BRI,
g MILANO 5"

9000000000°°

Politecnico di Milano
Dipartimento di Elettronica e Informazione

DOTTORATO DI RICERCA IN INGEGNERIA
DELLINFORMAZIONE

Integrated Detection of Anomalous Behavior
of Computer Infrastructures

Doctoral Dissertation of:
Federico Maggi

Advisor:
Prof. Stefano Zanero

Tutor:
Prof. Letizia Tanca

Supervisor of the Doctoral Program:
Prof. Patrizio Colaneri

2009 - XXII

Preface

This thesis embraces all the efforts that I put during the last three
years as a PhD student at Politecnico di Milano. I have been work-
ing under the supervision of Prof. S. Zanero and Prof. G. Serazzi,
who is also the leader of the research group I am part of. In this
time frame I had the wonderful opportunity of being “initiated” to
research, which radically changed the way I look at things: I found
my natural ‘thinking outside the box” attitude — that was probably
well-hidden under a thick layer of lack-of-opportunities, I took part
of very interesting joint works — among which the year I spent at
the Computer Security Laboratory at UC Santa Barbara is at the
first place, and I discovered the Zen of my life.

My research is all about computers and every other technology
possibly related to them. Clearly, the way I look at computers has
changed a bit since when I was seven. Still, I can remember me,
typing on that Commodore 64 in front of a tube TV screen, trying
to get that d—n routine written in Basic to work. I was just playing,
obviously, but when I recently found a picture of me in front of that
screen...it all became clear.

So, although my attempt of writing a program to authenticate
myself was a little bit naive — being limited to a print instruction
up to that point apart, of course — I thought ‘mayée I am not in the
wrong place, and the fact that my research is still about security is a good
sign”!

Many years later, this work comes to life. There is a humongous
amount of people that, directly or indirectly, have contributed to my
research and, in particular, to this work. Since my first step into the
lab, T will not, ever, be thankful enough to Stefano, who, despite
my skepticism, convinced me to submit that application for the PhD
program. For trusting me since the very first moment I am thankful
to Prof. G. Serazzi as well, who has been always supportive. For
hosting and supporting my research abroad I thank Prof. G. Vigna,
Prof. C. Kruegel, and Prof. R. Kemmerer. Also, I wish to thank
Prof. M. Matteucci for the great collaboration, Prof. 1. Epifani for
her insightful suggestions and Prof. H. Bos for the detailed review
and the constructive comments.

On the colleagues-side of this acknowledgments I put all the fel-
lows of Room 157, Guido, the crew of the seclab and, in particular,
Wil with whom I shared all the pain of paper writing between Sept

i

’08 and Jun ’09.

On the friends-side of this list Lorenzo and Simona go first, for
being our family.

I have tried to translate in simple words the infinite gratitude I
have and will always have to Valentina and my parents for being my
fixed point in my life. Obviously, I failed.

FEDERICO MaAGGI
Milano
September 2009

iv

Abstract

This dissertation details our research on anomaly detection
techniques, that are central to several classic security-related
tasks such as network monitoring, but it also have broader ap-
plications such as program behavior characterization or mal-
ware classification. In particular, we worked on anomaly de-
tection from three different perspective, with the common goal
of recognizing awkward activity on computer infrastructures.
In fact, a computer system has several weak spots that must be
protected to avoid attackers to take advantage of them. We fo-
cused on protecting the operating system, central to any com-
puter, to avoid malicious code to subvert its normal activity.
Secondly, we concentrated on protecting the web applications,
which can be considered the modern, shared operating sys-
tems; because of their immense popularity, they have indeed
become the most targeted entry point to violate a system. Last,
we experimented with novel techniques with the aim of identi-
fying related events (e.g., alerts reported by intrusion detection
systems) to build new and more compact knowledge to detect
malicious activity on large-scale systems.

Our contributions regarding host-based protection systems
focus on characterizing a process’ behavior through the system
calls invoked into the kernel. In particular, we engineered and
carefully tested different versions of a multi-model detection
system using both stochastic and deterministic models to cap-
ture the features of the system calls during normal operation
of the operating system. Besides demonstrating the effective-
ness of our approaches, we confirmed that the use of finite-
state, deterministic models allow to detect deviations from the
process’ control flow with the highest accuracy; however, our
contribution combine this effectiveness with advanced mod-
els for the system calls’ arguments resulting in a significantly
decreased number of false alarms.

Our contributions regarding web-based protection systems
focus on advanced training procedures to enable learning sys-
tems to perform well even in presence of changes in the web
application source code — particularly frequent in the Web
2.0 era. We also addressed data scarcity issues that is a real
problem when deploying an anomaly detector to protect a new,
never-used-before application. Both these issues dramatically
decrease the detection capabilities of an intrusion detection

system but can be effectively mitigated by adopting the tech-
niques we propose.

Last, we investigated the use of different stochastic and
fuzzy models to perform automatic alert correlation, which is
as post processing step to intrusion detection. We proposed
a fuzzy model that formally defines the errors that inevitably
occur if time-based alert aggregation (i.e., two alerts are con-
sidered correlated if they are close in time) is used. This model
allow to account for measurements errors and avoid false corre-
lations due to delays, for instance, or incorrect parameter set-
tings. In addition, we defined a model to describe the alert
generation as a stochastic process and experimented with non-
parametric statistical tests to define robust, zero-configuration
correlation systems.

The aforementioned tools have been tested over different
datasets — that are thoroughly documented in this document
— and lead to interesting results.

Sommario

Questa tesi descrive in dettaglio la nostra ricerca sulle tec-
niche di anomaly detection. Tali tecniche sono fondamentali
per risolvere problemi classici legati alla sicurezza, come per
esempio il monitoraggio di una rete, ma hanno anche applica-
zioni di pitt ampio spettro come l'analisi del comportamento
di un processo in un sistema o la classificazione di malware.
In particolare, il nostro lavoro si concentra su tre prospettive
differenti, con lo scopo comune di rilevare attivita sospette in
un sistema informatico. Difatti, un sistema informatico ha di-
versi punti deboli che devono essere protetti per evitare che
un aggressore possa approfittarne. Ci siamo concentrati sulla
protezione del sistema operativo, presente in qualsiasi compu-
ter, per evitare che un programma possa alterarne il funziona-
mento. In secondo luogo ci siamo concentrati sulla protezione
delle applicazioni web, che possono essere considerate il mo-
derno sistema operativo globale; infatti, la loro immensa po-
polarita ha fatto si che diventassero il bersaglio preferito per
violare un sistema. Infine, abbiamo sperimentato nuove tecni-
che per identificare relazioni tra eventi (e.g., alert riportati da
sistemi di intrusion detection) con lo scopo di costruire nuo-
va conoscenza per poter rilevare attivita sospette su sistemi di
larga-scala.

Riguardo ai sistemi di anomaly detection host-based ci sia-
mo focalizzati sulla caratterizzazione del comportamento dei
processi basandoci sul flusso di system call invocate nel ker-
nel. In particolare, abbiamo ingegnerizzato e valutato accu-
ratamente diverse versioni di un sistema di anomaly detection
multi-modello che utilizza sia modelli stocastici che modelli
deterministici per catturare le caratteristiche delle system call
durante il funzionamento normale del sistema operativo. Oltre
ad aver dimostrato lefficacia dei nostri approcci, abbiamo con-
fermato che I'utilizzo di modelli deterministici a stati finiti per-
mettono di rilevare con estrema accuratezza quando un proces-
so devia significativamente dal normale control flow; tuttavia,
lapproccio che proponiamo combina tale efficacia con modelli
stocastici avanzati per modellizzare gli argomenti delle system
call per diminuire significativamente il numero di falsi allarmi.

Riguardo alla protezione delle applicazioni web ci siamo
focalizzati su procedure avanzate di addestramento. Lo sco-
po & permettere ai sistemi basati su apprendimento non su-
pervisionato di funzionare correttamente anche in presenza di

cambiamenti nel codice delle applicazioni web — fenomeno
particolarmente frequente nellera del Web 2.0. Abbiamo an-
che affrontato le problematiche dovute alla scarisita di dati
di addestramento, un ostacolo piu che realistico specialmen-
te se 'applicazione da proteggere non & mai stata utilizzata
prima. Entrambe le problematiche hanno come conseguenza
un drammatico abbassamento delle capacita di detection degli
strumenti ma possono essere efficacemente mitigate adottando
le tecniche che proponiamo.

Infine abbiamo investigato 'utilizzo di diversi modelli, sia
stocastici che fuzzy, per la correlazione di allarmi automati-
ca, fase successiva alla rilevazione di intrusioni. Abbiamo pro-
posto un modello fuzzy che definisce formalmente gli errori
che inevitabilmente avvengono quando si adottano algoritmi
di correlazione basati sulla distanza nel tempo (i.e., due allar-
mi sono considerati correlati se sono stati riportati pill 0 meno
nello stesso istante di tempo). Questo modello permette di te-
ner conto anche di errori di misurazione ed evitare decisioni
scorrete nel caso di ritardi di propagazione. Inoltre, abbiamo
definito un modello che descrive la generazione di allarmi co-
me un processo stocastico e abbiamo sperimentato con dei test
non parametrici per definire dei criteri di correlazione robusti
e che non richiedono configurazione.

vii

Contents

1 Introduction 1
1.1 Todays’ Security Threats 3
1.1.1 The Role of Intrusion Detection 4

1.2 Original Contributions 8
1.2.1 Host-based Anomaly Detection 8

1.2.2 Web-based Anomaly Detection 9

1.2.3 Alert Correlation 10

1.3 Document Structure 11

2 Detecting Malicious Activity 13
2.1 Intrusion Detection 14
2.1.1 Evaluation 18

2.1.2 AlertCorrelation 20

2.1.3 Taxonomic Dimensions. 22

2.2 Relevant Anomaly Detection Techniques 28
2.2.1 Network-based techniques 28

2.2.2 Host-based techniques 32

2.2.3 Web-based techniques 40

2.3 Relevant Alert Correlation Techniques 44
2.4 Evaluation Issues and Challenges 48
2.41 Regularities in audit data of IDEVAL 50

2.4.2 'The base-rate fallacy 52

2.5 Concluding Remarks 54

3 Host-based Anomaly Detection 57
3.1 Preliminaries 59
3.2 Malicious System Calls Detection 63
3.2.1 Analysis of SyscallAnomaly 64

viii

CONTENTS

3.3

3.4

3.5

41

4.2

4.3

3.2.2 Improving SyscallAnomaly
3.2.3 Capturing process behavior
3.2.4 Prototype implementation
3.2.5 Experimental Results
Mixing Deterministic and Stochastic Models .
3.3.1 Enhanced Detection Models
3.3.2 Experimental Results
Forensics Use of Anomaly Detection Techniques
3.41 Problemstatement
3.4.2 Experimental Results
Concluding Remarks

Anomaly Detection of Web-based Attacks

Preliminaries
41.1 Anomaly Detectors of Web-based Attacks .
4.1.2 A Comprehensive Detection System to Mit-

igate Web-based Attacks
413 EvaluationData
Training With Scarce Data
4.2.1 Non-uniformly distributed training data . .
4.2.2 Exploiting global knowledge
42.3 Experimental Results
Addressing Changes in Web Applications
43.1 Web Application Concept drift
4.3.2 Addressing conceptdrift
43.3 Experimental Results

44 Concluding Remarks

Network and Host Alert Correlation
5.1 Fuzzy Models and Measures for Alert Fusion

5.1.1 Time-based alert correlation
5.2 Mitigating Evaluation Issues
52.1 A common alert representation
5.2.2 Proposed Evaluation Metrics
5.2.3 Experimental Results
5.3 Using Non-parametric Statistical Tests
5.3.1 'The Granger Causality Test
5.3.2 Modeling alerts as stochastic processes . . .
54 Concluding Remarks

115
117

. 117

121
122
125

. 126

127
140
147
149
157
164
168

171

. 173

174
182
182
183
186
190
190

. 194

X CONTENTS

6 Conclusions 205
Bibliography 209
Index 229
List of Acronyms 231
List of Figures 236

List of Tables 240

Introduction 1

Network connected devices such as personal computers, mobile phones,
or gaming consoles are nowadays enjoying immense popularity. In
parallel, the Web and the humongous amount of services it offers
have certainly became the most ubiquitous tools of all the times.
Facebook counts more than 250 millions active users of which 65
millions are using it on mobile devices; not to mention that more
than 1 billion photos are uploaded to the site each month [Facebook,
2009]. And this is just one, popular website. One year ago, Google
estimated that the approximate number of unique Uniform Resource
Locators (URLs) is 1 trillion [Alpert and Hajaj, 2008], while YouTube
has stocked more than 70 million videos as of March 2008, with
112,486,327 views just on the most popular video as of January 2009 [Singer,
2009]. And people from all over the world inundate the Web with
more than 3 million tweets per day. Not only the Web 2.0 has became
predominant; in fact, thinking that on December 1990 the Internet
was made of one site and today it counts more than 100 million sites
is just astonishing [Zakon, 2006].

The Internet and the Web are huge [Miniwatts Marketing Grp.,
2009]. The relevant fact, however, is that they both became the most
advanced workplace. Almost every industry connected its own net-
work to the Internet and relies on these infrastructures for a vast ma-
jority of transactions; most of the time monetary transactions. As

1. INTRODUCTION

an example, every year Google looses approximately 110 millions of
US Dollars in ignored ads because of the “I'm feeling lucky” button.
The scary part is that, during their daily work activities, people typ-
ically pay poor or no attention at all to the risks that derive from
exchanging any kind of information over such a complex, intercon-
nected infrastructure. This is demonstrated by the effectiveness of
social engineering [Mitnick, 2002] scams carried over the Internet
or the phone [Granger, 2001]. Recall that 76% of the phishing is
related to finance. Now, compare this landscape to what the most
famous security quote states.

“The only truly secure computer is one buried in con-
crete, with the power turned off and the network cable
»

cut
—Anonymous

In fact, the Internet s all but a safe place [Ofer Shezaf and Jeremiah
Grossman and Robert Auger, 2009], with more than 1,250 known
data breaches between 2005 and 2009 [Clearinghouse, 2009] and
an estimate of 263,470,869 records stolen by intruders. One may
wonder why the advance of research in computer security and the in-
creased awareness of governments and public institutions are still not
capable of avoiding such incidents. Besides the fact that the afore-
mentioned numbers would be order of magnitude higher in absence
of countermeasures, todays’ security issues are, basically, caused by
the combination of two phenomena: the high amount of software
vulnerabilities and the effectiveness of todays’ exploitation strategy.

software flaws — (un)surprisingly, software is affected by vulner-
abilities. Incidentally, tools that have to do with the Web,
namely, browsers and 3*-party extensions, and web applica-
tions, are the most vulnerable ones. For instance, in 2008, Se-
cunia reported around 115 security vulnerabilities for Mozilla
Firefox, 366 for Internet Explorer’s ActiveX [Secunia, 2008]. Of-
fice suites and e-mail clients, that are certainly the must-have-
installed tool on every workstation, hold the second position [The
SANS Institute, 2005].

massification of attacks — in parallel to the explosion of the Web
2.0, attackers and the underground economy have quickly learned
that a sweep of exploits run against every reachable host have

1.1. Todays’ Security Threats

more chances to find a vulnerable target and, thus, is much
more profitable compared to a single effort to break into a
high-value, well-protected machine.

These circumstances have initiated a vicious circle that provides
the attackers with a very large pool of vulnerable targets. Vulnerable
client hosts are compromised to ensure virtually unlimited bandwidth
and computational resources to attackers, while server side applica-
tions are violated to host malicious code used to infect client visitors.
And so forth. An old fashioned attacker would have violated a sin-
gle site using all the resources available, stolen data and sold it to the
underground market. Instead, a modern attacker adopts a “vampire”
approach and exploit client-side software vulnerabilities to take (re-
mote) control of million hosts. In the past the diffusion of malicious
code such as viruses was sustained by sharing of infected, cracked
software through floppy or compact disks; nowadays, the Web of-
fers unlimited, public storage to attackers that deploy their exploit
on compromised websites.

Thus, not only the type of vulnerabilities has changed, posing
virtually every interconnected device at risk. The exploitation strategy
created new types of threats that take advantage of classic malicious
code patterns but in a new, extensive, and tremendously effective way.

1.1 Todays’ Security Threats

Every year, new threats are discovered and attacker take advantage of
them until effective countermeasures are found. Then, new threats
are discovered, and so forth. Symantec quantifies the amount of new
malicious code threats to be 1,656,227 as of 2008 [Turner et al,,
2009], 624,267 one year earlier and only 20,547 in 2002. Thus, coun-
termeasures must advance at least with the same grow rate. In addi-
tion:

[...] the current threat landscape — such as the in-
creasing complexity and sophistication of attacks, the
evolution of attackers and attack patterns, and malicious
activities being pushed to emerging countries — show
not just the benefits of, but also the need for increased
cooperation among security companies, governments, aca-

1. INTRODUCTION

- - - : \
F1Gure 1.1: Illustration taken from [Holz, 2005] and (2005 IEEE.
Authorized license limited to Politecnico di Milano.

demics, and other organizations and individuals to com-

bat these changes [Turner et al., 2009].

Todays” underground economy run a very proficient market: ev-
eryone can buy credit card information for as low as $0.06-$30, full
identities for just $0.70-$60 or rent a scam hosting solution for $3—
$40 per week plus $2-$20 for the design [Turner et al., 2009].

'The main underlying technology actually employs a classic type
of software called bor (jargon for robot), which is not malicious per
sé, but is used to remotely control a network of compromised hosts,
called dotnet [Holz, 2005]. Remote commands can be of any type
and typically include launching an attack, starting a phishing or spam
campaign, or even updating to the latest version of the bot software
by downloading the binary code from a host controlled by the at-
tackers (usually called do# master) [Stone-Gross et al., 2009]. The ex-
change good has now become the botnet infrastructure itself rather
than the data that can be stolen or the spam that can be sent. These
are mere outputs of todays’ most popular service offered for rent by

1.1. Todays’ Security Threats

the underground economy.

1.1.1 ‘The Role of Intrusion Detection

'The aforementioned, dramatic big picture may lead to think that the
malicious software will eventually proliferate at every host of the In-
ternet and no effective remediation exists. However, a more care-
ful analysis reveals that, despite the complexity of this scenario, the
problems that must be solved by a security infrastructure can be de-
composed into relatively simple tasks that, surprisingly, may already
have a solution. Let us look at an example.

Example 1.1.1 'This is how a sample exploitation can be structured:

injection — a malicious request is sent to the vulnerable web ap-
plication with the goal of corrupting all the responses sent to
legitimate clients from that moment on. For instance, more
than one releases of the popular WordPress blog application
are vulnerable to injection attacks® that allow an attacker to
permanently include arbitrary content to the pages. Typically,
such an arbitrary content is malicious code (e.g., JavaScript,
VBSCrip, ActionScript, ActiveX) that, every time a legitimate
user requests the infected page, executes on the client host.

infection — Assuming that the compromised site is frequently ac-
cessed — this might be the realistic case of the WordPress-
powered ZDNet news blog? — a significant amount of clients
visit it. Due to the high popularity of vulnerable browsers and
plug-ins, the client may run Internet Explorer — that is the most
popular — or an outdated release of Firefox on Windows. This
create the perfect circumstances for the malicious page to suc-
cessfully execute. In the best case, it may download a virus
or a generic malware from a website under control of the at-
tacker, so infecting the machine. In the worst case, this code
may also exploit specific browser vulnerabilities and execute in
privileged mode.

control & use — The malicious code just download installs and hides
itself onto the victim’s computer, which has just joined a bot-

http://secunia.com/advisories/23595
2http://wordpress.org/showcase/zdnet/

I.

INTRODUCTION

net. As part of it, the client host can be remotely controlled
by the attackers who can, for instance, rent it, use its band-
width and computational power along with other computers
to run a distributed Denial of Service (DoS) attack. Also, the
host can be used to automatically perform the same attacks de-
scribed above against other vulnerable web applications. And
so forth.

This simple yet quite realistic example shows the various kinds
of malicious activity that are generated during a typical drive-by ex-
ploitation. It also shows its requirements and assumptions that must
hold to guarantee success. More precisely, we can recognize:

network activity — clearly, the whole interaction relies on a network
connection over the Internet: the HyperText Transfer Protocol
(HT'TP) connections used, for instance, to download the ma-
licious code as well as to launch the injection attack used to
compromise the web server.

host activity — similarly to every other type of attack against an ap-
plication, when the client-side code executes, the browser (or
one of its extension plug-ins) is forced to behave improperly. If
the malicious code executes till completion the attack succeeds
and the host is infected. This happens only if the platform,
operating system, and browser all match the requirements as-
sumed by the exploit designer. For instance, the attack may
succeed on Windows and not on Mac OS X, although the vul-
nerable version of, say, Firefox is the same on both the hosts.

