probabilistic matching al-
gorithm can be increased if two comparison vectors are used. In particular, instead
of taking into account the agreement vector only, the author propose to also build a
presence vector and to aggregate them both into a more detailed comparison indica-
tor. More precisely, two variables Xj and Yj are defined for each records pair: Xj = 1
only if the jth corresponding item on both records is present, zero otherwise. Yj = 1
only if the jth corresponding item on both records agrees, zero otherwise. Then the
composite random variable XjYj is defined: as the intuition suggests, XjYj = 1 only if
both Xj = 1 and Yj = 1, zero otherwise. Without going into the details, it possible to
estimate the model parameters if each component of the composite vector is supposed
to be binomially distributed on M and U .

4 Existing tools

In this section we provide a short taxonomic list of the available data linkage, scrubbing,
and cleansing software. Both commercial products and research prototypes are included.
This list is not meant to be complete nor exhaustive: it s rather an overview of the most
recent and promising tools focused on probabilistic algorithms. Also, we selected two
applications for which a more detailed analysis is presented, namely TAILOR [Elfeky
et al., 2002] and Febrl [Christen, 2008]. We also refer the reader to [Gu et al., 2003] for
another (tool) survey.

The formerly known as Integrity developed by Vality is now maintained by IBM into
the WebSphere project. It is now named Integrator [IBM Corporation, 2005] and includes
lexical analysis, pattern processing, statistical matching and data streaming. WebSphere
Integrator is customizable w.r.t. the business rules; it also includes a statistical algorithm
for record matching.

The Trillium software [Harte-Hanks] is a four modules tool with good features for data
analysis. The matching module is particularly precise and accurate in linking records
containing addresses, thanks to a geocoder module.
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The LinkageWiz software [Data Quality Solutions] has been developed with the specific
purpose of assessing the data quality of health records. It has been then released under
a commercial license. Beside phonetic name matching, nickname to name mapping, and
data quality indicators, LinkageWiz provides the user to tune the probabilistic matching
algorithms by specifying the matching weights directly.

The commercial database reconciliation tool developed by Telcordia.com [Caruso et al.,
2000] allows the generation of custom rules, subsequently run on the whole database to
assess the data quality and/or to identify matching records. It has been used to detect
duplicates records in the database of taxpayers.

The Generalized Record Linkage System (GRLS) [Fair, 2001] includes a full implemen-
tation of the Fellegi-Sunter theory within a graphical interface. A useful feature of this
tool is that it allows the user to tune the matching algorithm with given thresholds and
weights; also, it is also possible to plug custom rules into the matching engine. Finally,
differently from other systems, it permits to group matched records into two groups
according to the actual scoring: weak matches and strong matches.

The WizRule [WizSoft] software by WizSoft is not a record linker tool but the results
of its analysis can be further processed to identify linked records. Indeed, it is a rule
mining and discovery application which exhaustively search the records for association
rules.

4.1 Febrl: A Comprehensive, Open Source Platform for Record Linkage

Febrl [Christen, 2008], or Freely Extensible Biomedical Record Linkage, implements
the state-of-the art algorithms for record linkage (http://febrl.sf.net). Febrl offers
the researchers a fully pluggable programming interface written in Python (one of the
most easy-to-learn programming languages) encapsulated into a full fledged graphical
interface. The relevance of this tool for the scientific community is due to its extensibility
and flexibility w.r.t. new algorithms that can be quickly implemented in order to compare
their performances against the existing ones.

Not only Febrl provides an open-source testbed for new methods but it ships with
a rich collection of classic and recent record linkage algorithms; it also includes some
sample data sets and a data set generator.