HTTP traffic — in order to exploit the vulnerability of the web ap-
plication, the attacking client must generate malicious HT'TP
requests. Forinstance, in the case of an Structured Query Language
(SQL) injection — that is the second most common vulnera-
bility in a web application — instead of a regular

GET /index.php?username=myuser

the web server might be forced to process a

))

GET /index.php?username=’ OR ’x’=’x’--\&content=<script

src="evil.com/code. js™>

that causes the index. php page to behave improperly.

1.1. Todays’ Security Threats

It is now clear that protection mechanisms that analyze the net-
work traffic, the activity of the client’s operating system, the web
server’s HT'TP logs, or any combination of the three, have chances
of recognizing that something malicious is happening in the net-
work. For instance, if the Infernet Service Provider (ISP) network
adopt Snort, a lightweight Intrusion Detection System (IDS) that an-
alyzes the network traffic for known attack patterns, could block all
the packets marked as suspicious. This would prevent, for instance,
the SQL injection to reach the web application. A similar protection
level can be achieved by using other tools such as ModSecurity [Ristic,
2008]. One of the problems that may arise with these classic, widely
adopted solutions is if a zero day attack is used. A zero day attack or
threat exploits a vulnerability that is unknown to the public, undis-
closed to the software vendor, or a fix is not available; thus, protection
mechanisms that merely blacklist known malicious activity immedi-
ately become ineftective. In a similar vein, if the client is protected
by an anti-virus, the infection phase can be blocked. However, this
countermeasure is once again successful only if the anti-virus is capa-
ble of recognizing the malicious code, which assumes that the code
is known to be malicious.

Ideally, an effective and comprehensive countermeasure can be
achieved if all the protection tools involved (e.g., client-side, server-
side, network-side) can collaborate together. For instance, if a web-
site is publicly reported to be malicious, a client-side protection tool
should block all the content downloaded from that particular web-
site. This is only a simple example.

Thus, countermeasures against todays’ threats already exist but
are subject to at least two drawbacks:

e they offer protection only against known threats. To be effec-
tive we must assume that all the hostile traffic can be enumer-
ated, which is clearly an impossible task.

Why is “Enumerating Badness” a dumb idea?
It’s a dumb idea because sometime around 1992 the
amount of Badness in the Internet began to vastly
outweigh the amount of Goodness. For every harm-
less, legitimate, application, there are dozens or hun-
dreds of pieces of malware, worm tests, exploits, or
viral code. Examine a typical antivirus package and

I.

INTRODUCTION

you'll see it knows about 75,000+ viruses that might
infect your machine. Compare that to the legiti-
mate 30 or so apps that I've installed on my ma-
chine, and you can see it’s rather dumb to try to
track 75,000 pieces of Badness when even a sim-
pleton could track 30 pieces of Goodness [Ranum,
2005].

o they lack of cooperation, which is crucial to detect global and
slow attacks.

This said, we conclude that classic approaches such as dynamic
and static code analysis and IDS already offer good protection but
industry and research should move toward methods that require little
or no knowledge. In this work, we indeed focus on the so called
anomaly-based approaches, i.e., those that attempt to recognize the
threats by detecting any variation from a system’s normal operation,
rather than looking for signs of known-to-be-malicious activity.

1.2 Original Contributions

Our main research area is Intrusion Detection (ID). In particular,
we focus on anomaly-based approaches to detect malicious activi-
ties. Since todays’ threats are complex, a single point of inspection
is not effective. A more comprehensive monitoring system is more
desirable to protect both the network, the applications running on a
certain host, and the web applications (that are particularly exposed
due to the immense popularity of the Web). Our contributions focus
on the mitigation of both host-based and web-based attacks, along
with two techniques to correlate alerts from hybrid sensors.

1.2.1 Host-based Anomaly Detection

Typical malicious processes can be detected by modeling the charac-
teristics (e.g., type of arguments, sequences) of the system calls exe-
cuted by the kernel, and by flagging unexpected deviations as attacks.
Regarding this type of approaches, our contributions focus on hybrid
models to accurately characterize the behavior of a binary application.
In particular:

1.2. Original Contributions

e we enhanced, re-engineered, and evaluated a novel tool for
modeling the normal activity of the Linux 2.6 kernel. Com-
pared to other existing solutions, our system shows better de-
tection capabilities and good contextualization of the alerts re-
ported. These results are detailed in Section 3.2.

e We engineered and evaluated an IDS to demonstrate that the
combined use of (1) deterministic models to characterize a pro-
cess’ control flow and (2) stochastic models to capture nor-
mal features of the data flow, lead to better detection accu-
racy. Compared to the existing deterministic and stochastic
approaches separately, our system shows better accuracy, with
almost zero false positives. These results are detailed in Sec-
tion 3.3.

e We adapted our techniques for forensics investigation. By run-
ning experiments on real-world data and attacks, we show that
our system is able to detect hidden tamper evidence although
sophisticated anti-forensics tools (e.g., userland process execu-
tion) have been used. These results are detailed in Section 3.4.

1.2.2 Web-based Anomaly Detection

Attempts of compromising a web application can be detected by mod-
eling the characteristics (e.g., parameter values, character distribu-
tions, session content) of the HTTP messages exchanged between
servers and clients during normal operation. This approach can de-
tect virtually any attempt of tampering with HT'TP messages, which
is assumed to be evidence of attack. In this research field, our contri-
butions focus on training data scarcity issues along with the problems
that arise when an application changes its legit behavior. In particu-
lar:

e we contributed to the development of a system that learns the
legit behavior of a web application. Such a behavior is defined
by means of features extracted from 1) HTTP requests, 2)
HTTP responses, 3) SQL queries to the underlying database,
if any. Each feature is extracted and learned by using differ-
ent models, some of which are improvements over well-known
approaches and some others are original. The main contribu-
tion of this work is the combination of database query models

I.

INTRODUCTION

10

with HT'TP-based models. The resulting system has been val-
idated through preliminary experiments that shown very high
accuracy. These results are detailed in Section 4.1.2.

we developed a technique to automatically detect legit changes
in web applications with the goal of suppressing the large amount
of false detections due to code upgrades, frequent in todays’
web applications. We run experiments on real-world data to
show that our simple but very effective approach accurately
predict changes in web applications and can distinguish good
vs. malicious changes (i.e., attacks). These results are detailed
in Section 4.3.

e We designed and evaluated a machine learning technique to

aggregate IDS models with the goal of ensuring good detec-
tion accuracy even in case of scarce training data available. Our
approach relies on clustering techniques and nearest-neighbor
search to look-up well-trained models used to replace under-
trained ones that are prone to overfitting and thus false detec-
tions. Experiments on real-world data have shown that almost
every false alert due to overfitting is avoided with as low as 32-
64 training samples per model. These results are described in
Section 4.2.

Although these techniques have been developed on top of a web-
based anomaly detector, they are sufficiently generic to be easily adapted
to other systems using learning approaches.

1.2.3 Alert Correlation

IDS alerts are usually post-processed to generate compact reports
and eliminate redundant, meaningless, or false detections. In this
research field, our contributions focus on unsupervised techniques
applied to aggregate and correlate alert events with the goal of re-
ducing the effort of the security officer. In particular:

o We developed and tested an approach that accounts for the

common measurement errors (e.g., delays and uncertainties)
that occur in the alert generation process. Our approach ex-
ploits fuzzy metrics both to model errors and to construct an

1.3. Document Structure

alert aggregation criterion based on distance in time. This tech-
nique has been show to be more robust compared to classic
time-distance based aggregation metrics. These results are de-
tailed in Section 5.1.

o We designed and tested a prototype that models the alert gen-
eration process as a stochastic process. This setting allowed us
to construct a simple, non-parametric hypothesis test that can
detect whether two alert streams are correlated or not. Besides
its simplicity, the advantage of our approach is to not requiring
any parameter. These results are described in Section 5.3.

'The aforementioned results have been published in the proceed-
ings of international conferences and international journals.

1.3 Document Structure

'This document is structured as follows. Chapter 2 introduces the ID,
that is the topic of our research. In particular, Chapter 2 rigorously
describes all the basic components that are necessary to define the
ID task and an IDSs. 'The reader with knowledge on this subject may
skip the first part of the chapter and focus on Section 2.2 and 2.3 that
include a comprehensive review of the most relevant and influential
modern approaches on network-, host-, web-based ID techniques,
along with a separate overview of the alert correlation approaches.

As described in Section 1.2, the description of our contributions
is structured into three chapters. Chapter 3 focuses on host-based
techniques, Chapter 4 regards web-based anomaly detection, while
Chapter 5 described two techniques that allow to recognize relations
between alerts reported by network- and host-based systems. Read-
ing Section 2.2.1 is recommended before reading Chapter 5.

'The reader interested in protection techniques for the operating
system can skim through Section 2.2.2 and then read Chapter 3. The
reader with interests on web-based protection techniques can read
Section 2.2.3 and then Chapter 4. Similarly, the reader interested in
alert correlation systems can skim through Section 2.2.1 and 2.2.2
and then read Chapter 5.

11

Detecting Malicious Activity 2

Malicious activity is a generic term that refers to automated or man-
ual attempts of compromising the security of a computer infrastruc-
ture. Examples of malicious activity include the output generated
(or its effect on a system) by the execution of simple script kiddies,
viruses, DoS attacks, exploits of Cross-Site Scripting (XSS) or SQL
injection vulnerabilities, and so forth. This chapter describes the re-
search tools and methodologies available to detect and mitigate mali-
cious activity on a network, a single host, a web-server and the com-
bination of the three.

First, the background concepts and the ID problem are described
in this chapter along with a taxonomic description of the most rel-
evant aspects of an IDS. Secondly, a detailed survey of the selected
state-of-the-art anomaly detection approaches is presented with the
help of further classification dimensions. In addition, the problem
of alert correlation, that is an orthogonal topic, is described and the
most relevant, recent research approaches are overviewed. Last but
not least, the problem of evaluating an IDS is presented to provide
the essential terminology and criteria to understand the effectiveness
of both the reviewed literature and our original contributions.

13

2.

DEeTtEcTING MALIciOUS ACTIVITY

14

S Customers' servers DBs Virtual hosting

Customers' clients

Deployable protection mechanisms
= Anti-malware
= host-based IDS @ @
= network-based IDS % - % %
= web-based IDS Clients

Ficure 2.1: Generic and comprehensive deployment scenario for

IDSs.

2.1 Intrusion Detection

ID is the practice of analyzing a system to find malicious activity.
This section defines this concept more precisely by means of sim-
ple but rigorous definitions. The context of such definitions is the
generic scenario of an Internet site, for instance, the network of an
ISP. An example is depicted in Figure 2.1. An Internet site —and, in
general, the Internet itself— is the state-of-the-art computer infras-
tructure. In fact, it is a network that adopts almost any kind of known
computer technology (e.g., protocols, standards, containment mea-
sures), it runs a rich variety of servers such as HT'TP, File Transfer
Protocol (FTP), Secure SHell (SSH), Virtual Private Network (VPN)
to support a broad spectrum of sophisticated applications and ser-
vices (e.g., web applications, e-commerce, applications, the Facebook
Platform, Google Applications). In addition, a generic Internet site re-
ceives and process traffic from virtually any user connected to the Net
and thus represents the perfect research testbed for IDS.

Definition 2.1.1 (System) A system is the domain of interest for se-
curity.

Note that a system can be a physical or a logical one. For instance,
a physical system could be a host (e.g., the DazaBase (DB) server or

2.1. Intrusion Detection

one of the client machines shown in the figure), a whole network
(e.g., the ISP network shown in the figure); a logical system can be
an application, a service, such as one of the web services run in a
virtual machine deployed in the ISP network. While running, each
system produces activity, that we define as follows.

Definition 2.1.2 (System activity) A system activity is any data gen-
erated while the system is working. Such activity is formalized a se-
quence of events I = [I1, Io, I;, ..., In].

For instance, each of the clients of Figure 2.1 produces system logs: in
this case I would contain an I; for each log entry. A human readable
representation follows.

chatWithContact: (null)] got a nil targetContact. Aug 18 86:29:48
[6x8-0x1b01b].0org.mozilla.firefox[@]: NPP_Initialize called Aug 18
00:29:40 [0x8-0x1bB1b].org.mozilla.firefox[8]: 2009-88-18 80:29:48.039
firefox-bin[254:18b] NPP_Neuw(instance=6x169e8178,mode=2,argc=5) Aug 18
00:29:48 [0x8-0x1bB1b].org.mozilla.firefox[8]: 2009-88-18 80:29:48.052
firefox-bin[254:18b] NPP_NeuStream end=396239

Similarly, the web servers generates HT'TP requests and responses:
in this case [would contain an I; for each HT'TP message. Its human
readable representation follows.

/media//images/favicon.ico HTTP/1.8” 200 1158 ”-” "Mozilla/5.@
(Macintosh; U; Intel Mac 0S X 10.5; en-US; rv:1.9.0.10)
Gecko/2689842315 Firefox/3.8.18 Ubiquity/6.1.4” 128.111.48.4
[20/May/2009:15:26:44 -0700] “POST /report/ HTTP/1.8” 200 19171
”http://wwuw.phonephishing.info/report/” *Mozilla/5.8 (Macintosh; U;
Intel Mac 0S X 18.5; en-US; rv:1.9.0.18) Gecko/2009042315
Firefox/3.0.18 Ubiquity/@8.1.4” 128.111.48.4 [26/May/2009:15:26:44
-07008] “GET /media//css/main.css HTTP/1.0” 288 5525
”http://wwuw.phonephishing.info/report/” *Mozilla/5.8 (Macintosh; U;
Intel Mac 0S X 18.5; en-US; rv:1.9.0.18) Gecko/2009042315
Firefox/3.8.18 Ubiquity/e.1.4” 128.111.48.4 [20/May/2009:15:26:44
-8760] “GET /media//css/roundbox.css HTTP/1.8” 260 731
“http://uwww.phonephishing.info/media//css/main.css” ”Mozilla/5.0
(Macintosh; U; Intel Mac 0S X 10.5; en-US; rv:1.9.0.10)
Gecko/2689042315 Firefox/3.0.18 Ubiquity/0.1.4”

Other examples of system activity are described in Section 2.1.3.
In this document, we often used the term normal behavior refer-
ring to a set of characteristics (e.g., the distribution of the characters
of string parameters, the mean and standard deviation of the values of

15

2. DEeTECTING MALICcIOUS ACTIVITY

integer parameters) extracted from the system activity gathered dur-
ing normal operation (i.e., without being compromised). Moreover,
in the remainder of this document, we need other definitions.

Definition 2.1.3 (Activity Profile) The activity profile (or activity model)
¢y is a set of models

o= (mM, . om™ L m)

generated by extracting features from the system activity I.

This definition will be used in Section 2.1.3.1 and Example 2.1.1 and
2.1.2 describe an instance of m(*), An example of a real-world profile
is described in Example 4.1.1. We can now define the:

Definition 2.1.4 (System Behavior) The system behavior is the set of
features (or models), along with their numeric values, extracted by
(or contained in) the activity profile.

In particular, we will use this term as a synonym of normal system
behavior, referring to the system behavior during normal operation.

Given the high-accessibility of the Internet, publicly available
systems such as web servers, web applications, DB servers, are con-
stantly at risk. In particular, they can be compromised with the goal
of stealing valuable information, deploying infection kits or running
phishing and spam campaigns. These are all examples of intrusions.
More formally.

Definition 2.1.5 (Intrusion) An intrusion is the automated or man-
ual act of violating one or more security paradigms (i.e., confidential-
ity, integrity, availability) of a system. Intrusions are formalized as a
sequence of events:

0= [Ola0270i7"'701\/1] QH

Typically, when an intrusion takes place, a system behaves unexpect-
edly and, as a consequence, its activity differs than during normal op-
eration. This is because an attack or the execution of malware code
often exploit vulnerabilities to bring the system into states it was not
designed for. For this reason, the activity that the system generates
is called malicious activity; often, this term is also used to indicate the

16

2.1. Intrusion Detection

attack or the malware code execution itself. An example of O; is the
following log entry: it shows evidence of a XSS attack that will make
a vulnerable page to display the arbitrary content supplied as part of
the GET request (while the page was not intentionally designed to
this purpose).

/report/add/comment/<DIV
STYLE="background-image:\0075\8872\686C\0028’ \0806a
\6061\08876\0061\8073\0063\8072\0069\0078\0874\603a\0061\006C
\0065\0072\0074\0028.1027\0058.1853\0053\0027\0029°\080829">/
HTTP/1.8” 208 731 “http://wuu.phonephishing.info/report/add/”
”Mozilla/5.8 (Macintosh; U; Intel Mac 0S X 18.5; en-US; rv:1.9.8.10)
Gecko/2689842315 Firefox/3.8.16 Ubiquity/e.1.4”

Note 2.1.1 We adopt a simplified representation of intrusions with
respect to a dataset D (i.e., both normal and malicious): with @ C D
we indicate that the activity I contains malicious events O; however,
strictly speaking, intrusions events and activity events can be of com-
pletely different types, thus the "C” relation may not be defined in a
strict mathematical sense.

If a system is well-designed, any intrusion attempts always leave some
traces in the system’s activity. These traces are called tamper evidence
and are essential to perform intrusion detection.

Definition 2.1.6 (Intrusion Detection) Intrusion defection is the sep-
aration of intrusions from normal activity through the analysis of
the activity of a system, while the system is running. Intrusions
are marked as alerts, which are formalized as a sequence of event

A=[A1, As, Ay,..., AL] CO.

Similarly, A C O must not be interpreted in a strict sense: it is just a
notation to indicate that for each intrusion, an alert may or may not
exist. Note that ID can be also performed by manually inspecting
a system activity. This is clearly a tedious and unefficient task, thus
research and industrial interests are focused on automatic approaches.

Definition 2.1.7 (Intrusion Detection System) An intrusion detection
system is an automatic tool that performs the ID task.

Given the above definitions, an abstract model of an IDS is shown

in Figure 2.2.

17

2.

DEeTtEcTING MALIciOUS ACTIVITY

18

ILO—— IDS

A

FIGURE 2.2: Abstract I/O model of an IDS.

Although each IDS relies on its own data model and format to
represent A, the Internet Engineering Task Force (IETF) proposed
Intrusion Detection Message Exchange Format IDMEF) [Debar et al.,
2006] as a common format for reporting alert streams generated by
different IDS.

2.1.1 Evaluation

Evaluating an IDS means running it on collected data D = T U O
that resembles real-world scenarios. This means that such data in-
cludes both intrusions O and normal activity I, i.e., |I|, |O] > 0 and
INO = g, ie., [must include no malicious activity other than O.
The system is run in a controlled environment to collect A along with
performance indicators for comparison with other systems. This sec-
tion presents the basic criteria used to evaluate modern IDSs.

More precisely, to perform an evaluation experiment correctly a
fundamental hypothesis must hold: the set @ must be known and
perfectly distinguishable from I. In other words, this means that, D
must be labeled with a truzh file, i.e., a list of all the events known to
be malicious. This allows to treat the ID problem as a classic classifi-
cation problem, for which a set of well-established evaluation metrics
are available. In particular, we are interested at calculating the fol-
lowing sets.

Definition 2.1.8 (True Positives (TPs)) The set of true positivesis TP :

Where f : A — O is a generic function that, given an alert A; finds
the corresponding intrusion O; by parsing the truth file. The T'P set
is basically the set of alerts that are fired because a real intrusion has

taken place. The perfect IDS is such that TP = O.

Definition 2.1.9 (True Positives (TPs)) The set of false positives is

2.1. Intrusion Detection

On the other hand, the alerts in F'P are incorrect because no real
intrusion can be found in the observed activity. The perfect IDS is
such that F'P = &.

Definition 2.1.10 (True Negatives (I'Ns)) 'The set of frue negatives is

Note that the set of TN does not contain alerts. Basically, it is the set
of correctly unreported alerts. The perfect IDS is such that TN = 1.

Definition 2.1.11 (False Negatives (FNs)) The set of false negatives is

Similarly to T'N, F'N does not contain alerts. Basically, it is the set of
incorrectly unreported alerts. The perfect IDS is such that FN = @.
Note that, TP + TN + FP + TN = 1 must hold.

In this and other documents, the term fa/se alert refers to FN U
FP. Given the aforementioned sets, aggregated measures can be
calculated.

Definition 2.1.12 (Detection Rate (DR)) 'The detection rate, or true pos-
itive rate, is defined as:

_rre
TP+ FN’

'The perfect IDS is such that DR = 1. 'Thus, the DR measures the
detection capabilities of the system, that is, the amount of malicious
events correctly classified and reported as alerts. On the other side,
the False Positive Rate (FPR) is defined as follows.

DR :=

Definition 2.1.13 (FPR) 'The false positive rate is defined as:

FP
FP+ TN’
The perfect IDS is such that FPR = 0. Thus, the FPR measures the

inaccuracies of the system, that is, the amount of legit events incor-
rectly classified and reported as alerts. There are also other metrics

FPR :=

such as the accuracy and the precision which are often used to evaluate

19

2.

DEeTtEcTING MALIciOUS ACTIVITY

20

T >
Random classifier —=~

08

06 - .-

Detection Rate (DR)

04 -

02

| | | |
0 02 04 06 08 1
False Positive Rate (FPR)

Ficure 2.3: The ROC space.

information retrieval systems; however, these metrics are not popular
for IDS evaluation.

The ROC analysis, originally adopted to measure transmission
quality of radar systems, is often used to produce a compact and
easy to understand evaluation of classification systems. Even though
there is no standardized procedure to evaluate an IDS, the research
community agrees on the use of ROC curves to compare the detec-
tion capabilities and quality of an IDS. A ROC curve is the plot of
DR = DR(FPR) and is obtained by tuning the IDS to trade off
False Positives (FPs) against true positives. Without going into the
details, each point of a ROC curve correspond to a fixed amount of
DR and FPR calculated under certain conditions (e.g., sensitivity
parameters). By modifying its configuration the quality of the clas-
sification changes and other points of the ROC are determined. The
ROC space is plotted in Figure 2.3 along with the performances of a
random classifiers, characterized by DR = F'PR. 'The perfect, ideal
IDS can increase its DR from 0 to 1 with FPR = 0: however, it
must hold that FPR — 1= DR — 1.

2.1.2 Alert Correlation

The problem of intrusion detection is challenging in todays’ complex
networks. In fact, it is common to have more than one IDS deployed,
monitoring different segments and different aspects of the whole in-
frastructure (e.g., hosts, applications, network, etc.). The amount of

2.1. Intrusion Detection

Aq

I,O—— IDS ACS
IH A,

A/

FIGURE 2.4: Abstract I/O model of an IDS with an alert correlation
system.

alerts reported by a network of IDSs running in a complex computer
infrastructure is larger, by several orders of magnitude, than what
was common in the smaller networks monitored years ago. In such a
context, network administrators are loaded by several alerts and long
security reports often containing a non-negligible amount of FPs.
Thus, the creation of a clean, compact, and unified view of the secu-
rity status of the network is needed. This process is commonly known
as alert correlation [Valeur et al., 2004] and it is currently one of the

most difficult challenges of this research field. More precisely.

Definition 2.1.14 (Alert Correlation) The alert correlation is the iden-
tification of relations among alerts

A17A27Ai7"'7ALEAIUAQU"-UAK

to generatc a unique, more compact and COIan‘ChCHSin: sequence

of alerts A’ = [A], A5, ..., Al

A desirable property is that A’ should be as complete as A; U
Ay U - -+ U Ak without introducing errors such as alerts that do not
correspond to a real intrusion. As for the ID, alert correlation can
be a manual, and tedious, task. Clearly, automatic alert correlation
systems are more attractive and can be considered a complement of

a modern IDS.

Definition 2.1.15 (Alert Correlation System) An alert correlation sys-
tem is an automatic tool that performs the alert correlation task.

The overall IDS abstract model is complemented with an alert cor-
relation engine as shown in Figure 2.4.

21

2.

DEeTtEcTING MALIciOUS ACTIVITY

22

2.1.3 Taxonomic Dimensions

The first comprehensive taxonomy of IDSs has been proposed in
[Debar et al., 1999] and revised in [Debar et al., 2000]. Another
good survey appeared in [Axelsson, 2000a].

Compared to the classic survey found in the literature, this section
complements the basic taxonomic dimensions by focusing on mod-
ern techniques. In particular, todays’ intrusion detection approaches
can be categorized by means of the specific modeling techniques ap-
peared in recent research.

It is important to note that the taxonomic dimensions that are
hereby suggested are not exhaustive, thus certain IDSs may not fit
into it (e.g., [Costa et al., 2005; Portokalidis et al., 2006; Newsome
and Song, 2005]). On the other hand, an exhaustive and detailed tax-
onomy would be difficult to read. To overcome this difficulty, in this
section we describe a high-level, technique-agnostic taxonomy based
on the dimensions summarized in Table 2.1; in each sub-section of
Section 2.2, which focus on anomaly-based models, we expand the
taxonomic dimensions by listing and accurately detailing further clas-
sification criteria.

2.1.3.1 Type of model

IDSs must be divided into two opposite groups: misuse-based ws.
anomaly-based. The former create models of the malicious activity
while the latter create models of normal activity. Misuse-based mod-
els look for patterns of malicious activity; anomaly-based models look
tor unexpected activity. In some sense, IDSs can either “blacklist” or
“whitelist” the observed activity.

Typically, the first type of models consists in a database of all the
known attacks. Besides requiring frequent updates —which is just a
technical difficulty and can be easily automated— misuse-based sys-
tems assumes the feasibility of enumerating a// the malicious activity.

Despite the limitation of being inherently incomplete, misuse-
based systems widely adopted in the real-world [Roesch, 1999, 2009].
This is mainly due to their simplicity (i.e., attack models are trig-
gered by means of pattern matching algorithms) and accuracy (i.e.,
they generate virtually no false alerts because an attack signature can
either match or not).

Anomaly-based approaches are more complex because creating a

2.1. Intrusion Detection

Feature MISUSE-BASED ANOMALY-BASED

Modeled activity: Malicious Normal
Detection method: Matching Deviation
Threats detected: Known Any
False negatives: High Low

False positives: Low High

Maintenance cost: High Low
Attack desc.: Accurate Absent
System design: Easy Difficult

Table 2.1: Duality between misuse- and anomaly-based intrusion
detection techniques. Note that, an anomaly-based IDS can detect
“Any” threat, under the assumption that an attack always generates a
deviation in the modeled activity.

specification of normal activity is obviously a difficult task. For this
reason, there are no well-established and widely-adopted techniques;
instead, misuse models are as sophisticated as a pattern matching
problem. In fact, the research on anomaly-based systems is very ac-
tive.

These systems are effective only under the assumption that ma-
licious activity, such as an attack or malware being executed, a/ways
produces sufficient deviations from normal activity such that models
are triggered, i.e., anomalies. This clearly has the positive side-effect
of requiring zero knowledge on the malicious activity, which makes
these systems particularly interesting. The negative side-effect is their
tendency of producing a significant amount of false alerts (the notion
of “significant amount of false alerts” will be discussed in detail in
Section 2.4.2).

Obviously, an IDS can benefit of both the techniques by, for in-
stance, enumerating all the known attacks and using anomaly-based
heuristics to prompt for suspicious activity. This practice is often
adopted by modern anti-viruses.

It is important to remark that, differently from the other taxo-
nomic dimensions, the distinction between misuse- and anomaly-
based approaches is fundamental: they are based on opposite hy-
potheses and yield to completely different system designs and results.
'Their duality is highlighted in Table 2.1.

23

2.

DEeTtEcTING MALIciOUS ACTIVITY

24

D Y N

O B N N LA W e

Example 2.1.1 (Misuse vs. Anomaly) A misuse-based system M and
an anomaly-based system A process the same log containing a full
dump of the system calls invoked by the kernel of an audited ma-
chine. Log entries are in the form:

<function_name>(<argl_value>, <arg2_value>, ...)

The system M has the following simple attack modell:

if (function_name == ”"read”) {

/* ... */ if (match(decode(arg3_value), "a{43b{43c{4}d{43e{d43\
£{43...x{433RH TY7{3330Z jAXPBABAKARQ2AB2BBBBBAB\
XP8ABUJIXkweaHrJupfB2pQzePMhyzWwSuQnioXPOHUBXKN\
aQ1k0jpJHIVKOYokObPPuRN1ugt5PA. .. " 1))

fire_alert(”VLC bug 35568 is being exploited!™); /* ... */

3

The simple attack signature looks for a pattern generated from
the exploit. If the content of the buffer (i.e., arg3_value) that stores
the malicious file matches the given pattern then an alert is fired.
On the other hand, the system A has the following model, based
on the sample character distribution of each file’s content. Such fre-
quencies are calculated during normal operation of the application.

/* ... %/ cd[’<’] = {0.1, @.113 cd[’a’] = {8.01, 8.2} cd[’b’] =
{0.13, 8.233 /* ... */

b = decode(arg3_value);

if (!(cd[’c’][0] < count(’c’, b) < cd[’c’1[1]) ||\
I(cd[’<’1[8] < count(’<’, b) < cd[’<’]1[1]) |I\
[| ...) fire_alert(”Anomalous content detected!”);
VA4

Obviously, more sophisticated models can be designed. The pur-
pose of this example is that of highlighting the main differences be-
tween the two approaches.

A generalization of the aforementioned examples allows us to
better define an anomaly-based IDS.

LGenerated from the real world exploit http://milu@rn.con/exploits/9363

http://milw0rm.com/exploits/9303

2.1. Intrusion Detection

Definition 2.1.16 (Anomaly-based IDS) An anomaly-based IDSis a
type of IDS that generate alerts A by relying on normal activity pro-
files (Definition 2.1.3).

2.1.3.2 System activity

IDSs can be classified based on the type of the activity they monitor.
'The classic literature distinguishes between network-based and host-
based systems; Network-based Intrusion Detection System (NIDS) and
Host-based Intrusion Detection System (HIDS), respectively. The for-
mer inspect network traffic (i.e., raw bytes sniffed from the network
adapters), and the latter inspect the activity of the operating system.
'The scope of a network-based system is as large as the broadcast do-
main of the monitored network. On the other hand, the scope host-
based systems is limited to the single host.

Network-based IDSs have the advantage of having a large scope,
while host-based ones have the advantage of being fed with detailed
information about the host they run on (e.g., process information,
Central Processing Unit (CPU) load, number of active processes, num-
ber of users). This information is often unavailable to network-based
systems and can be useful to refine a decision regarding suspicious
activity. For example, by inspecting both the network traffic and
the kernel activity, an IDS can filter the alerts regarding the Apache
web server version 2.0.0 on all the hosts running version 2.0.2. On
the other hand, network-based systems are centralized and are much
more easy to manage and deploy. However, NIDS are limited to
the inspection of unencrypted payload, while HIDS may have it de-
crypted by the application layer. For example, a NIDS cannot detect
malicious HT'TPS traffic.

'The network stack is standardized (see Note 2.1.2), thus the def-
inition of network-based IDS is precise. On the other hand, because
of the immense variety of operating system implementations, a clear
definition of “host data” lacks. Existing host-based IDSs analyze au-
dit log files in several formats, other systems keep track of the com-
mands issued by the users through the console. Some efforts have
been made to propose standard formats for host data: Basic Security
Module (BSM) and its modern re-implementation called OpenBSM
[Watson and Salamon, 2006; Watson, 2006] are probably the most
used by the research community as they allow developers to gather
the full dump of the system calls before execution in the kernel.

25

2.

DEeTtEcTING MALIciOUS ACTIVITY

26

Note 2.1.2 Although the network stack implementation may vary
from system to system (e.g., Windows and Cisco platforms have dif-
ferent implementation of Trasmission Control Protocol (I'CP)), it is
important to underline that the notion of IP, TCP, HTTP packet is
well defined in a system-agnostic way, while the notion of operating
system activity is rather vague and by no means standardized.

Example 2.1.1 describes a sample host-based misuse detection
system that inspects the arguments of the system calls. A similar,
but more sophisticated, example based on network trafhic is Snort

[Roesch, 1999, 2009].

Note 2.1.3 (Inspection layer) Network-based systems can be further
categorized by their protocol inspection capabilities, with respect to
the network stack. webanomaly [Kruegel et al., 2005; Robertson,
2009] is network-based, in the sense that runs in promiscuous mode
and inspects network data. On the other hand, it also HT'TP-based,
in the sense that decodes the payload and reconstructs the HT'TP
messages (i.e., request and response) to detect attacks against web
applications.

2.1.3.3 Model construction method

Regardless of their type, misuse- or anomaly-based, models can be
specified either manually or automatically. However, for their nature,
misuse models are often manually written because they are based on
the exhaustive enumeration of known malicious activity. Typically,
these models are called attack signatures; the largest repository of
manually generated misuse signatures is released by the Sourcefire
Vulnerability Research Team™ [Sourcefire, 2009]. Misuse signatures
can be generated automatically: for instance, in [Singh et al., 2004]
a method to build misuse models of worms is described. Similarly,
low-interaction honeypots often uses malware emulation to auto-
matically generate signatures. Two recently proposed techniques are
[Portokalidis et al., 2006; Portokalidis and Bos, 2007].

On the other hand, anomaly-based models are more suitable for
automatic generation. Most of the anomaly-based approaches in the
literature focus on unsupervised learning mechanisms to construct
models that precisely capture the normal activity observed. Manually
specified models are typically more accurate and are less prone to FPs,
although automatic techniques are clearly more desirable.

2.1. Intrusion Detection

Example 2.1.2 (Learning character distributions) In Example2.1.1,
the described system A adopts a learning based character distribution
model for strings. Without going into the details, the idea described
in [Mutz et al., 2006] observes string arguments and estimate the
characters’ distribution over the American Standard for Information
Interxchange (ASCII) set. More practically, the model is a histogram
H(c), Ve € 0,255, where H(c) is the normalized frequency of char-
acter c. During detection, a x? test is used to decide whether or not
a certain sting is deemed anomalous.

Beside the obvious advantage of being resilient against evasion,
this model requires no human intervention.

27

2.

DEeTtEcTING MALIciOUS ACTIVITY

28

2.2 Relevant Anomaly Detection Techniques

Our research focuses on anomaly detection. In this section, the se-
lected state of the art approaches are reviewed with particular atten-
tion to network-, host- and web-based techniques, along with the
most influential approaches in the recent literature alert correlation.
This section provides the reader with the basic concepts to understand
our contributions.

2.2.1 Network-based techniques

Our research does not include network-based IDSs. Our contribu-
tions in alert correlation, however, leverage both network- and host-
based techniques, thus a brief overview of the latest (i.e., proposed
between 2001 and 2006) network-based detection approaches is pro-
vided in this section. We remark that all the techniques included in
the following are based on TCP/IP, meaning that models of normal
activity are constructed by inspecting the decoded network frames up
to the T'CP layer.

In Table 2.2 the selected approaches are marked with bullets to
highlight their specific characteristics. Such characteristics are based
on our analysis and experience, thus, other classifications may be pos-

sible. They are defined as follows:

Time refers to the use of zimestamp information, extracted from net-
work packets, to model normal packets. For example, nor-
mal packets may be modeled by their minimum and maximum
inter-arrival time.

Header means that the TCP header is decoded and the fields are
modeled. For example, normal packets may be modeled by
the observed ports range.

Payload refers to the use of the payload, either at Internet Protocol
(IP) or TCP layer. For example, normal packets may be mod-
eled by the most frequent byte in the observed payloads.

Stochastic means that stochastic techniques are exploited to create
models. For example, the model of normal packets may be
constructed by estimating the sample mean and variance of
certain features (e.g., port number, content length).

2.2. Relevant Anomaly Detection Techniques

Deterministic means that certain features are modeled following a
deterministic approach. For example, normal packets may be
only those containing a specified set of values for the Time To

Live (T'TL) field.

Clustering refers to the use of clustering (and subsequent classifi-
cation) techniques. For instance, payload byte vectors may be
compressed using a Self Organizing Map (SOM) where class

of different packets will stimulate neighbor nodes.

Note that, since recent research have experimented with several
techniques and algorithms, mixed approaches exist and often lead to
better results.

In [Mahoney and Chan, 2001] a mostly deterministic, simple
detection technique is presented. During training, each field of the
header of the TCP packets are extracted and tokenized into 4 bytes
bins (for memory efficiency reasons). The tokenized values are clus-
tered by means of their values and every time a new value is observed
the clustering is updated. The detection approach is deterministic,
since a packet is classified as anomalous if the values of its header
do not match any of the clusters. Besides the fact of being com-
pletely unsupervised, this techniques detects between 50% and 75%
of the probe and DoS attacks, respectively, in Intrusion Detection
eVALuation (IDEVAL) 1999 [Lippmann et al., 2000]. Slight per-
formance issues and a rate of 10 FPs per day (i.e., roughly, 1 false
alert every 2 hours) are the only disadvantage of the approach.

The approach described in [Kruegel et al., 2002] reconstructs the
payload stream for each service (i.e., port); this avoids to evade the
detection mechanism by using packet fragmentation. In addition to
this, a basic application inspection is performed to distinguish among
the different types of request of the specific service, e.g., for HTTP
the service type could be GET, POST, HEAD. The sample mean
and variance of the content length are also calculated and the distri-
bution of the bytes (interpreted as ASCII characters) found in the
payload is estimated using simple histograms. The anomaly score
used for detection aggregates information regarding the type of ser-
vice, expected content length and payload distribution. With a low
performance overhead and low FPR, this system is capable of detect-
ing anomalous interactions with the application layer. One critique

29

DEeTtEcTING MALIciOUS ACTIVITY

2.

ApproacH TiME Heaper Pavyroap StocHastic DEeTERM. CLUSTERING

[Mahoney and Chan, 2001] . °
[Kruegel et al., 2002] ° . .
[Sekar et al., 2002] ° . .
[Ramadas, 2003] ° .
[Mahoney and Chan, 2003b] ° . .
[Zanero and Savaresi, 2004] ° ° °
[Wang and Stolfo, 2004] ° °
[Zanero, 2005b] . . .
[Bolzoni et al., 2006] ° ° .
[Wang et al., 2006] ° °

Table 2.2: Taxonomy of the selected state of the art approaches for network-based anomaly detection.

30

2.2. Relevant Anomaly Detection Techniques

is that the system has not been tested on several applications other
than Domain Name System (DNS).

Probably inspired by the misuse-based, finite-state technique de-
scribed in [Vigna and Kemmerer, 1999], in [Sekar et al., 2002] the
authors describe a system to learn the TCP specification. The basic
finite state model is extended with a network of stochastic properties
(e.g., the frequency of certain transitions, the most common value
of a state attribute, the distribution of the values found in the fields
of the IP packets) among states and transitions. Such properties are
estimated during training and exploited at detection to implement
smoother thresholds that ensure as low as 5.5 false alerts per day. On
the other hand, the deterministic nature of the finite state machine
detects attacks with a 100% DR.

Learning Rules for Anomaly Detection (LERAD), the system de-
scribed in [Mahoney and Chan, 2003b] is an optimized rule min-
ing algorithm that works well on data with tokenized domains such
as the fields of TCP or HTTP packets. Although the idea imple-
mented in LERAD can be applied at any protocol layer, it has been
tested on TCP and HTTP but no more than the 64% of the attack
in the testing dataset were detected. Even if the FPR is acceptable
(i-e., 10 alerts per day) its limited detection capabilities worsen if real-
world data is used instead of synthetic datasets such as IDEVAL. In
[Tandon and Chan, 2003] the LERAD algorithm (Learning Rules
for Anomaly Detection) is used to mine rules expressing “normal”
values of arguments, normal sequences of system calls, or both. No
relationship is learned among the values of different arguments; se-
quences and argument values are handled separately; the evaluation
is quite poor however, and uses non-standard metrics.

Unsupervised learning techniques to mine pattern from payload
of packets has been shown to be an effective approach. Both the
network-based approaches described so far and other proposals [Labib
and Vemuri, 2002; Mahoney, 2003] had to cope with data repre-
sented using a high number of dimensions (e.g., a vector with 1460
dimensions, that is the maximum number of bytes in the TCP pay-
load). While the majority of the proposals circumvent the issue by
ignoring the payload, the aforementioned issue is brilliantly solved in
[Ramadas, 2003] and extended in Unsupervised Learning IDS with 2-
Stages Engine (ULISSE) [Zanero and Savaresi, 2004; Zanero, 2005b]
by exploiting the clustering capabilities of a SOM [Kohonen, 2000]
with a faster algorithm [Zanero, 2005a], specifically designed for

31

2.

DEeTtEcTING MALIciOUS ACTIVITY

32

high-dimensional data. The payload of TCP packets is indeed com-
pressed into the bi-dimensional grid representing the SOM, orga-
nized in such a way that class of packets can be quickly extracted.
'The approach relies on, and confirms, the assumption that the traf-
fic belongs to a relatively small number of services and protocols that
can be mapped onto a small number of clusters. Network packet are
modeled as a multivariate time-series, where the variables include the
packet class into the SOM plus some other features extracted from
the header. At detection, a fast discounting learning algorithm for
outlier detection [Yamanishi et al., 2004] is used to detect anoma-
lous packets. Although the system has not been released yet, the
prototype is able to reach a 66.7% DR with as few as 0.03% FPs.
In comparison, one of the prototype dealing with payloads available
in literature [Wang et al., 2005], the best overall result leads to the
detection of 58.7% of the attacks, with a FPR that is between 0.1%
and 1%. The main weakness of this approach is that it works at the
granularity of the packets and thus might be prone to simple evasion
attempts (e.g., by splitting an attack onto several malicious packets,
interleaved with long sequence of legit packets). Inspired by [Wang
et al., 2005] and [Zanero and Savaresi, 2004], [Bolzoni et al., 2006]
has been proposed.