Beside common functionalities like the support for multi-format input/output, sum-
mary for data exploration, and logging, Febrl includes a data cleansing and name/address
standardization module which implements a rule-based algorithm in conjunction with
an hidden Markov model engine. As for direct field comparison, the tool allows to
select among 26 alternative functions including approximate string comparators and
ad-hoc procedures for special fields (e.g., addresses, dates). The available decision algo-
rithms are the classic Fellegi & Sunter (with a supervised variant to help the user in the
threshold-setting phase), support vector machine, k-means and farthest-first clustering
methods, and an unsupervised classification algorithm.
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Febrl TAILOR

Searching Blocking Blocking
– Sorting – Sorting
– Suffix array – Hashing
– Fuzzy (Q-gram)
Sorted neighborhood Sorted neighborhood
Full index

Comparison Hamming Hamming
Edit Edit
Winkler Jaro’s
Q-grams N-grams
Soundex Soundex
Key-diff
Approximate match
ad-hoc

Decision Probabilistic Probabilistic
– EM-based – EM-based
– error-based – cost-based
– optimal threshold – error-based
Support Vector Machine Induction
Clustering Clustering
Binary classification Hybrid

Table 6: Feature comparison of Febrl vs. TAILOR.

4.2 TAILOR: A Record Linkage Toolbox

TAILOR, proposed in [Elfeky et al., 2002], is a record linkage toolbox intended to pro-
vide the users an extensible and abstract framework to both develop and test record
matching algorithms. In such sense, TAILOR is similar to Febrl but it adopts a differ-
ent approach. Febrl standardizes the programming interface while TAILOR allows to
extend its interface to adhere to the one of the existing tool that needs to be integrated.
TAILOR also includes a data synthesizing module based on DBGen, a publicly available
tool for parametric data generation.

The alternative algorithms for each cleansing phase implemented in TAILOR are sum-
marized in Table 1. As for the decision models, TAILOR implements several algorithms:
EM-based, cost-based, error-based, clustering, induction and hybrid. The clustering of
records is based on k-means as in Febrl. In addition, TAILOR implements the induc-
tion linkage model: it includes both the aforementioned approach based on decision-tree
(Section 3.2) and an instance based learning algorithm. The hybrid model refers to the
option of using induction together with clustering: the former is supervised and more
accurate but it requires labeled training sets which may not be available; the latter is
unsupervised and it is exploited to predict the class (label) of each pattern to be analyzed
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by the supervised phase.

5 Conclusions

In this paper we have presented a survey of the most recent and promising probabilistic
record linkage methods, along with a brief overview of the tools that can be used to
accomplish duplicate detection or data cleansing, generally.

Our study highlights that the stochastic approach is promising and that the abstract,
rigorous theory proposed by [Fellegi and Sunter, 1969] is applicable in practice even if
a few simplifying assumption are still needed. On the other hand, some of the existing
methods to estimate the models parameters rely on hypotheses that do not always hold.
However, more pragmatic techniques such as the cost based ones allow the user to fine
tune the resulting decision according to the expected maximum costs; this can be of help
when no other alternative can be applied, for instance because there is no sufficient a
priori knowledge regarding the data/error generation process.

The widespread of the applications of record linkage techniques is the strongest con-
firmation of the actual effectiveness of the existing approaches. Indeed, there is a large
amount of both free and commercial software available to the institutions: this is an-
other fact confirming that the probabilistic record linkage techniques work. They are
not only proof-of-concept prototypes used by the researchers but they are ready for the
real world. However, it must be underlined that many of the real applications has to do
with typographical variations and slight errors where classical probabilistic techniques
perform well on.

Even though we did not addressed the topic of the performance of record matching,
according to the reviewed literature speed is still an issue. Linking algorithms needs to
be fast for practical applications, since (1) in the worst case they work on the Cartesian
product of the two data set to be compared and (2) data sources under are usually large
(e.g., census data).

The evaluation of the accuracy of a linkage algorithm is still an open research question
[Winkler, 1999] even though some metrics to measure the linking error rates have been
proposed; however, the issue is how to suitably automatize them. Other relevant and
advanced research problems are reported in [Winkler, 1999].

Finally, side problems that this paper has not discussed are related to ethical issues
(e.g., privacy), confidentiality and legal consequences of inaccuracies due to an automatic
linking system. For such topics we refer the reader to the references listed in Section 4
of [Gu et al., 2003].

Disclaimer This study has been written as a final exam of the “Advanced Topics in
Information Systems B” PhD course taught by Prof. B. Pernici at Politecnico di Milano.
It is our care to remind that this is not a peer reviewed work thus it may contain
inaccuracies.
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