The approach presented in [Wang et al., 2005] differs from the
one described in [Zanero and Savaresi, 2004; Zanero, 2005b] even
though the underlying key idea is rather similar: byte frequency dis-
tribution. Both the two approaches, and also [Kruegel et al., 2002],
exploit the distribution of byte values found in the network packets
to produce some sort of “normality” signatures. [Wang et al., 2005]
utilizes a simple clustering algorithm to aggregate similar packets
and produce a smoother and more abstract signature, [Zanero and
Savaresi, 2004; Zanero, 2005b] introduces the use of SOM to ac-
complish the task of finding classes of normal packets.

An extension to [Wang and Stolfo, 2004], which uses 1-grams, is
described in [Wang et al., 2006] that uses higher-order, randomized
n-grams to mitigate mimicry attacks. In addition, the newer ap-
proach does not estimate the frequency distribution of the n-grams,
which causes many FPs if n increases. Instead, it adopts a filtering
technique to compress the n-grams into memory efficient arrays of
bits. This decreased the FPR of about two orders of magnitude.

2.2. Relevant Anomaly Detection Techniques

2.2.2 Host-based techniques

A survey of the latest (i.e., proposed between 2000 and 2009) host-
based detection approaches is provided in this section. Most of the
techniques leverage system call invoked by the kernel to create models
of normal behavior of processes.

In Table 2.3 the selected approaches are marked with bullets to
highlight their specific characteristics. Such characteristics are based
on our analysis and experience, thus, other classifications may be pos-

sible. They are defined as follows:

Syscall refers, in general, to the use of system calls to characterize
normal host activity. For example, a process may be modeled
by the stream of system calls invoked during normal operation.

Stochastic means that stochastic techniques are exploited to create
models. For example, the model of normal processes may be
constructed by estimating the sample mean and variance of
certain features (e.g., length of the open’s path argument).

Deterministic means that certain features are modeled following a
deterministic approach. For example, normal processes may be
only those that use a fixed number, say 12, of file descriptors.

Comprehensive approaches are those that have been extensively de-
veloped and, in general, incorporate a rich set of features, be-
yond the proof-of-concept.

Context refers to the use of context information in general. For ex-
ample, the normal behavior of processes can be modeled also
by means of the number of the environmental variables utilized
or by the sequence of system calls invoked.

Data means that the data flow is taken into account. For example,
normal processes may be modeled by the set of values of the
system call arguments.

Forensics means that the approach has been also evaluated for off-
line, forensics analysis.

Our contributions are included in Table 2.3 and are detailed in
Chapter 3. Note that, since recent research have experimented with

33

DEeTtEcTING MALIciOUS ACTIVITY

2.

APPROACH

SyscALL

DEeTERM.

StocuasTIC

COMPREHEN.

CONTEXT

Data

Forensics

[Lee and Stolfo, 2000]
[Sekar et al., 2001]
[Wagner and Dean, 2001]
[Tandon and Chan, 2003]
[Kruegel et al., 2003a]
[Zanero, 2004]

[Giffin et al., 2005]
[Mutz et al., 2006]
[Bhatkar et al., 2006]
[Mutz et al., 2007]
[Fetzer and Suesskraut, 2008]
[Maggi et al., 2008]
[Maggi et al., 2009a]
[Frossi et al., 2009]

Table 2.3: Taxonomy of the selected state of the art approaches for host-based anomaly detection. Our contributions are

highlighted.

34

2.2. Relevant Anomaly Detection Techniques

several techniques and algorithms, mixed approaches exist and often
lead to better results.
Host-based anomaly detection has been part of intrusion detec-

tion since its very inception: it already appears in the seminal work [An-

derson, 1980]. However, the definition of a set of statistical charac-
terization techniques for events, variables and counters such as the
CPU load and the usage of certain commands is due to [Denning,
1987]. 'The first mention of intrusion detection through the analysis
of the sequence of syscalls from system processes is in [Forrest et al.,
1996], where “normal sequences” of system calls are considered. A
similar idea was presented earlier in [Ko et al., 1994], which proposes
a misuse-based idea by manually describe the canonical sequence of
calls of each and every program, something evidently impossible in
practice.

In [Lee and Stolfo, 2000] a set of models based on data mining
techniques is proposed. In principle, the models are agnostic with
respect to the type of raw event collected, which can be user activ-
ity (e.g., login time, CPU load), network packets (e.g., data collected
with tcpdump), or operating system activity (e.g., system call traces
collected with OpenBSM). Events are processed using automatic clas-
sification algorithms to assign labels drawn from a finite set. In ad-
dition, frequent episodes are extracted and, finally, association rules
among events are mined. Such there algorithms are combined to-
gether at detection time. Events marked with wrong labels, unex-
pectedly frequent episodes or rule violations will all trigger alerts.

Alternatively, other authors proposed to use static analysis, as op-
posed to dynamic learning, to profile a program’s normal behavior.
The technique described in [Wagner and Dean, 2001] combines the
benefits of dynamic and static analysis. In particular, three models
are proposed to automatically derive a specification of the application
behavior: call-graph, context-free grammars (or non-deterministic
pushdown automata), and digraphs. All the models’ building blocks
are system calls. The call-graph is statically constructed and then sim-
ulated, while the program is running, to resolve non-deterministic
paths. In some sense, the context-free grammar model —called ab-
stract stack— is the evolution of the call-graph model as it allows
to keep track of the state (i.e., call stack). The digraph —actually
k-graph— model is keeps track of k-long sequences of system calls
from an arbitrary point of the execution. Despite is simplicity, which
ensures a negligible performance overhead with respect to the others,

35

2. DEeTECTING MALICcIOUS ACTIVITY

this model achieves the best detection precision.

In [Tandon and Chan, 2003] the LERAD algorithm (Learning
Rules for Anomaly Detection) is described. Basically, it is a learning
system to mine rules expressing normal values of arguments, normal
sequences of system calls, or both. In particular, the basic algorithm
learns rules in the foom A = a,B = b,--- = X € {z1,22,...}
where uppercase letters indicate parameter names (e.g., path, f1 ags)
while lowercase symbols indicate their corresponding values. For
some reason, the rule-learning algorithm first extracts random pairs
from the training set to generate a first set of rules. After this, two
optimization steps are run to remove rules with low coverage and
those prone to generate FPs (according to a validation dataset). A
system call is deemed anomalous if no matching rule is found. A
similar learning and detection algorithm is run among sequences of
system calls. The main advantage of the described approach is that
no relationship is learned among the values of different arguments
of the same system call. Beside the unrealistic assumption regarding
the availability of a labeled validation dataset, another side issue is
that the evaluation is quite poor and uses non-standard metrics.

LibAnomaly [Kruegel et al., 2003a] is a library to implement stochas-
tic, self-learning, host-based anomaly detection systems. A generic
anomaly detection model is trained using a number of system calls
from a training set. At detection time, a likelihood rating is returned
by the model for each new, unseen system call (i.e., the probability of
it being generated by the model). A confidence rating can be com-
puted at training for any model, by determining how well it fits its
training set; this value can be used at runtime to provide additional
information on the reliability of the model. When data is available,
by using cross-validation, an overfitting rating can also be optionally
computed.

LibAnomaly includes four basic models. The string length model
computes, from the strings seen in the training phase, the sample
mean p and variance o2 of their lengths. In the detection phase,
given [, the length of the observed string, the likelihood p of the in-
put string length with respect to the values observed in training is

2
equal to one if | < p+ o and lfi;ﬂ otherwise. As mentioned in the

Example 2.1.2, the character distribution model analyzes the discrete
probability distribution of characters in a string. At training time, the
so called ideal character distribution is estimated: each string is con-

36

2.2. Relevant Anomaly Detection Techniques

sidered as a set of characters, which are inserted into an histogram, in
decreasing order of occurrence, with a classical rank order/frequency
representation. During the training phase, a compact representation
of mean and variance of the frequency for each rank is computed. For
detection, a x? Pearson test returns the likelihood that the observed
string histogram comes from the learned model. The structural infer-
ence model encodes the syntax of strings. These are simplified before
the analysis, using a set of reduction rules, and then used to generate
a probabilistic grammar by means of a Markov model induced by ex-
ploiting a Bayesian merging procedure, as described in [Stolcke and
Omohundro, 1994c, 1993b, 1994b]. The token search model is ap-
plied to arguments which contain flags or modes. During detection,
if the field has been flagged as a token, the input is compared against
the stored values list. If it matches a former input, the model returns
1 (i.e., not anomalous), else it returns O (i.e., anomalous).

In [Zanero, 2004] a general Bayesian framework for encoding
the behavior of users is proposed. The approach is based on hints
drawn from the quantitative methods of ethology and behavioral sci-
ences. 'The behavior of a user interacting with a text-based console is
encoded as a Hidden Markov Model (HMM). The observation set
includes the commands (e.g., 1s, vim, cd, du) encountered during
training. Thus, the system learns the user behavior in terms of the
model structure (e.g., number of states) and parameters (e.g., transi-
tion matrix, emission probabilities). At detection, unexpected or out
of context commands are detected as violations (i.e., lower value) of
the learned probabilities. One of the major drawbacks of this system
is its applicability to real-world scenarios: in fact, todays’ host-based
threats perform more sophisticated and stealthy operations than in-
voking commands.

In[Giffin etal., 2005] an improved version of [Wagner and Dean,
2001] is presented. It is based on the analysis of the binaries and in-
corporates the execution environment as a model constraint. More
precisely, the environment is defined as the portion of input known
at process load time and fixed until it exits. In addition, the technique
deals with dynamically-linked libraries and is capable of constructing
the data-flow analysis even across different shared-objects.

An extended version of LibAnomaly is described in [Mutz et al.,
2006]. The basic detection models are essentially the same. In addi-
tion, the authors exploit Bayesian networks instead of naive thresh-
olds to classify system calls according to each model output. This

37

DEeTtEcTING MALIciOUS ACTIVITY

— «—om“” ®

1 source.dir = dir; target_file = file; FDiaequal FD3
out = open(target_file, WR); start(I, O)
i) uhi ; _ close(FD1g)
2 push(source.dir); while ((dir-name =
pop()) != NULL) { @
3 d = opendir(dir.-name); foreach (FD3 = open(F3, M3) FD! ,equal FD1p
dir-entry € d) { Maequal 0 | "3eIementOfWR} c|osle4(FD’)
4 if (isdirectory(dir-entry)) 34 o
5 push(dir_entry); else {
6 in = open(dir_entry, RD); read(in isp; ! i
P/ bt wri\{e(out, bah isDirectory F8 opendir(Fg) close(FD44) FDj3equal FD3
7 close(in); Fg isWithinDir Fg isWithinDir I write(FD13)
8 } } Di4equal FD
(9) , } close(out); return O; isDirectory Fg 14¢9 1 FDjpequal FDyq

[N

FgisWithinDir Fg
©

FD11 = open(Fy1, M11) read(FD12)

Fiiequal Fg

FiGure 2.5: A data flow example with both unary and binary rela-
tions.

results in an improvement in the DRs. Some of our work described
in Section 3 is based upon this and the original version of LibAnoma-
ly.

Data-flow analysis has been also recently exploited in [Bhatkar
et al., 2006], where an anomaly detection framework is developed.
Basically, it builds an Finite State Automaton (FSA) model of each
monitored program, on top of which it creates a network of relations
(called properties) among the system call arguments encountered dur-
ing training. Such a network of properties is the main difference
with respect to other FSA based IDSs. Instead of a pure consrol flow
check, which focuses on the behavior of the software in terms of se-
quences of system calls, it also performs a so called daza flow check
on the internal variables of the program along their existing cycles.
'This approach has really interesting properties, among which the fact
that not being stochastic useful properties can be demonstrated in
terms of detection assurance. On the other hand, though, the set of
relationships that can be learned is limited (whereas the relations en-
coded by means of the stochastic models we describe in Section 3.2.3
are not decided a priori and thus virtually infinite). The relations are
all deterministic, which leads to a brittle detection model potentially
prone to FPs. Finally, it does not discover any type of relationship
between different arguments of the same call.

This knowledge is exploited in terms of unary and binary rela-

2.2. Relevant Anomaly Detection Techniques

tionships. For instance, if an open system call always uses the same
filename at the same point, a unary property can be derived. Simi-
larly, relationships among two arguments are supported, by inference
over the observed sequences of system calls, creating constraints for
the detection phase. Unary relationships include equal (the value
of a given argument is always constant), elementOf (an argument
can take a limited set of values), subsetOf (a generalization of el-
ementOf, indicating that an argument can take multiple values, all
of which drawn from a set), range (specifies boundaries for numeric
arguments), isWithinDir (a file argument is always contained within
a specified directory), hasExtension (file extensions). Binary rela-
tionships include: equal (equality between system call operands),
iswithinDir (file located in a specified directory; contains is the oppo-
site), hasSameDirAs, hasSameBaseAs, hasSameExtensionAs (two argu-
ments have a common directory, base directory or extension, respec-
tively).

'The behavior of each application is logged by storing the Process
IDentifier (PID), the Program Counter (PC), along with the system
calls invoked, their arguments and returned value. The use of the PC
to identify the states in the FSA stands out as an important differ-
ence from other approaches. The PC of each system call is deter-
mined through stack unwinding (i.e., going back through the acti-
vation records of the process stack until a valid PC is found). The
technique obviously handles process cloning and forking.

'The learning algorithm is rather simple: each time a new value
is found, it is checked against all the known values of the same type.
Relations are inferred for each execution of the monitored program
and then pruned on a set intersection basis. For instance, if relations
R; and Rj are learned from an execution trace 77 but R; only is
satisfied in trace T, the resulting model will not contain Ry. Such a
process is obviously prone to FPs if the training phase is not exhaus-
tive, because invalid relations would be kept instead of being dis-
carded. Figure 2.5 shows an example (due to [Bhatkar et al., 2006])
of the final result of this process. During detection, missing transi-
tions or violations of properties are flagged as alerts. The detection
engine keeps track of the execution over the learned FSA, comparing
transitions and relations with what happens, and raising an alert if an
edge is missing or a constraint is violated.

'This FSA approach is promising and has interesting features es-
pecially in terms of detection capabilities. On the other hand, it

39

2.

DEeTtEcTING MALIciOUS ACTIVITY

40

only takes into account relationships between different types of argu-
ments. Also, the set of properties is limited to pre-defined ones and
totally deterministic. This leads to a possibly incomplete detection
model potentially prone to false alerts. In Section 3.3 we detail how
our approach improves the original implementation.

Another approach based on the analysis of system calls is [Fet-
zer and Suesskraut, 2008]. In principle, the system is similar to the
behavior-based techniques we mentioned before. However, the au-
thors have tried to overcome two limitations of the learning-based
approaches which, typically, have high FPRs and require a quite am-
ple training set. This last issue is mitigated by adopting a completely
different approach: instead of requiring training, the system admin-
istrator is required to specify a set of small whitelist-like models of the
desired behavior of a certain application. At runtime, these models
are evolved and adapted to the particular context the protected ap-
plication runs into; in particular, the system exploits taint analysis to
update a system call model on-demand. This system can offer very
high levels of protection but the effort required to specify the initial
model may not be so trivial; however, the effort may be worth for
mission-critical applications on which customized hardening would

be needed anyways.

2.2.3 Web-based techniques

A survey of the latest (i.e., proposed between 2003 and 2009) host-
based detection approaches is provided in this section. All the tech-
niques included in the following are based on HT'TP, meaning that
models of normal activity are constructed either by inspecting the de-
coded network frames up to the HT'TP layer, or by acting as reverse
HTTP proxies.

In Table 2.4 the selected approaches are marked with bullets to
highlight their specific characteristics. Such characteristics are based
on our analysis and experience, thus, other classifications may be pos-
sible. They are defined as follows:

Adaptive refers to the capability of self-adapting to variations in the
normal behavior.

Stochastic means that stochastic techniques are exploited to create
models. For example, the model of normal HT'TP requests

2.2. Relevant Anomaly Detection Techniques

may be constructed by estimating the sample mean and vari-
ance of certain features (e.g., length of the string parameters
contained in a POST request).

Deterministic means that certain features are modeled following a
deterministic approach. For example, normal HTTP sessions
may be only those that are generated by a certain finite state
machine.

Comprehensive approaches are those that have been extensively de-
veloped and, in general, incorporate a rich set of features, be-
yond the proof-of-concept.

Response indicates that HT'TP responses are modeled along with
HTTP requests. For instance, normal HTTP responses may
be modeled with the average number of <script /> nodes found
in the response body.

Session indicates that the concept of web application session is taken
into account. For example, normal HTTP interactions may be
modeled with the sequences of paths corresponding to a stream

of HT'TP requests.

Data indicates that parameters (i.e., GET and POST variables) con-
tained into HTTP requests are modeled. For example, normal
HTTP request may be modeled as the cardinality of string pa-

rameters in each I'CqUCSt.

Our contributions are included in Table 2.4 and detailed in Chap-
ter 4. Note that, since recent research have experimented with several
techniques and algorithms, mixed approaches exist and often lead to
better results.

Anomaly-based detectors specifically designed to protect web ap-
plications are relatively recent. They have been first proposed in [Cho
and Cha, 2004], where a system to detect anomalies in web applica-
tion sessions is described. Like most of the approaches in the litera-
ture, this technique assumes that malicious activity expresses itself in
the parameters found into HT'TP requests. In the case of this tool,
such data is parsed from the access logs. Using Bayesian technique
to assign a probability score to the k-sequences (k = 3 in the exper-
iments) of requested resources (e.g., /path/to/page), the system can
spot out unexpected sessions. Even though this approach has been

41

DEeTtEcTING MALIciOUS ACTIVITY

2.

APPROACH

ADAPTIVE

STocHASTIC

DETERMINISTIC

COMPREHEN.

REspPoNSE

SESSION

Data

[Cho and Cha, 2004]
[Kruegel et al., 2005]
[Ingham et al., 2007]
[Criscione et al., 2009]
[Song et al., 2009]
[Maggi et al., 2009c]
[Robertson et al., 2009]

Table 2.4: Taxonomy of the selected state of the art approaches for web-based anomaly detection.

highlighted.

Our contributions are

42

2.2. Relevant Anomaly Detection Techniques

poorly evaluated, it proposed the basic ideas on which the current
research is still based.

'The first technique to accurately model the normal behavior of
web application parameters is described in [Kruegel et al., 2005].
This approach is implemented in webanomaly, a tool that can be de-
ployed in real-world scenarios. In some sense, webanomaly [Robert-
son, 2009] is the adaptation of LibAnomaly models to capture the
normal features of the interaction between client and server-side ap-
plications through the HT'TP protocol. Instead of modeling a system
call and its arguments, the same models are mapped onto resources
and their parameters (e.g., ?p=1&shou=false). Obviously, parameters
are the focus of the analysis which employs string lenght models, to-
ken finder models, and so forth; in addition, sessions features are cap-
tured as well in terms of sequences of resources. In recent versions of
the tools, webanomaly incorporated models of HT'TP responses sim-
ilar to those described in [Criscione et al., 2009] (see Section 4.1.2).
Besides the features shared with [Kruegel et al., 2005], the approach
models the Document Object Model (DOM) to enhance the detection
capabilities against SQL injection and XSS attacks. In Section 4.3 an
approach that exploit HTTP responses to dezect changes and update
other anomaly models is described.

The approach described in [Ingham et al., 2007] learns deter-
ministic models, FSA, of HT'TP requests. The idea of extracting re-
sources and parameters is similar to that described in [Kruegel et al.,
2005]. However, instead of adopting sophisticated models such as
HMM to encode strings’ grammar, this system applies drastic re-
ductions to the parameters values. For instance, dates are mapped
to {0, 1} where 1 indicates that the format of the date is known, 0
otherwise; filenames are replaced with either a length or the exten-
sion, if the file-type is known; and so forth. For each request, the
output of this step is a list of tokens that represent the states of the
FSA. Transitions are labeled with the same tokens by processing
them in chronological order (i.e., as they appear in the request). In
some sense, this approach can be considered a porting to the web do-
main of the techniques used to model process behavior by means of
FSA [Wagner and Dean, 2001; Bhatkar et al., 2006].

A tool to protect against code-injection attacks has been recently
proposed in [Song et al., 2009]. The approach exploits a mixture
of Markov chains to model legitimate payloads at the HT'TP layer.

'The computational complexity of n-grams with large n is solved us-

43

2.

DEeTtEcTING MALIciOUS ACTIVITY

44

ing Markov chain factorization, making the system algorithmically
efficient.

2.3. Relevant Alert Correlation Techniques

2.3 Relevant Alert Correlation Techniques

A survey of the latest (i.e., proposed between 2001 and 2009) alert
correlation approaches is provided in this section.

In Table 2.5 the selected approaches are marked with bullets to
highlight their specific characteristics. Such characteristics are based
on our analysis and experience, thus, other classifications may be pos-

sible. They are defined as follows:

Formal means that formal methods are used to specify rigorous mod-
els used in the correlation process. For instance, the relations
among alerts are specified by means of well defined first-order
logic formulae.

Verification means that the success of each alert is taken into ac-
count. For instance, all the alerts related to attacks against
port 80 are discarded if the target system does not run HT'TP

services.

Stochastic means that stochastic techniques are exploited to create
models. For example, statistic hypothesis tests may be used to
decide correlation among stream of alerts.

Comprehensive approaches are those that have been extensively de-
veloped and, in general, incorporate a rich set of features, be-
yond the proof-of-concept.

Time refers to the use of #imestamp information extracted from alerts.

For example, alerts streams may be modeled as time series.

Impact refers to techniques that take into account the impact (e.g.,
the cost) of handling alerts. For instance, alerts regarding non-
business critical machines are marked low priority.

Clustering refers to the use of clustering (and subsequent classifica-
tion) techniques. For instance, similar alerts can be grouped
together by exploiting custom distance metrics.

Our contributions are included in Table 2.5 and are detailed in
Chapter 5. Note that, since recent research have experimented with
several techniques and algorithms, mixed approaches exist and often
lead to better results.

45

DEeTtEcTING MALIciOUS ACTIVITY

2.

"paIYSIYSTY 218 SUOTINALIIUOD IN()

"pAYSIYSIY 218 STUONNGLIU0D IN() “UONE[II0 11Tk 10 soyoeoidde 11e o) Jo 23els PIdIYAs oY) Jo AWOUOXET, :G7 A[qeT,

[96007 “Te 32 r38eAT]

[800C “Te 30 ZoUnIEA[-seL1]
[£00¢ ‘oxauerz pue 133eAT]
[9007 “Te 32 eqIUTIA |

[¥00 ‘uos110qoy pue [pFonry[]
[#00C “Te 30 m3[eA |

[€£00¢ ‘92T pue ulD)]

[200¢ “Tomr(q pue yosin(]
[200T “Te 32 uLIoA[]

[200C “@Serjy] pue suaddn)y]
[200T “Te 30 se110d]

[TO0T ‘Touun|g pue sopTeA |
[T00T ‘1dsapp pue reqa(T]

LOVAIN] ONI¥ELSNT)) OILLSVHDO.LS dINIT,

‘NTHIIINOD)

Eaniicay

TVINYO,]

HOVO¥ddy

46

2.3. Relevant Alert Correlation Techniques

A deterministic intrusion detection technique adapted for alert
correlation is shown in [Eckmann et al., 2000]. The use of finite state
automata enables for complex scenario descriptions, but it requires
known scenarios signatures. It is also unsuitable for pure anomaly
detectors which cannot differentiate among different types of events.
Similar approaches, with similar strengths and shortcomings but dif-
ferent formalisms, have been tried with the specification of pre- and
post-conditions of the attacks [Templeton and Levitt, 2000], some-
times along with time-distance criteria [Ning et al., 2004]. It is pos-
sible to mine scenario rules directly from data, either in a supervised
[Dain and Cunningham, 2001] or unsupervised [Julisch and Dacier,
2002] fashion.

Statistical techniques have been also proposed, for instance E-
MERALD implements an alert correlation engine based on proba-
bilistic distances [Valdes and Skinner, 2001] which relies on a set of
similarity metrics between alerts to fuse “near” alerts together. Un-
fortunately, its performance depends on appropriate choice of weight-
ing parameters.

'The best examples of algorithms that do not require such fea-
tures are based on time-series analysis and modeling. For instance,
[Viinikka et al., 2006] is based on the construction of time-series
by counting the number of alerts occurring into sampling intervals;
the exploitation of trend and periodicity removal algorithms allows
to filter out predictable components, leaving rea/ alerts only as the
output. More than a correlation approach, this is a false-positive and
noise-suppression approach, though.

In[Qin and Lee, 2003] an interesting algorithm for alert correla-
tion which seems suitable also for anomaly-based alerts is proposed.
Alerts with the same feature set are grouped into collections of time-
sorted items belonging to the same “type” (following the concept of
type of [Viinikka et al., 2006]). Subsequently, frequency time series
are built, using a fixed size sliding-window: the result is a time-series
for each collection of alerts. The prototype then exploits the Granger
Causality Test (GCT) [Thurman and Fisher, 1998], a statistical hy-
pothesis test capable of discovering causality relationships between
two time series when they are originated by linear, stationary pro-
cesses. 'The GCT gives a stochastic measure, called Granger Causal-
ity Index (GCI), of how much of the history of one time series (the
supposed cause) is needed to “explain” the evolution of the other one

(the supposed consequence, or target). The GCT is based on the es-

47

2.

DEeTtEcTING MALIciOUS ACTIVITY

48

timation of two models: the first is an Auto Regressive (AR) model,
in which future samples of the target are modeled as influenced only
by past samples of the target itself; the second is an Auto Regressive
Moving Average eXogenous (ARMAX) model, which also takes into
account the supposed cause time series as an exogenous component.
A statistical F-test built upon the model estimation errors selects the
best-fitting model: if the ARMAX fits better, the cause effectively
influences the target.

In [Qin and Lee, 2003] the unsupervised identification of causal
relationships between events is performed by repeating the above
procedure for each couple of time-series. The advantage of the ap-
proach is that it does not require prior knowledge (even if it may use
attack probability values, if available, for an optional prioritization
phase). However, in Section 5 we show that the GCT fails however
in recognizing “meaningful” relationships between IDEVAL attacks.

Techniques based on the reduction of FPs in anomaly detection
systems has also been studied in [Frias-Martinez et al., 2008]. Simi-
lar behavioral profiles for individual hosts are grouped together using
a k-means clustering algorithm. However, the distance metric used
was not explicitly defined. Coarse network statistics such as the av-
erage number of hosts contacted per hour, the average number of
packets exchanged per hour, and the average length of packets ex-
changed per hour are all examples of metrics used to generate behav-
ior profiles. A voting scheme is used to generate alerts, in which alert-
triggering events are evaluated against profiles from other members
of that cluster. Events that are deemed anomalous by all members
generate alerts.

Last, as will be briefly explained in Chapter 5, the alert correla-
tion task may involve alert verification, i.e., before reporting an alert,
a procedure is run to werify whether or not the attack actually left
some traces or, in general, had some effect. For example, this may
involve checking whether a certain TCP port, say, 80, is open; if not,
all alerts regarding attacks against the protected HT TP server may
be safely discarded, thus reducing the FPR. Although an alert corre-
lation system would benefit from such techniques, we do not review
them, since our focus is on the actual correlation phase, i.e., recogniz-
ing related events, rather than pruning uninteresting events. The in-
terested reader may refer to a recent work [Bolzoni et al., 2007] that,
beside describing an implementation of a novel verification system,
introduces the alert verification problem and provides a comprehen-

2.3. Relevant Alert Correlation Techniques

sive review of the related work.

49

2.

DEeTtEcTING MALIciOUS ACTIVITY

50

2.4

Evaluation Issues and Challenges

'The evaluation of IDSs is per s¢ an open, and very difficult to solve, re-
search problem. Besides two attempts of proposing a rigorous method-
ology for IDS evaluation [Puketza et al., 1996, 1997], there are no
standard guidelines to perform this task. This problem is magnified
by the lack of a reliable source of test data, that is a well-known is-
sue. However, building a dataset to conduct repeatable experiments
is clearly a very difficult task because it is nearly impossible to repro-
duce the activity of a real-world computer infrastructure. In partic-

ular:

o for privacy reasons, researchers cannot audit an infrastructure

and collect arbitrary data; in the best case, the use of obfusca-
tion and anonymization of the payload (e.g., character substi-
tution on text-based application protocol) to protect the pri-
vacy, produces unrealistic content that will make inspection
techniques adopted by many IDS to fail. For instance, changes
in the syntax and lexicon of strings have negative consequences
for models such as the character distribution estimator described
in Example 2.1.2.

System activity collected from real-world infrastructures in-
evitably contain intrusions and not all of them are known in
advance (i.e., 0-day attacks); this makes the generation of a
truth file a very difficult task. To workaround this problem, it
is a common practice to filter out known attacks using misuse-
based systems such as Snort and use the alert log as the truth
file. Unfortunately, this implicitly assumes that the chosen
misuse-based system is the baseline of the evaluation (i.e., the
best tool). On the other hand, anomaly-based systems are sup-
posed to detect unknown attacks; thus, using the alert log as
the truth file makes the evaluation of such systems completely
meaningless.

In the past, two attempts have been made to simulate the user
activity on a comprehensive computer infrastructure, i.e., a mil-
itary computer network, to collect clean, background audit data
to train IDSs based on unsupervised learning techniques. Even
though this ensures that the traffic contain no intrusions, the

2.4. Evaluation Issues and Challenges

approach has been shown to have at least two types of short-
comings. The first is described in Section 2.4.1. 'The second
problem is that, the attacks included (labeled in advance) do
once again represent only known attacks since the exploits are
taken from public repositories. Thus, IDSs cannot be tested
against realistic intrusions such as custom attacks against pro-
prietary and never-exploited-before systems.

Attempts to partially solve these issues can be divided into two
groups. Some approaches proposes automated mechanisms to gen-
erating testing datasets, while other concentrate on the methodologies
used to perform the evaluation task. Notably, in [Cretu et al., 2008b]
a traffic sanitization procedure is proposed in order to clean the back-
ground traffic; however, it is not clear to what extent this method is
substantially different from running an arbitrary anomaly-based IDS
to filter out attacks. Examples of publicly available, but obsolete or
unreliable, datasets are [Lippmann et al., 1999, 2000; Potter, 2006;
Swartz, 2009; S. and D., 1999]: as exemplified by the critique de-
scribed in the next section, however, all these dataset are either un-
usable because of their lack of a #ruth file or are extremely biased with
respect to the real world. Among the methodological approaches,
[Vigna et al., 2004] proposes a tool to automatically test the effec-
tiveness of evasion techniques based on mutations of the attacks. In-
stead, [Lee and Xiang, 2001] proposes alternative metrics to evaluate
the detection capabilities, [Sharif et al., 2007] focuses on the evalu-
ation issues in the case of host-based IDSs and defines some criteria
to correctly calculate their accuracy.

Recently, probably inspired by [Potter, 2006], the research is mov-
ing toward mechanisms to instrument large computer security exer-
cises [Augustine et al., 2006] and contests such as the DEFCON
Capture The Flag (CTF)? with the goal of collecting datasets to test
IDS. The most up-to-date example is [Sangster et al., 2009], which
describes the efforts made to collect the public dataset available at
[Sangster, 2009]. This dataset have the advantage of containing a rich
variety of attacks including 0-days and custom, unpublished exploits.
However, because of the aforementioned reasons, this approach fails
once again on the labeling phase since Snort is used to generate the
truth file. A side question is to what extent the background traffic

2Details available at uuu. defcon. org

51

www.defcon.org

2.

DEeTtEcTING MALIciOUS ACTIVITY

52

represent the real activity on the Internet. In fact, since the competi-
tion was run in the controlled environment of a private network, the
users tend to behave in a different way, not to mention that most of
the participants are experienced computer users.

2.4.1 Regularities in audit data of IDEVAL

IDEVAL is basically the only dataset of this kind which is freely
available along with truth files; in particular we used the 1999 dataset
[Lippmann et al., 2000]. These data are artificially generated and
contain both network and host auditing data. A common ques-
tion is how realistic these data are. Many authors already analyzed
the network data of the 1999 dataset, finding many shortcomings
[McHugh, 2000; Mahoney and Chan, 2003a]. Our own analysis,
published in [Maggi et al., 2009a], of the 1999 host-based auditing
data revealed that this part of the dataset is all but immune from
problems. The first problem is that in the training datasets there are
too few execution instances for each software, in order to properly
model its behavior, as can be seen in Table 3.5. Out of (just) 6 pro-
grams present, for two (fdformat and eject), only a handful of exe-
cutions is available, making training unrealistically simple.

The number of system calls used is also extremely limited, making
execution flows very plain. Additionally, most of these executions
are similar, not covering the full range of possible execution paths of
the programs (thus causing overfitting of any anomaly model). For
instance, in Figure 2.6 we have plotted the frequency of the length
(in system calls) of the various executions of telnetd on the training
data. The natural clustering of the data in a few groups clearly shows
how the executions of the program are sequentially generated with
some script, and suffer of a lack of generality.

System calls arguments show the same lack of variability: in all
the training dataset, all the arguments of the system calls related to
telnetd belong to the following set:

fork, .so.l, utmp, wtmp, initpipe, exec, netconfig,
service_door, :zero, logindmux, pts

'The application layer contains many flaws, too. For instance, the
FTP operations (30 sessions on the whole) use a very limited sub-
set of file (on average 2 per session), and are performed always by
the same users on the same files, for a limitation of the synthetic

2.4. Evaluation Issues and Challenges

700

500 4
400 | —

300

200 1
100 I 4
0 ‘ ‘ ‘ ‘ || L - ‘
25 30 35 40 45

50 55 60 65 70
Distance in syscalls

Number of occurrencies

FIGURE 2.6: telnetd: distribution of the number of other system calls
among two execve system calls (i.e., distance between two consecu-
tive execve).

generator of these operations. In addition, during training, no up-
loads or idle sessions were performed. Command executions are also
highly predictable: for instance, one script always execute a cycle
composed of cat, mail, mail again, and at times 1ynx, sometimes re-
peated twice. The same happens (but in a random order) for rn, sh,
ps and 1s. In addition, a number of processes have evidently crafted
names (e.g. logout is sometimes renamed lockout or Togeut); the
same thing happens with path names, which are sometimes different
(e.g. /usr/bin/1ynx or /opt/local/bin/1ynx), but an analysis shows
that they are the same programs (perhaps symbolic links generated
to create noise over the data). The combination of the two creates
interesting results such as /etc/loKout or /opt/local/bin/18gout. In
a number of cases, processes 1ynx, mail and q have duplicate execu-
tions with identical PID and timestamps, and with different paths
and/or different arguments; this is evidently an inexplicable flaw of
the dataset. We also found many program executions to be curiously
meaningless. In fact, the BSM traces of some processes contain just
execve calls, and this happens for 28% of the programs in the testing
portion dataset (especially for those with a crafted name, like 10Kout).
It is obvious that testing an host-based IDS with one-syscall-long se-
quences does not make a lot of sense, not to talk about the relevance

53

2.

DEeTtEcTING MALIciOUS ACTIVITY

54

of training against such sequences.

An additional problem is that since 1999, when this dataset was
created, everything changed: the usage of network protocols, the pro-
tocols themselves, the operating systems and applications used. For
instance, all the machines involved are Solaris version 2.5.1 hosts,
which are evidently ancient nowadays. The attacks are similarly out-
dated: the only attack technique used are bufter overflows, and all the
instances are detectable in the execve system call arguments. Nowa-
days attackers and attack type are much more complex than this, op-
erating at various layers of the network and application stack, with a
wide range of techniques and scenarios that were just not imaginable
in 1999.

To give an idea of this, we were able to create a detector which
finds all the buffer overflow attacks without any FP: a simple script
which flags as anomalous any argument longer than 500 characters
can do this (because all the overflows occur in the parsing of the com-
mand line, which is part of the parameters of the execve system call
which originates the process). This is obviously unrealistic.

Because of the aforementioned lack of alternatives, most existing
researches use IDEVAL. This is a crucial factor: any bias or error in
the dataset has influenced, and will influence in the future, the very
basic research on this topic.

2.4.2 'The base-rate fallacy

The ID is a classification task, thus can be formalized as a Bayesian
classification problem. In particular PR and DR can be defined as
probabilities. More precisely, let us define the following event pred-
icates:

e O =“Intrusion”, =O =“Non-intrusion”;
o A =“Alert reported”, ~A =“No alert reported”.
Then, we can re-write DR and F PR as follows.

e DR = P(A | O), i.e., the probability to classify an intrusive

event as an actual intrusion.

e FPR = P(A | —0), i.e., the probability to classify a legit

event as an intrusion.

2.4. Evaluation Issues and Challenges

Given the above definition and the Bayes’ theorem, two measures
that are more interesting than DR and F'PR can be calculated.

Definition 2.4.1 (Bayesian DR) The Bayesian DR [Axelsson, 2000b]
is defined as:

P0)-P(A]O)

PO = 50y pa10)+ P(-0) - P(A]-0)'

P(O) is the base-rate of intrusions, i.e., the probability for an intru-
sion to take place, regardless of the presence of an IDS. The Bayesian
DR not only quantifies the probability for an alert to indicate an in-
trusion, it also take into account how frequently an intrusion really
happens. As pointed out by [Axelsson, 2000b], in this equation the
FPR = P(A | =0) is strictly dominated by P(—0). In fact, in
the real world, P(O) is very low (e.g., 1075, given two intrusions
per day, 1,000,000 audit records per day and 10 records per intru-
sion) and thus P(O) — 1. This phenomenon, called base-rate fallacy,
magnifies the presence of FP. In fact, even in the unrealistic case of
DR = 1,averylow FPR = 10~5 quickly drops the DR to 0.0066,
which is three orders of magnitude below 1.

Besides its impact on the evaluation of an IDS, the base-rate fal-
lacy has a practical impact. When inspecting the alerts log, the se-
curity officer would indeed tend to safely ignore most of the alerts
because the past alarms have been shown to be incorrect.

55

2.

DEeTtEcTING MALIciOUS ACTIVITY

56

2.5 Concluding Remarks

In this chapter we first introduced the basic concepts and definitions
of ID, including the most relevant issues that arise during experimen-
tal evaluation. ID techniques play a fundamental role to recognize
malicious activity in todays’ scenario. In particular, learning-based
anomaly detection techniques have been shown to be particularly in-
teresting since, basically, they implement a black-box IDS which is
easy to deploy and requires no or scarce maintenance efforts. These
systems, however, are not with their drawbacks. From the industrial
point of view, the amount of FP generated by anomaly-based sys-
tems is not negligible; further exacerbating this problem is the base-
rate fallacy summarized in Section 2.4.2. In fact, if one considers the
popularity of real attacks, even a minuscule FPR is magnified and in-
stantly becomes a cost for the organization. From the research point
of view, the lack of a well-established methodology to evaluate IDS is
an issue; in addition to this, the generation of a reliable testing dataset
is an open research problem. Todays™ evaluation is limited to two,
major datasets: IDEVAL, which, besides being deprecated, contains
several regularities that make the evaluation extremely biased. An
alternative is the modern Cyber Defense eXercise (CDX) 2009 labeled
dataset collected during a security competition; this is clearly better
than IDEVAL if ignoring the fact that the labeling phase is consists
in running Snort. This inherently assumes Snort as the evaluation
baseline of every IDS.

Secondly, focusing on anomaly-based techniques, we reviewed
the most recent state-of-the-art IDSs to protect a host application
and a web server. We also overviewed a few approaches to capture
and analyze the network traffic as a stream of packets. This topic
is included in the reviewed literature because the contributions in
Chapter 5 work on alerts generated by host- and network-based sys-
tems. Network-based IDS are popular as they are easy to deploy
and can protect a wide range of machine (i.e., the whole network);
however, it has been shown how these systems can be evaded by ex-
ploiting the lack of local knowledge on the single host. The need of
both global and local knowledge about a network is probably the main
motivation in favor of alert correlation systems. The most advanced
network-based anomaly detectors inspect packet up to the TCP layer
and exploit payload clustering and classification techniques to recog-
nize anomalous traffic.

2.5. Concluding Remarks

On the other hand, host-based systems have been shown to be
effective at detecting malicious processes on a single computer. Al-
most all the reviewed approaches analyze the system calls intercepted
in the operating system kernel. Some tools known to work well for
network-based systems have been utilized in this field as well: for in-
stance, clustering and Bayesian classification techniques of network
packets has been adapted by several approaches to cluster similar
system calls and flag process with low Bayesian probability as ma-
licious, respectively. Stochastic and deterministic techniques have
been shown to be very effective. In particular, as we detail in Sec-
tion 3.3, deterministic models such as automata are well suited to
capture a process’ control flow. On the other hand, stochastic tech-
niques such as character distribution or Gaussian intervals have been
show to correctly model the data flow (e.g., the content of system call
arguments) with low FP.

Web-based ID approaches have been overviewed as well. Al-
though this topic is relatively new, web-based approaches are enjoy-
ing immense popularity. In fact, the tremendous ubiquity of the Web
has become a high-profit opportunity for the underground criminals
to spread malware by violating vulnerable, popular websites. The re-
search community have immediately recognized the relevance of this
problem. As a consequence, the industry started to adopt web-based
protection tools that have became remarkably accurate and, basically,
ready to be deployed in real-world environments.

Finally, by comparing Table 2.2, 2.3, and 2.4 ws. 2.5 it can be im-
mediately noticed how new this problem is. In fact, during the last
decade a common line for network-based techniques can be traced
(i-e., exploiting payload classification). The same holds for both host-
based (i.e., the use of hybrid deterministic/stochastic techniques on
system call sequences and arguments) and web-based (i.e., the use
of ensemble of stochastic models on HTTP parameters) techniques,
but not for alert correlation approaches. They indeed explore the use
of different techniques, but no well-established ideas can be recog-
nized, yet.

57

Host-based Anomaly Detection 3

A host-based anomaly detector builds profiles of the system activity
by observing data collected on a single host (e.g., a personal computer,
a database server or a web server). By adopting learning techniques,
a host-based IDS can automatically capture the normal behavior of
the host and flag significant deviations.

In this chapter we describe in details two contributions we pro-
posed to mitigate malicious activity in a POSIX-like operating sys-
tem. In both these works, our tools analyze the activity at the gran-
ularity of the system call (e.g., open, read, chmod) and monitor each
running process in parallel using a multi-threaded scheduling. Our
approaches integrate the most advanced techniques that, according
to the recent literature, have been shown to be effective. We also
propose novel techniques, such as clustering of system calls to clas-
sify system calls and Markov models to capture each process’ behav-
ior, and their refinements to further lower the FPR. All the systems
described in this chapter have been evaluated using both IDEVAL
and a more realistic dataset that also includes new attacks (details on
the generation of such a dataset are described). In addition, we de-
scribe our tests on a dataset we created through the implementation
of an innovative technique of anti-forensics, and we show that our
approach yields promising results in terms of detection. The goal of
this extensive set of experiments is to use our prototype to circum-

59

3. HosT-Basep Anomary DeTECTION

60

vent definitive anti-forensics tools. Basically, we demonstrate how
our tool can detect stealthy in-memory injections of executable code,
and in-memory execution of binaries (the so-called “userland exec”
technique, which we re-implement in a reliable way).

3.1. Preliminaries

3.1 Preliminaries

In order to avoid the shortcomings mentioned in Section 2.4, be-
sides the use of IDEVAL for comparison purposes with SyscallAno-
maly (which was tested on that dataset), we generated an additional
experimental dataset for other frequently used console applications.
We chose different buffer overflow exploits that allow to execute ar-
bitrary code.

More precisely, in the case of ncueject 8.9, the vulnerability [Na-
tional Vulnerability Database, 2007a] is a very simple stack overflow,
caused by improper bounds checking. By passing a long argument
on the command line, an aggressor can execute arbitrary code on the
system with root privileges. 'There is a public exploit for the vul-
nerability [Harry, 2007] which we modified slightly to suit our pur-
poses and execute our own payload. The attack against bsdtar is based
on a publicly disclosed vulnerability in the PAX handling functions
of libarchive 2.2.3 and earlier [National Vulnerability Database,
2007b], where a function in file archive_read_support_format_tar.c
does not properly compute the length of a buffer when processing
a malformed PAX archive extension header (i.e., it does not check
the length of the header as stored in a header field), resulting in a
heap overflow which allows code injection through the creation of a
malformed PAX archive which is subsequently extracted by an unsus-
pecting user on the target machine. In this case, we developed our
own exploit, as none was available online, probably due to the fact
that this is a heap overflow and requires a slightly more sophisticated
exploitation vector. In particular, the heap overflow allows to over-
write a pointer to a structure which contains a pointer to a function
which is called soon after the overflow. So, our exploit overwrites this
pointer, redirecting it to the injected bufter. In the buffer we craft a
clone of the structure, which contains a pointer to the shellcode in
place of the correct function pointer.

Our testing platform runs a vanilla installation of FreeBSD 6.2 on
a x86 machine; the kernel has been recompiled enabling the appro-
priate auditing modules. Since our systems, and other host-based
anomaly detectors [Kruegel et al., 2003a; Mutz et al., 2006], ac-
cept input in the BSM format, the OpenBSM [Watson and Sala-
mon, 2006] auditing tools collection has been used for collecting au-
dit trails. We have audited vulnerable releases of eject and bsdtar,
namely: mcueject 8.9 (which is an alternative to the BSD eject) and

61

3. HosT-Basep Anomary DeTECTION

62

the version of bsdtar which is distributed with FreeBSD 6.2. Dur-
ing the generation process, the audit trails keep changing, along with
the simulated user behavior. It is important to underline that normal
users would never use really random names for their files and directo-
ries, they usually prefer to use words from their tongue plus a limited
set of characters (e.g., ., -, -) for concatenating them. Therefore, we
rely on a large dictionary of words for generating file names.

The eject executable has a small set of command line option and
a very plain execution flow. For the simulation of a legitimate user,
we simply chose different permutations of flags and different devices.
For this executable, we manually generated 10 executions, which are
remarkably similar (as expected).

Creating a dataset of normal activity for the bsdtar program is
more challenging. It has a large set of command line options, and
in general is more complex than eject. While the latter is generally
called with an argument of /dev/*, the former can be invoked with
any argument string, for instance bsdtar cf myarchive.tar /first/-
path /second/random/path is a perfectly legitimate command line.
Using a procedure similar to the one used for creating the IDEVAL
dataset, and in fact used also in [Sekar et al., 2001], we prepared a
shell script which embeds pseudo-random behaviors of an average
user who creates or extracts archives. To avoid the regularities found
in IDEVAL, to simulate user activity, the script randomly creates
random-sized, random-content files inside a snapshot of a real-world
desktop file-system. In the case of the simulation of super-user ex-
ecutions, these files are scattered around the system; in the case of a
regular user, they are into that user’s own home directory. Once the
file-system has been populated, the tool randomly walks through the
directory tree and randomly creates TAR archives. Similarly, found
archives are randomly expanded. The randomization takes also into
account the different use of flags made by users: for instance, some
users prefer to uncompress an archive using tar xf archive.tar, many
others still use the dash tar -xf archive.tar, and so on.

In addition to the aforementioned datasets, we used attacks against
sing, mt-daapd, proftpd, sudo, and BitchX. To generate clean training
data we followed similar randomization and scripting mechanisms
described previously.

Specifically, sing is affected by CVE-2007-6211, a vulnerability
which allows to write arbitrary text on arbitrary files by exploiting
a combination of parameters. This attack is meaningful because it

3.1. Preliminaries

does not alter the control flow, but just the data flow, with an open
which writes on unusual files. Training datasets contain traces of
regular usage of the program invoked with large sets of command
line options.

mt-daapd is affected by a format string vulnerability (CVE-2007-
5825) in us_addarg(). It allows remote execution of arbitrary code
by including the format specifiers in the username or password por-
tion of the base64-encoded data on the Authorization: Basic HTTP
header sent to /xm1-rpc. The mod_ctris module of proftpd let local at-
tackers to fully control the integer regargien (CVE-2006-6563) and
exploit a stack overflow to gain root privileges.

sudo does not properly sanitize data supplied through SHELLOPTS
and PS4 environment variables, which are passed on to the invoked
program (CVE-2005-2959). 'This leads to the execution of arbitrary
commands as privileged user, and it can be exploited by users who
have been granted limited superuser privileges. The training set in-
cludes a number of execution of programs commonly run through
sudo (e.g., passud, adduser, editing of /etc/ files) by various users
with different, limited superuser privileges, along with benign traces
similar to the attacks, invoked using several permutations of option
flags.

BitchX is affected by CVE-2007-3360, which allows a remote at-
tacker to execute arbitrary commands by overfilling a hash table and
injecting an EXEC hook function which receives and executes shell
commands. Moreover, failed exploit attempts can cause DoS. The
training set includes several Internet Relay Chat (IRC) client sessions
and a legal IRC session to a server having the same address of the
malicious one.

Note 3.1.1 First, it is important to underline that the scripts that we
prepared to set up the experiments are only meant to generate the
system calls that are generated when a particular executable is stim-
ulated with different command line options and different inputs. By
no means we claim that such scripts can emulate a user’s overall activ-
ity. Although the generation of large dataset for IDS evaluation goes
beyond the scope of our work, these scripts attempt to reflect the way
a regular user invokes tar or eject; this was possible because they are
both simple programs which require a limited number of command
line options. Clearly, generating such a dataset for more sophisti-
cated applications (e.g., a browser, a highly-interactive graphic tool)

63

3. HosT-Basep Anomary DeTECTION

64

would be much more difficult.

Secondly, we recall that these scripts have been set up on/y for col-
lecting clean data. Such data collection is not needed by our system
when running, since the user data would be already available.

In [Bhatkar et al., 2006] a real web and SSH server logs were used
for testing. While this approach yields interesting results, we did not
follow it for three reasons. Firstly, in our country various legal con-
cerns limit what can be logged on real-world servers. In second place,
HTTP and SSH are complex programs where understanding what
is correctly identified and what is not would be difficult (as opposed
to simply counting correct and false alerts). Finally, such a dataset
would not be reliable because of the possibility of the presence of real
attacks inside the collected logs (in addition to the attacks inserted
manually for testing).

3.2. Malicious System Calls Detection

3.2 Malicious System Calls Detection

In this section we describe our contribution regarding anomaly de-
tection of host-based attacks by exploiting unsupervised system calls
arguments and sequences [Maggi et al., 2009a]. Analyzing both the
theoretical foundations described in [Kruegel et al., 2003a; Mutz
et al., 2006], and the results of our tests, we proposed an alterna-
tive system, which improves some of the ideas of SyscallAnomaly (the
IDS developed on top of LibAnomaly) along with clustering, Markov
based modeling, and behavior identification. The approach is im-
plemented in a prototype called Syscall Sequence Arguments Anomaly
Detection Engine (S2A2DE), written in American National Standard
Institute (ANSI) C. A set of anomaly detection models for the indi-
vidual parameters of the calls is defined. Then, a clustering process
which helps to better fit models to system call arguments, and creates
inter-relations among different arguments of a system call is defined
by means of ad-hoc distance metrics. Finally, we exploit Markov
models to encode the monitored process’ normal behavior. The re-
sulting system needs no prior knowledge input; it has a good FPR,
and it is also able to correctly contextualize alarms, giving the se-
curity officer more information to understand whether a TP or FP
happened, and to detect variations over the entire execution flow, as
opposed to punctual variations over individual instances.

S?2A%DE uses the sequence as well as the parameters of the sys-
tem calls executed by a process to identify anomalous behaviors. As
detailed in Section 2.2.2, the use of system calls as anomaly indi-
cators is well established in literature (e.g. in [Forrest et al., 1996;
Cabrera et al., 2001; Hofmeyr et al., 1998; Somayaji and Forrest,
2000; Cohen, 1995; Lee and Stolfo, 1998; Ourston et al., 2003; Jha
et al., 2001; Michael and Ghosh, 2002; Sekar et al., 2001; Wagner
and Dean, 2001; Giffin et al., 2005; Yeung and Ding, 2003]), usu-
ally without handling their parameters (with the notable exceptions
of [Kruegel et al., 2003a; Tandon and Chan, 2003; Bhatkar et al.,
2006]). S’A2DE is an improvement to the existing tool by means
of four key novel contributions:

e we build and carefully test anomaly detection models for sys-
tem call parameters, in a similar way to [Kruegel et al., 2003a];

e we introduce the concept of c/ustering arguments in order to
automatically infer different ways to use the same system call;

65

3. HosT-Basep Anomary DeTECTION

66

this leads to more precise models of normality on the argu-
ments;

o the same concept of clustering also creates correlations among
the different parameters of a same system call, which is not
present in any form in [Kruegel et al., 2003a; Tandon and
Chan, 2003; Bhatkar et al., 2006];

e the traditional detector based on deviations from previously
learned Markov models is complemented with the concept of
clustering; the sequence of system calls is transformed into a
sequence of labels (i.e., classes of calls): this is conceptually dif-
ferent than what has been done in other works (such as [Tan-
don and Chan, 2003]), where sequences of events and single
events by themselves are both taken into account but in an or-

thogonal way.

'The resulting model is also able to correctly contextualize alarms,
providing the user with more information to understand what caused
any FP, and to detect variations over the execution flow, as opposed
to variations over sing/e system call. We also discuss in depth how we
performed the implementation and the evaluation of the prototype,
trying to identify and overcome the pitfalls associated with the usage

of the IDEVAL dataset.

3.2.1 Analysis of SyscallAnomaly

In order to replicate the original tests of SyscallAnomaly, we used the
host-based auditing data in BSM format contained in the IDEVAL
dataset. For now, it is sufficient to note that we used the BSM audit
logs from the system named pascal.eyrie.af.mil, which runs a So-
laris 2.5.1 operating system. Before describing the dataset used, we
briefly summarize the models used by SyscallAnomaly: string length
model, the character distribution model, the structural inference model
and the token search model.

string length model — computes, from the strings seen in the train-
ing phase, the sample mean p and variance o2 of their lengths.
In the detection phase, given [, the length of the observed
string, the likelihood p of the input string length with respect

3.2. Malicious System Calls Detection

to the values observed in training is equal to one if [< p+ o

2 .
and (137)2 otherwise.

character distribution model — analyzes the discrete probability dis-
tribution of characters in a string. Each string is considered as
a set of characters, which are inserted into an histogram, in
decreasing order of occurrence, with a classical rank order/fre-
quency representation. For detection, a x? Pearson test returns
the likelihood that the observed string histogram comes from
the learned model.

structural inference model — learns the structure of strings, that are
first simplified using the following translation rules: [A-Z] —
A, [a-z] — a, [8-9] — 8. Finally, multiple occurrences of the
same character are simplified. For instance, /usr/1ib/1ibc-
.sois translated into /aaa/aaa/aaaa. aa, and further compressed
into /a/a/a.a. A probabilistic grammar encoded in a Hidden
Markov Model (HMM) is generated by exploiting a Bayesian
merging procedure, as described in [Stolcke and Omohundro,
1993b, 1994c¢,b].

token search model — applied to arguments which contain flags or
modes. This model uses a statistical test to determine whether
or not an argument contains a finite set of values. The core idea
(drawn from [Lee et al., 2002]) is that if the set is finite, then
the number of different arguments in the training set will grow
in a much slower way than the total number of samples. This
is tested using a Kolgomorov-Smirnov non parametric test. If
the field contains a set of tokens, the set of values observed dur-
ing training is stored. During detection, if the field has been
flagged as a token, the input is compared against the stored
values list. If it matches a former input, the model returns 1,
else it returns 0, without regard to the relative frequency of the
tokens in the training data.

A confidence rating is computed at training for each model, by
determining how well it fits its training set; this value is meant to be
used at runtime to provide additional information on the reliability
of the model.

Returning to the analysis, we used a dataset that contains 25
buffer overflow attacks against 4 different applications: eject, fd-

67

3. HosT-Basep Anomary DeTECTION

ProGraM SyscallAnomaly S?2A’DE

fdformat 0 1(4)
eject 0 1(6)
ps 0 2 (10)
ftpd 14 2 (45)
telnetd 17 2(198)
sendmai | 8 4(97)

Table 3.1: Comparison of SyscallAnomaly (results taken from
[Kruegel et al., 2003a]) and S?A2DE in terms of number FPs on the
IDEVAL dataset. For S2A?DE , the amount of system calls flagged

as anomalous is reported between brackets.

format, ps, and ffbconfig (not tested). We used data from weeks 1
and 3 for training, and data from weeks 4 and 5 for testing the de-
tection phase. However, it must be noted that some attacks are not
directly detectable through system call analysis. The most interesting
attacks for testing SyscallAnomaly are the ones in which an attacker
exploits a vulnerability in a local or remote service to allow an intruder
to obtain or escalate privileges.

In addition to the programs named above, we ran SyscallAnoma-
ly also on three other programs, namely ftpd, sendmail and telnetd,
which are known not to be subject to any attack in the dataset, in or-
der to better evaluate the FPR of the system. In Table 3.1 we compare
our results with the released version of SyscallAnomaly [Kruegel et al.,
2009] to reproduce the results reported in [Kruegel et al., 2003a].

As can be seen, our results are different from those reported in
[Kruegel et al., 2003a], but the discrepancy can be explained by a

number of factors:

o the version of SyscallAnomaly and LibAnomaly available online
could be different from or older than the one used for the pub-
lished tests;

o several parameters can be tuned in SyscallAnomaly, and a dif-
ferent tuning could produce different results;

e part of the data in the IDEVAL dataset under consideration
are corrupted or malformed;

68

3.2. Malicious System Calls Detection

e in [Kruegel et al., 2003a] it is unclear if the number of FPs
is based on the number of executions erroneously flagged as
anomalous, or on the number of anomalous syscalls detected.

These discrepancies make a direct comparison difficult, but our
numbers confirm that SyscallAnomaly performs well overall as a de-
tector. However, FPs and detected anomalies are interesting to study,
in order to better understand how and where SyscallAnomaly fails,
and to improve it. Therefore we analyzed in depth a number of exe-
cutions. Just to give a brief example, let us consider eject: it is a very
plain, short program, used to eject removable media on UNIX-like
systems: it has a very simple and predictable execution flow, and thus
it is straightforward to characterize: dynamic libraries are loaded, the
device vo1@@:volctl is accessed, and finally, the device unnamed_f1oppy
is accessed.

The dataset contains only one kind of attack against eject: it is
a buffer overflow with command execution (see Table 3.2). The ex-
ploit is evident in the execve system call, since the buffer overflow is
exploited from the command line. Many of the models in Syscall-
Anomaly are able to detect this problem: the character distribution
model, for instance, performs quite well. The anomaly value turns
out to be 1.316, much higher than the threshold (0.0012). The string
length and structural inference models flag this anomaly as well, but
interestingly they are mostly ignored since their confidence value is
too low. The confidence value for the token model is 0, which in
SyscallAnomaly convention means that the field is not recognized as
a token. This is actually a shortcoming of the association of models
with parameters in SyscallAnomaly, because the “filename” argument
is not really a token.

A FP happens when a removable unit, unseen during training,
is opened (see Table 3.2). The structural inference model is the cul-
prit of the false alert, since the name structure is different from the
previous one for the presence of an underscore. As we will see later
on, the extreme brittleness of the transformation and simplification
model is the main weakness of the Structural Inference model.

Another alert happens in the opening of a localization file (Table
3.3), which triggers the string length model and creates an anoma-
lous distribution of characters; moreover, the presence of numbers,
underscores and capitals creates a structure that is flagged as anoma-
lous by the structural inference model. The anomaly in the token

69

3. HosT-Basep Anomary DeTECTION

70

TRUE POSITIVE (execve)

file /usr/bin/eject
argv eject\@x2e\@x20\0x20\0x20[. ..]

Models ~ Prob. (Conf’)

file Token Search 0.999999 (0)
String Length 1076 (0)

argv Character Distribution 0.005 (0.928)

Structural Inference 107 (0.025)

Total Score (Threshold) 1.316 (0.0012)

FaLsE posITIVE (open)

file /vol/dev/rdiskette8/c8té6de/volume_1
flags cru-ru-ru-

Models Prob. (Conf.)

String Length 0.667 (0.005)
path Character Distribution 0.99 (0.995)
Structural Inference 1076 (1)
Token Search 0.999 (1)

Total Score (Threshold) 8.186 (1.454)

Table 3.2: A true positive and a FP on eject.

search model is due to the fact that the open mode (-r-xr-xr-x) is
not present in any of the training files. This is not an attack, but is
the consequence of the buffer overflow attack, and as such is counted
as a true positive. However, it is more likely to be a lucky, random
side effect.

Without getting into similar details for all the other programs we
analyzed (details which can be found in Section 2.4.1), let us sum-
marize our findings. ps is a jack-of-all-trades program to monitor
process execution, and as such is much more articulated in its options
and execution flow than any of the previously analyzed executables.
However, the sequence of system calls does not vary dramatically
depending on the user specified options: besides library loading, the

3.2. Malicious System Calls Detection

TRUE pPOSITIVE (open)

path /usr/lib/locale/is0.8859_1/[...]
flags -r-xr-xr-x

Models ~ Prob. (Conf’)

String Length 0.0096 (0.005)
Character Distribution 0.005 (0.995)
Structural Inference 107% (0.986)
Token Search 1076 (1)

Total Score (Threshold) 8.186 (1.454)

Table 3.3: True positive on fdformat while opening a localization file.

program opens /tmp/ps_data and the files containing process infor-
mation in /proc. Also in this case, attacks are buffer overflows on a
command-line parameter. In this case, as was the case for fdfornat, a
correlated event is also detected, the opening of file /tmp/foo instead
of file /tmp/ps_data. Both the Token Search model and the Struc-
tural Inference model flag an anomaly, because the opening mode
is unseen before, and because the presence of an underscore in /tn-
p/ps-data makes it structurally different from /tmp/foo. However, if
we modify the exploit to use /tmp/foo_data, the Structural Inference
model goes quiet. A FP happens when ps is executed with options
lux, because the structural inference model finds this usage of param-
eters very different from -1ux (with a dash), and therefore strongly
believes this to be an attack. Another FP happens when a zone file
is opened, because during training no files in zoneinfo were opened.
In this case it is very evident that the detection of the opening of the
/tmp/foo file is more of another random side effect than a detection,
and in fact the model which correctly identifies it also creates FPs for
many other instances. In the case of in.ftpd, a common FTP server,
a variety of commands could be expected. However, because of the
shortcomings of the IDEVAL dataset detailed in Section 2.4.1, the
system call flow is fairly regular. After access to libraries and config-
uration files, the logon events are recorded into system log files, and
a vfork call is then executed to create a child process to actually serve
the client requests. In this case, the FPs mostly happen because of
the opening of files never accessed during training, or with “unusual

71

3. HosT-Basep Anomary DeTECTION

72

modes”.

sendnail is a really complex program, with complex execution
flows that include opening libraries and configuration files, access-
ing the mail queue (/var/spool/mqueue), transmitting data through
the network and/or saving mails on disk. Temporary files are used,
and the setuid call is also used, with an argument set to the recipient
of the message (for delivery to local users).

A FP happens for instance when sendmail uses UID 2133 to de-
liver a message. In training that particular UID was not used, so the
model flags it as anomalous. Since this can happen in the normal
behavior of the system, it is evidently a generic problem with the
modeling of UIDs as it is done in LibAnomaly. Operations in /var/-
mail are flagged as anomalous because the file names are similar to
/var/mail/emoncad@esh, and thus the alternation of lower and upper
case characters and numbers easily triggers the Structural Inference
model.

We outlined different cases of failure of SyscallAnomaly. But
what are the underlying reasons for these failures? The structural in-
ference model is probably the weakest overall. It is too sensitive against
non alphanumeric characters, since they are not altered nor com-
pressed: therefore, it reacts strongly against slight modifications that
involve these characters. This becomes visible when libraries with
variable names are opened, as it is evident in the FPs generated on
the ps program. On the other hand, the compressions and simplifica-
tions introduced are excessive, and cancel out any interesting feature:
for instance, the strings /tmp/tempfilename and /etc/shadou are in-
distinguishable by the model. Another very surprising thing, as we
already noticed, is the choice of ignoring the probability values in the
Markov model, turning it into a binary value (0 if the string cannot
be generated, 1 otherwise). This assumes an excessive weight in the
total probability value, easily causing a false alarm.

To verify our intuition, we re-ran the tests excluding the Struc-
tural Inference model: the DR is unchanged, while the FPR strongly
diminishes, as shown in Table 3.4 (once again, both in terms of global
number of alerts, and of flagged system calls). Therefore, the Struc-
tural Inference model is not contributing to detection; instead it is
just causing a growth in the anomaly scores which could lead to an
increased number of false positives. The case of telnetd is particu-
larly striking: excluding the Structural Inference model makes all the
false positives disappear.

3.2. Malicious System Calls Detection

ExecutaBLE FaLse Posrtives (SyYscALLS FLAGGED)

With the HMM Without the HMM

fdformat 1(4) 1(4)
eject 1(6) 1(3)
ps 2 (10) 1(6)
ftpd 2 (45) 2 (45)
telnetd 2(198) 0 (0)
sendmai | 4(97) 4(97)

Table 3.4: Behavior of SyscallAnomaly with and without the Struc-
tural Inference Model

'The character distribution model is much more reliable, and con-
tributes positively to detection. However, it is not accurate about the
particular distribution of each character, and this can lead to possi-
ble mimicry attacks. For instance, executing ps -[x) has a very high
probability, because it is indistinguishable from the usual form of the
command ps -axu.

'The zoken search model has various flaws. First of all, it is not prob-
abilistic, as it does not consider the relative probability of the different
values. Therefore, a token with 1000 occurrences is considered just as
likely as one with a single occurrence in the whole training set. This
makes the training phase not robust against the presence of outliers
or attacks in the training dataset. Additionally, since the model is ap-
plied only to fields that have been determined beforehand to contain
a token, the statistical test is not useful: in fact, in all our experiments,
it never had a single negative result. It is also noteworthy that the ac-
tual implementation of this test in [Kruegel et al., 2009] differs from
what is documented in [Kruegel et al., 2003a; Mutz et al., 2006; Lee
et al., 2002].

Finally, the string length model works very well, even if this is in
part due to the artifacts in the dataset, as we describe in Section 2.4.1.

3.2.2 Improving SyscallAnomaly

We can identify and propose three key improvements over Syscall-
Anomaly. Firstly, we redesign improved models for anomaly detec-
tion on arguments, focusing on their reliability. Over these improved

73

3. HosT-Basep Anomary DeTECTION

74

ExecutaBLe % orF open ExEcuTions

fdformat 92.42% 5
eject 93.23% 7
ps 93.62% 105
telnetd 91.10% 65
ftpd 95.66% 1082
sendmail 86.49% 827

Table 3.5: Percentage of open syscalls and number of executions (per
program) in the IDEVAL dataset.

models, we introduce a clustering phase to create correlations among
the various models on different arguments of the same system call:
basically, we divide the set of the invocations of a single system call
into subsets which have arguments with an higher similarity. This
idea arises from the consideration that some system calls do not ex-
hibit a single normal behavior, but a plurality of behaviors (ways of
use) in different portions of a program. For instance, as we will see in
the next sections, an open system call can have a very different set of
arguments when used to load a shared library or a user-supplied file.
Therefore, the clustering step aims to capture relationships among the
values of various arguments (e.g. to create correlations among some
filenames and specific opening modes). In this way we can achieve
better characterization.

Finally, we introduce a sequence-based correlation model through
a Markov chain. This enables the system to detect deviations in the
control flow of a program, as well as abnormalities in each individ-
ual call, making evident the whole anomalous context that arises as a
consequence, not just the single point of an attack.

'The combination of these improvements solves the problems we
outlined in the previous sections, and the resulting prototype thus
outperforms SyscallAnomaly, achieving also a better generality.

3.2.2.1 Distance metrics for system calls clustering

We applied a hierarchical agglomerative clustering algorithm [Han
and Kamber, 2000] to find, for each system call, subclusters of invo-
cation with similar arguments; we are interested in creating models

3.2. Malicious System Calls Detection

on these clusters, and not on the general system call, in order to bet-
ter capture normality and deviations. This is important because, as
can be seen from Table 3.5, in the IDEVAL dataset the single system
call open constitutes up to 95% of the calls performed by a process.
Indeed, open (and probably read) is one of the most used system calls
on UNIX-like systems, since it opens a file or device in the file system
and creates a handle (descriptor) for further use. open has three pa-
rameters: the file path, a set of flags indicating the type of operation
(e.g. read-only, read-write, append, create if non existing, etc.), and
an optional opening mode, which specifies the permissions to set in
case the file is created. Only by careful aggregation over these pa-
rameters we may divide each “polyfunctional” system call into “sub-
groups” that are specific to a single function.

We used a single-linkage, bottom-up agglomerative technique.
Conceptually, such an algorithm initially assigns each of the N in-
put elements to a different cluster, and computes an N x N distance
matrix D. Distances among clusters are computed as the minimum
distance between an element of the first cluster and an element of the
second cluster. 'The algorithm progressively joins the elements 4 and
j such that D(i, j) = min(D). D is updated by substituting ¢ and j
rows and columns with the row and column of the distances between
the newly joined cluster and the remaining ones. The minimum dis-
tance between two different clusters dg¢op, min is used as a stop cri-
terion, in order to prevent the clustering process from lumping all of
the system calls together; moreover, a lower bound dstop num for the
number of final clusters is used as a stop criterion as well. If any of the
stop criteria is satisfied, the process is stopped. The time complex-
ity of a naive implementation is roughly O(N?). This would be too
heavy, in both time and memory. Besides introducing various tricks
to speed up our code and reduce memory occupation (as suggested in
[Golub and Loan, 1996]), we introduced an heuristic to reduce the
average number of steps required by the algorithm. Basically, at each
step, instead of joining just the elements at minimum distance d,,ip,
also all the elements that are at a distance d < Bd,s, from both the
elements at minimum distance are joined, where § is a parameter of
the algorithm. In this way, groups of elements that are very close
together are joined in a single step, making the algorithm (on aver-
age) much faster, even if worst-case complexity is unaffected. Table
3.6 indicates the results measured in the case of dsop,min = 1 and
dstop,num = 10; we want to recall that these timings, seemingly very

75

3. HosT-Basep Anomary DeTECTION

76

Exzc. #ELEMENTS NAIVE OPTIMIZED
fdformat 11 0.14” (0.12”) 0.014” (0.002”)
eject 13 0.24” (0.13”) 0.019” (0.003”)
ps 880 19’52” (377) 7" (57)
sendmail 3450 00 7’19” (6'30”)

Table 3.6: Execution times with and without the heuristic (and in
parenthesis, values obtained by performance tweaks)

high, refer to the training phase and not to the run time phase.

The core step in creating a good clustering is of course the defini-
tion of the distance among different sets of arguments. We proceed by
comparing corresponding arguments in the calls, and for each couple
of arguments a we compute the following.

Definition 3.2.1 (Arguments Distance) The argument distance between
two instances ¢ and j of the same system call with respect to argument
a is defined as:

doiyj) = { K, + a4d,(3,7) if the elements are different

0 otherwise
(3.1)

where K, is a fixed quantity which creates a step between differ-
ent elements, while the second term is the real distance between the
arguments 0, (4, j), normalized by a parameter . Note that, the
above formula is a template: the index a denotes that such variables
are parametric with respect to the type of argument; how K.), a.),
and §(.y are computed will be detailed below for each type of argu-
ment. The distance total between two occurrences 4 and j system
calls is defined as follows.

Definition 3.2.2 (Total Distance) The zoza/ distance between two in-
stances ¢ and j of the same system call is defined as:

D(Zvj) = Z da(iuj) (3.2)

a€A

where A is the set of system call arguments.

3.2. Malicious System Calls Detection

Hierarchical clustering, however, creates a problem for the de-
tection phase, since there is no concept analogous to the centroid of
partitioning algorithms that can be used for classifying new inputs,
and we cannot obviously afford to re-cluster everything after each
one. Thus, we need to generate, from each cluster, a representative
model that can be used to cluster (or classify) further inputs. This is
a well known problem which needs a creative solution. For each type
of argument, we decided to develop a stochastic model that can be
used to this end. These models should be able to associate a proba-
bility to inputs, i.e. to generate a probability density function that can
be used to state the probability with which the input belongs to the
model. As we will see, in most cases, this will be in the form of a dis-
crete probability, but more complex models such as HMMs will also
be used. Moreover, a concept of distance must be defined between
each model and the input. The model should be able to incorporate
new candidates during training, and to slowly adapt in order to rep-
resent the whole cluster. It is important to note that it is not strictly
necessary for the candidate model and its distance functions to be the
same used for clustering purposes. It is also important to note that
the clustering could be influenced by the presence of outliers (such
as attacks) in the training set. This could lead to the formation of
small clusters of anomalous call instances. As we will see in Sec-
tion 3.2.3, this does not inficiate the ability of the overall system to
detect anomalies.

As previously stated, at least four different types of arguments are
passed to system calls: path names and file names, discrete numeric
values, arguments passed to programs for execution, users and group
identifiers (UIDs and GIDs). For each type of argument, we designed
a representative model and an appropriate distance function.

File name arguments Path names and file names are very frequently
used in system calls. They are complex structures, rich of useful infor-
mation, and therefore difficult to model properly. A first interesting
information is commonality of the pazh, since files residing in the
same branch of the file system are usually more similar than the ones
in different branches. Usually, inside a path, the firsz and the /Jast
directory carry the most significance. If the filename has a similar
structure to other filenames, this is indicative: for instance common
prefixes in the filename, such as the prefix 1ib, or common suffixes

77

3. HosT-Basep Anomary DeTECTION

78

such as the extensions.

For the clustering phase, we chose to re-use a very simple model
already present in SyscallAnomaly, the directory tree depth. This is
easy to compute, and experimentally leads to fairly good results even
if very simple. Thus, in Equation 3.1 we set J, to be the distance
in depth. For instance, let Kpqp, = 5 and opeen, = 1; comparing
/usr/1ib/1ibc.so and /etc/passud we obtaind, = 5+ 1-1 = 6,
while comparing /usr/1ib/1ibc.so and /usr/1ib/1ibelf.so.1 we ob-
tain d, = 0.

After clustering has been done, we represent the path name of
the files of a cluster with a probabilistic tree which contains all the
directories involved with a probability weight for each. For instance,
if a cluster contains: /usr/1ib/libc.so, /usr/1ib/1ibelf.so, or /usr/-
local/lib/1ibint1.so, the generated tree will be as in Figure 3.1.

File names are usually too variable, in the context of a single clus-
ter, to allow a meaningful model to be always created. However, we
chose to set up a system-wide threshold below which the filenames
are so regular that they can be considered a model, and thus any other
filename can be considered an anomaly. The probability returned by
the model is therefore Pr = P, - Py, where P, is the probability
that the path has been generated by the probabilistic tree and Py is
set to 1 if the filename model is not significant (or if it is significant
and the filename belongs to the learned set), and to 0 if the model is
significant and the filename is outside the set.

Note 3.2.1 (Configuration parameters) According to the experiments
described in Section 3.2.5, the best detection accuracy is achieved
with the default value of Kp4¢p, = 1 and apgep, = 1. In particular,
Qupath 18 just a normalization parameter and, in most of the cases,
does not require to be changed. Kpq¢p influences the quality of the
clustering and thus may need to be changed if some particular, patho-
logical false positives need to be eliminated in a specific setting.

Discrete numeric values Flags, opening modes, etc. are usually
chosen from a limited set. Therefore we can store all of them along
with a discrete probability. Since in this case two values can only be
“equal” or “different”, we set up a binary distance model for cluster-

ing.

3.2. Malicious System Calls Detection

_» 1lib
0.67

™ j1ocal — 100 = 1ib

Ficure 3.1: Probabilistic tree example.

Definition 3.2.3 (Discrete numeric args. distance) Let © = ig;sc,
Y = Jdisc be the values of the arguments of type disc (i.e., discrete
numeric argument) of two instances ¢ and j of the same system call.
The distance is defined as:

.o K isc lf.’L’
ddisc(zvj) = { 0 d lf.lj i:;

where K ;5. is a configuration parameter.

Models fusion and incorporation of new elements are straight-
forward, as well as the generation of probability for a new input to
belong to the model.

Note 3.2.2 (Configuration parameters) According to the experiments
described in Section 3.2.5, the best detection accuracy is achieved
with the default value of Ky;5c = 1. This parameter influences the
quality of the clustering and thus may need to be changed if some
particular, pathological false positives need to be eliminated in a spe-
cific setting.

Execution argument We also noticed that execution argument (i.e.
the arguments passed to the execve system call) are difficult to model,
but we found the length to be an extremely effective indicator of sim-
ilarity of use. Therefore we set up a binary distance model.

Definition 3.2.4 (Execution arguments distance) Letx = i4;5c and
Y = Jaisc be the string values of the arguments of type disc (i.e.,
execution argument) of two instances ¢ and j of the same system call.
The distance is defined as:

o Ky ifla £y
darg(i,J) == { 0 if |z = |y|,

79

3. HosT-Basep Anomary DeTECTION

80

where K4 is a configuration parameter and |z| is the length of
string .

Note 3.2.3 (Configuration parameters) According to the experiments
described in Section 3.2.5, the best detection accuracy is achieved
with the default value of K, = 1. This parameter influences the
quality of the clustering and thus may need to be changed if some
particular, pathological false positives need to be eliminated in a spe-
cific setting.

In this way, arguments with the same length are clustered to-
gether. For each cluster, we compute the minimum and maximum
value of the length of arguments. Fusion of models and incorpora-
tion of new elements are straightforward. The probability for a new
input to belong to the model is 1 if its length belongs to the interval,
and 0 otherwise.

Token arguments Many arguments express UIDs or GIDs, so we de-
veloped an ad-hoc model for users and groups identifiers. Our rea-
soning is that all these discrete values have three different meanings:
UID O is reserved to the super-user, low values usually are for system
special users, while real users have UIDs and GIDs above a threshold
(usually 1000). So, we divided the input space in these three groups,
and computed the distance for clustering using the following defini-
tion.

Definition 3.2.5 (UID/GID argument distance) Let x = 45 and
Y = Jdisc be the values of the arguments of type disc (i.e., GID/UID
argument) of two instances ¢ and j of the same system call.

| Kuia if g(x) = g(y)

where K;q is a configuration parameter, the function g : N —
{groups} and {groups} is the set of user groups.

Since UIDs are limited in number, they are preserved for testing,
without associating a discrete probability to them. Fusion of models
and incorporation of new elements are straightforward. The proba-
bility for a new input to belong to the model is 1 if the UID belongs

to the learned set, and 0 otherwise.

3.2. Malicious System Calls Detection

Note 3.2.4 (Configuration parameters) According to the experiments
described in Section 3.2.5, the best detection accuracy is achieved
with the default value of K,;q = 1. 'This parameter influences the
quality of the clustering and thus may need to be changed if some
particular, pathological false positives need to be eliminated in a spe-
cific setting.

In Table 3.7 we summarize the association of the models de-
scribed above with the arguments of each of the system calls we take
into account. This model based clustering is somehow error prone
since we would expect obtained centroids to be more general and thus
somehow to interfere when clustering either new or old instances. To
double check this possible issue we follow a simple process:

1. creation of clusters on the training dataset;
2. generation of models from each cluster;

3. use of models to classify the original dataset into clusters, and
check that inputs are correctly assigned to the same cluster they
contributed to create.

'This is done both for checking the representativeness of the mod-
els, and to double-check that the different distances computed make
sense and separate between different clusters.

As Table 3.8 shows, for each program in the IDEVAL dataset
(considering the representative open system call), the percentage of
inputs correctly classified, and a confidence value, computed as the
average “probability to belong” computed for each element w.r.t. the
cluster it helped to build. The results are almost perfect, as expected,
with a lower value for the ftpd program, which has a wider variability
in file names.

3.2.3 Capturing process behavior

To take into account the execution context of each system call, we use
a first order Markov chain to represent the program flow. The model
states represent the system calls, or better they represent the various
clusters of each system call, as detected during the clustering process.
For instance, if we detected three clusters in the open system call, and
two in the execve system call, then the model will be constituted by

81

3. HosT-Basep Anomary DeTECTION

SYSTEM CALL

MODEL USED FOR THE ARGUMENTS

open

execve

setuid

setgid

setreuid

setregid

setresuid, setresgid

symlink, 1ink
rename
mount

umount

exit

chown

Tchouwn
chmod, mkdir

creat
mknode

unlink, rmdir

pathname
flags
mode
filename
argv

uid

gid

ruid
euid
ruid
euid
suid
oldpath
newpath
source
target
flags
target
flags
status
path
group
owner
path
mode
pathname
mode

dev
pathname

Path

Discrete Numeric
Discrete Numeric
Path

Execution Argument
User/Group
User/Group
User/Group
User/Group
User/Group
User/Group
User/Group

Path

Path

Path

Path

Discrete Numeric
Path

Path

Discrete Numeric
Path

User/Group
User/Group

Path

Discrete Numeric
Path

Discrete Numeric
Discrete Numeric

Path

Table 3.7: Association of models to system call arguments in our

pI'OtOtpr

82

3.2. Malicious System Calls Detection

EXEcCUTABLE #ELEMENTS % CORRECT CONF.

fdformat 10 100% 1
eject 12 100% 1
ps 525 100% 1
telnetd 38 100% 0.954
ftpd 69 97.1% 0.675
sendmail 3211 100% 0.996

Table 3.8: Cluster validation process.

five states: open;, openy, openg, execvey, execves. Each transition will
reflect the probability of passing from one of these groups to another
through the program. As we already observed in Section 2.2.2, this
approach was investigated in former literature, but never in conjunc-
tion with the handling of parameters and with a clustering approach.

A time domain process demonstrates a Markov property if the
conditional probability density of the current event, given all present
and past events, depends only on the K most recent events. K is
known as the order of the underlying model. Usually, models of
order K = 1 are considered, because they are simpler to analyze
mathematically. Higher-order models can usually be approximated
with first order models, but approaches for using high-order Markov
models in an efficient manner have also been proposed, even in the
intrusion detection field [Ju and Vardi, 2001]. A good estimate of
the order can be extracted from data using the criteria defined in
[Merhav et al., 1989]; for normal Markov models, a x2-test for first
against second order dependency can be used [Haccou and Meelis,
1992], but also an information criterion such as Bayesian Information
Criterion (BIC) or Minimum Description Length (MDL) can be used.

3.2.3.1 Training Phase

Each execution of the program in the training set is considered as a
sequence of observations. Using the output of the clustering process,
each system call is classified into the correct cluster, by computing
the probability value for each model and choosing the cluster whose
models give out the maximum composite probability along all known

models: max(][;cy Ps)- The probabilities of the Markov model are

83

3. HosT-Basep Anomary DeTECTION

84

then straightforward to compute. The final results can be similar to
what is shown in 3.2. On a first sight, this could resemble a simple
Markov chain, however it should be noticed that each of the state of
this Markov model could be mapped into the set of possible cluster
elements associated to it. From this perspective, it could be seen as
a very specific HMM where states are fully observable through an
uniform emission probability over the associated syscalls. By simply
turning the clustering algorithm into one with overlapping clusters
we could obtain a proper HMM description of the user behavior as it
would be if we decide to further merge states together. This is actu-
ally our ongoing work toward full HMM behavior modeling with the
aim, through overlapping syscalls clustering, of improving the perfor-
mance of the classical Baum-Welch algorithm and solving the issue
of HMM hidden space cardinality selection [Rabiner, 1989]. From
our experiments, in the case of the simple traces like the ones found
in the IDEVAL dataset, the used model suffice so we are working on
more complex scenarios (i.e., new real datasets) to improve in a more
grounded way the proposed algorithm.

'This type of model is resistant to the presence of a limited number
of outliers (e.g. abruptly terminated executions, or attacks) in the
training set, because the resulting transition probabilities will drop
near zero. For the same reason, it is also resistant to the presence of
any cluster of anomalous invocations created by the clustering phase.
Therefore, the presence of a minority of attacks in the training set
will not adversely affect the learning phase, which in turn does not
require then an attack-free training set.

The final result can be similar to what is shown in Figure 3.2.
In future extensions, the Markov model could then be simplified by
merging some states together: this would transform it in a Hidden
Markov Model, where the state does not correspond directly to a
system call cluster, but rather to a probability distribution of possible
outcomes. However, the use of HMMs complicates both training
and detection phases [Rabiner, 1989]. From our experiments, in the
case of the simple traces like ones found in the IDEVAL dataset, this
step is unnecessary.

3.2.3.2 Detection Phase

For detection, three distinct probabilities can be computed for each
executed system call: the probability of the execution sequence inside

3.2. Malicious System Calls Detection

Ficure 3.2: Example of Markov model.

the Markov model up to now, Ps; the probability of the system call to
belong to the best-matching cluster, P.; the last transition probability
in the Markov model, P,,.

'The latter two probabilities can be combined into a single “punc-
tual” probability of the single system call, P, = P, - P, keeping
a separate value for the “sequence” probability Ps. In order to set
appropriate threshold values, we use the training data, compute the
lowest probability over all the dataset for that single program (both
for the sequence probability and for the punctual probability), and set
this (eventually modified by a tolerance value) as the anomaly thresh-
old. The tolerance can be tuned to trade off DR for FPR.

During detection, each system call is considered in the context
of the process. The cluster models are once again used to classify
each system call into the correct cluster as explained above: therefore
(Pe = max([[;cp Pi))- Ps and P, are computed from the Markov
model, and require our system to keep track of the current state for
each running process. If either Ps or P, = P, - P, are lower than
the anomaly threshold, the process is flagged as malicious.

Note 3.2.5 (Probability Scaling) Given an [-long sequence of sys-
tem calls, its sequence probability is Ps(l) = Hi:o P, (i) where
P,(i) € [0,1] is the punctual probability of the i-th system call in
the sequence. Therefore, it is self-evident that lim;_, 4, Ps(I) = 0.
Experimentally, we observed that the sequence probability quickly
decreases to zero, even for short sequences (on the IDEVAL dataset,

we found that P;(l) ~ 0 for | > 25). 'This leads to a high number of

85

3. HosT-Basep Anomary DeTECTION

false positives, since many sequences are assigned probabilities close
to zero (thus, always lower than any threshold value).

To overcome this shortcoming, we implemented two probabil-
ity scaling functions, both based on the geometric mean. As a first

attempt, we computed Ps(l) = y/ H§:1 P,(3), but in this case

P { lim Pi(l) = e_l} =1
=+

Proof3.2.1 Let G(P,(1),...,Py(1)) = 1/ Hizl P, (i) the geometric
mean of the sample Py(1), ..., Py(1). If we assume that the sample is
generated by a uniform distribution (i.e, Py(1),..., Py(l) ~ U(0,1))
then log Py(1) ~ E(B = 1) Vi = 1,...,1: this can be proven by ob-
serving that the Cumulative Density Function (CDF) [Pestman, 1998]
oflog X (with X = P, ~ U(0,1)) equals the CDF of an exponentially
distributed variable with B = 1.
The arithmetic mean A(-) of the sample

—log(P,(1)), ..., —log(P,(1))
converges (in probability) to § = 1 for | — 00, that is:

—
Feo =1

!
. 1 .
P [lim 7 E —logPy(i) = —fp = 1] =1
because of the strong law of large numbers. Being the geometric mean:

1
T

l
G(Pp(l), ey Pp(l)) = (H Pp(z)> — 6% Zi:l —log P, (1)

we have

P| lim (6% Zi:l*l"gpp(i» =eP=¢ll=1
l——+o0

'This is not our desired result, so we modified this formula to in-

troduce a sort of “forgetting factor”: Py(l) = 4/ Hézl P,(i)t. In

this case, we can prove that P [lim;_, y o Ps(I) = 0] = 1.

86

3.2. Malicious System Calls Detection

Proof3.2.2 The convergence of Py (1) to zero can be proven by observing
that:

1
2

Nl

Py(l) = _(e%zi=1i-1ogpp(i)) _

l
[T~

— (e% §=o(zi;{10gPp(i>)) _

[N

[N

= (6 é‘:o(%Zizﬂogpp(i)*%Zé:lfj+11°gpp(i))>

Because of the previous proof, we can write that:

l
.1 N _
P LETOO 7 izzllogpp(z) = —11 =1

We can further observe that, being log P, (i) < 0:

1 !
V5,0 >0: ZlogPp(i) < Z log P, (%)

i=1 i=l—j+1

therefore, the exponent is a sum of infinite negative quantities lesser than
0, leading us to the result that, in probability

Nl

lim (€Z§=o(% i1 log Pp(i) =1 S5y log Ppm))
l—+oco

lim e* =0
Tr—r— 00

Even if this second variant once again makes P (/) — 0 (in prob-
ability), our experiments have shown that this effect is much slower
than in the original formula: Ps(I) ~ 0 for { > 300 (vs. [> 25
of the previous version), as shown in Figure 3.3. In fact, this scal-
ing function also leads to much better results in terms of FPR (see

Section 3.2.5).

Instead of using probabilities — that are sensitive to the sequence
length — a possible alternative, which we are currently exploring, is
the exploitation of distance metrics between Markov models [Stol-
cke and Omohundro, 1993b, 1994c,b] to define robust criteria to

87

3. HosT-Basep Anomary DeTECTION

88

"Scaled

e Original -------
S R

Log of assigned probability

10 20 30 40 50 60
Sequence length (#calls)

Ficure 3.3: Measured sequence probability (log) vs. sequence
length, comparing the original calculation and the second variant of
scaling.

compare new and learned sequence models. Basically, the idea is to
create and continuously update a Markov model associated to the
program instance being monitored, and to check how much such a
model differs from the ones the system has learned for the same pro-
gram. 'This approach is complementary to the one proposed above,
since it requires long sequences to get a proper Markov model. So,
the use of both criteria (sequence likelihood in short activations, and
model comparison in longer ones) could lead to a reduction of false
positives on the sequence model.

3.2.4 Prototype implementation

We implemented the above described system into a two-stage, highly
configurable, modular architecture written in ANSI C. The high-
level structure is depicted in Figure 3.4: the system is plugged into
the Linux auditd. The Cluster Manager is in charge of the clustering
phase while the Markov Model Manager implements Markov mod-
eling features. Both the modules are used in both training phase and
detection phase, as detailed below.

'The Cluster Manager module implements abstract clustering pro-
cedures along with abstract representation and storage of generated

3.2. Malicious System Calls Detection

Kernel Syscall Syscall Behavior
Auditing Extraction Classification Modeling

execve(args**) Markov syslogd
- <syscall>(args**) Cluster
W] Manager Model
exit() Manager | <zoner >

F1Gure 3.4: The high-level structure of our prototype.

Alerting

clusters. The Markov Model Manager is conceptually similar to Clus-
ter Manager: it has a basic Markov chains implementation, along
with ancillary modules for model handling and storage.

During training, Cluster Manager is invoked to create the clus-
ters on a given system call trail while Markov Model Manager infers
the Markov model according to the clustering. At running time, for
each system call, the Cluster Manager is invoked to find the appro-
priate cluster; the Markov Model Manager is also used to keep track
of the current behavior of the monitored process: if significant devi-
ations are found alerts are fired and logged accordingly.

The system can output to both standard output, sysiog facilities
and IDMEEF files. Both the clustering phase and the behavioral anal-
ysis are multi-threaded and intermediate results of both procedures

can be dumped in eXtensible Markup Language (XIML).

3.2.5 Experimental Results

In this section, we both compare the detection accuracy of our pro-
posal and analyze the performances of the running prototype we de-
veloped. Because of the known issues of IDEVAL (plus our findings
summarized in Section 2.4.1), we also collected fresh training data
and new attacks to further prove that our proposal is promising in
terms of accuracy.

As we detailed in Section 3.2.2.1, our system can be tuned to
avoid overfitting; in the current implementation, such parameters
can be specified for each system call, thus in the following we re-
port the bounds of variations instead of listing a// the single values:

dstop,num € {]-7 27 3}, dstop,min = {67 107 207 60}

89

3. HosT-Basep Anomary DeTECTION

90

3.2.5.1 Detection accuracy

For the reasons outlined above and in Section 2.4.1, as well for the
uncertainty outlined in Section 3.2.1, we did not rely on purely nu-
merical results on DR or FPR. Instead, we compared the results ob-
tained by our software with the results of SyscallAnomaly in the terms
of a set of case studies, comparing them singularly. What turned out
is that our software has two main advantages over LibAnomaly:

e a better contextualization of anomalies, which lets the system
detect whether a single syscall has been altered, or if a sequence
of calls became anomalous consequently to a suspicious attack;

e a strong characterization of subgroups with closer and more
reliable sub-models.

As an example of the first advantage, let us analyze again the pro-
gram fdformat, which was already analyzed in Section 3.2.1. As can
be seen from Table 3.9, our system correctly flags execve as anoma-
lous (due to an excessive length of input). It can be seen that P, is 1
(the system call is the one we expected), but the models of the syscall
are not matching, generating a very low P.. 'The localization file
opening is also flagged as anomalous for two reasons: scarce affinity
with the model (because of the strange filename), and also erroneous
transition between the open subgroups open2 and openie. In the
case of such an anomalous transition, thresholds are shown as “un-
defined” as this transition has never been observed in training. The
attack effect (chmod and the change of permissions on /export/home-
/elmoc/.cshre) and various intervening syscalls are also flagged as
anomalous because the transition has never been observed (P,,, = 0);
while reviewing logs, this also helps us in understanding whether or
not the buffer overflow attack has succeeded. A similar observation
can be done on the execution of chmod on /etc/shadow ensuing an
attack on eject.

In the case of ps, our system flags the execve system call, as usual,
for excessive length of input. File /tmp/foo is also detected as anoma-
lous argument for open. In LibAnomaly, this happened just because of
the presence of an underscore, and was easy to bypass. In our case,
/tmp/foo is compared against a sub-cluster of open which contains
only the /tmp/ps_data, and therefore will flag as anomalous, with a
very high confidence, any other name, even if structurally similar. A

3.2. Malicious System Calls Detection

HMM STATE execved (START = execved)
filename /usr/bin/fdformat
argv fdformat\@x2e\ox2e\ex2e\exzel...]
P. 0.1
P, 1
P, (thresh.) 0.1(1)
HMM StATE openi® (open2 = opent®)
pathname /usr/lib/locale/is0_8859_1/[...]
flags -r-xr-xr-x
mode 33133
P, 5-107%
P77L O
P, (thresh.) 0 (undefined)
HMM STtATE openil (openi® = openil)
pathname /devices/pseudo/vol@8:volctl
flags cru-ru-ru-
mode 8630
P 1
P, O
P, (thresh.) 0 (undefined)
HMM StaTE chmod (openil = chmod)
pathname /devices/pseudo/vol@8:volctl
flags cru-ru-ru-
mode 8630
P. 0.1
P, O
P, (thresh.) 0 (undefined)
HMM StATE exite (chmod = exite)
status @
P 1
P7n O
P, (thresh.) 0 (undefined)

Table 3.9: fdformat: attack and consequences

91

3. HosT-Basep Anomary DeTECTION

92

DR FPR
Granularity: Sequence Sequence Call
Markov model bsdtar
Y 100% 1.6% 0.1%
N 88% 1.6% 0.1%
eject
Y 100% 0% 0%
N 0% 0% 0%

Table 3.10: DRs and FPRs on two test programs, with (Y) and with-
out (N) Markov models.

sequence of chmod syscalls executed inside directory /home/secret as
a result of the attacks are also flagged as anomalous program flows.

Limiting the scope to the detection accuracy of our system, we
performed several experiments with both eject and bsdtar, and we
summarize the results in Table 3.10. The prototype has been trained
with ten different execution of eject and more than a hundred ex-
ecutions of bsdtar. We then audited eight instances of the activity
of eject under attack, while for bsdtar we logged seven malicious
executions. We report DRs and FPRs with (Y) and without (N) the
use of Markov models, and we compute FPRs using cross-validation
through the data set (i.e., by training the algorithm on a subset of the
dataset and subsequently testing the other part of the dataset). Note
that, to better analyze the false positives, we accounted for both false
positive sequences (Seq.) and false positive system calls (Call).

In both cases, using the complete algorithm yield a 100% DR
with a very low FPR. In the case of eject, the exploit is detected
in the very beginning: since a very long argument is passed to the
execve, this triggers the argument model. The detection of the shell-
code we injected exploiting the buffer overflow in bsdtar is identified
by the open of the unexpected (special) file /dev/tty. Note that, the
use of thresholds calculated on the overall Markov model allows us to
achieve a2 100% DR in the case of eject; without the Markov model,
the attack wouldn’t be detected at all.

3.2. Malicious System Calls Detection

100 P v Se—— =
P T Original —+—
X ! First variant ---x---

Second variant ------
80 [t /

60

%DR

40

20

0 2 4 6 8 10 12
%FPR
Ficure 3.5: Comparison of the effect on detection of different prob-
ability scaling functions.

It is very difficult to compare our results directly with the other
similar systems we identified in Section 2.2.2. In [Tandon and Chan,
2003] the evaluation is performed on the Defense Advanced Research
Projects Agency (DARPA) dataset, but DRs and FPRs are not given
(the number of detections and false alarms is not normalized), so
a direct comparison is difficult. Moreover, detection is computed
using an arbitrary time window, and false alerts are instead given in
“alerts per day”. It is correspondingly difficult to compare against the
results in [Bhatkar et al., 2006], as the evaluation is ran over a dataset
which is not disclosed, using two programs that are very different
from the ones we use, and using a handful of exploits chosen by the
authors. Different scalings of the false positives and DRs also make
a comparison impossible to draw.

As a side result, we tested the detection accuracy of the two scal-
ing functions we proposed for computing the sequence probability
Ps. As shown in Figure 3.5, the first and the second variant both
show lower FPR w.r.t. to the original, unscaled version.

Note 3.2.6 (Configuration parameters) Although we performed all

93

3. HosT-Basep Anomary DeTECTION

94

the experiments with different values of dgtop min and dstop,num, we
report only the best detection accuracy, achieved with the default set-
tingS: dstop,min =10, dstop,num =3.

These parameters influence the quality of the clustering and thus
may need to be changed if some particular, pathological false posi-
tives need to be eliminated in a specific setting. In this case, human
intervention is required; in particular, it is required to run the tool
on a small dataset collected on a live system and check the cluster-
ing for outliers. If clusters containing too many outliers exist, then
dstop,min may be increased. dstop num should be increased only if
outliers cannot be eliminated.

3.2.5.2 Performance measurements

An IDS should not introduce significant performance overheads in
terms of the time required to classify events as malicious (or not). An
IDS based on the analysis of system calls has to intercept and process
every single syscall invoked on the operating system by userspace ap-
plications; for this reason, the fastest a system call is processed, the
best. We profiled the code of our system with gprof and valgrind
for CPU and memory requirements. We ran the IDS on data drawn
from the IDEVAL 1999 dataset (which is sufficient for performance
measurements, as in this case we are only interested in the through-
put and not in realistic DRs).

In Table 3.11 we reported the measurement of performance on
the five working days of the first week of the dataset for training,
and of the fourth week for testing. The throughput X varies during
training between 6120 and 10228 syscalls per second. The cluster-
ing phase is the bottleneck in most cases, while the Markov model
construction is generally faster. Due to the clustering step, the train-
ing phase is memory consuming: in the worst case, we recorded a
memory usage of about 700 MB. The performance observed in the
detection phase is of course even more important: in this case, it
varies between 12395 and 22266 syscalls/sec. Considering that the
kernel of a typical machine running services such as HT'TP/FTP on
average executes system calls in the order of thousands per second
(e.g., around 2000 system calls per second for wu-ftpd [Mutz et al.,
2006]), the overhead introduced by our IDS is noticeable but does
not severely impact system operations.

N B - N Y N O

= e
W N Rk o

3.3. Mixing Deterministic and Stochastic Models

3.3 Mixing Deterministic and Stochastic Models

In this section, we describe an improvement to the syscall-based anomaly

detection system described in Section 3.2, which incorporates both

the deterministic models of what we called FSA-DF, detailed in [Bhatkar

et al., 2006] (that we analyzed in detail in Section 2.2.2), and the
stochastic models of S?A%DE . In [Frossi et al., 2009] we propose
a number of modifications, described in the following, that signifi-
cantly improve the performance of both the original approaches. In
this section we begin by comparing FSA-DF with S?A?DE and an-
alyzing their respective performance in terms of detection accuracy.
Then, we outline the major shortcomings of the two systems, and
propose various changes in the models that can address them. In par-
ticular, we kept the deterministic control flow model of FSA-DF and
substituted some deterministic dataflow relations with their stochas-
tic equivalent, using the technique described in Section 3.3.1.3. 'This
allowed us to maintain an accurate characterization of the process
control flow and, at the same time, to avoid many FP due to the de-
terministic relations among arguments. More precisely, the original

learning algorithm of FSA-DF can be schematized as follow:

Ve = (syscall;—1, syscall;)
make_state(c, PC)
learn_relations(c)
equal
elementOf
subsetOf
range
hasExtension
isWithinDir
contains
hasSameDirfs
hasSameBasefs
hasSameExtensionfAs

We noticed that simple relations such as equal, elementOf, con-
tains were not suitable for strings. In particular, they raise too many
FP also in obvious cases like “/tmp/php1553” vs. “/tmp/php9822” where
the deterministic equal does not hold, but a smoother predicate could
easily detect the common prefix, and thus group the two strings in
the same class. This problem is clearly extended to the other two re-
lations that are based on string confrontation as well. To mitigate

95

3. HosT-Basep Anomary DeTECTION

96

N-REC RN - N, N N R RN

[
| SRS

these side-effects, we augmented the learning algorithm as follows:

learn_string_domain(syscall;)
Ve = (syscall,_q,syscall;)
make_state(c, PC)
Tearn_relations(c)

save_model

subsetOf

range

hasExtension

isWithinDir

hasSameDirfAs
hasSameBasefs
hasSameExtensionfAs

where the pseudo-function 1earn_string.domain equals to the train-
ing of the SOM as described in Section 3.3.1.3, and save_model plays
the role the three relations mentioned above. Basically, it stores the
Best Matching Unit (BMU) corresponding to the string arguments
of the current system call. The BMU is retrieved by querying the
SOM previously trained. In addition to this, we complemented the
resulting system with two new models to cope with DoS attacks (see
Section 3.3.1.2) and the presence of outlier in the training dataset
(see Section 3.3.1.1).

We show how targeted modifications of their anomaly models, as
opposed to the redesign of the global system, can noticeably improve
the overall detection accuracy. Finally, the impact of these modifica-
tions are discussed by comparing the performance of the two original
implementations with two modified versions complemented with our
models.

3.3.1 Enhanced Detection Models

'The improvements we made focus on path and execution arguments.
A new string length model is added exploiting a Gaussian interval as
detailed in Section 3.3.1.1. The new edge frequency model described
in Section 3.3.1.2 have been added to detect DoS attacks. Also, in
Section 3.3.1.3 we describe how we exploited SOM to model the
similarity among path arguments. The resulting system, Hybrid IDS
incorporates the models of FSA-DF and S2A?DE along with the

aforementioned enhancements.

3.3. Mixing Deterministic and Stochastic Models

Ficure 3.6: Sample estimated Gaussian intervals for string
length. Training data of sudo (left) and ftp (right) was
used. N(29.8,184.844), thresholds [12.37, 47.22] (left) and
N (19.25,1.6875), thresholds [16.25, 22.25] (right).

3.3.1.1 Arguments Length Using Gaussian Intervals

'The model for system call execution arguments implemented in S2A’DE
takes into account the minimum and maximum length of the param-
eters found during training, and checks whether each string param-
eter falls into this range (model probability 1) or not (model proba-
bility 0). This technique allows to detect common attempts of buffer
overflow through the command line, for instance, as well as various
other command line exploits. However, such criteria do not model
“how different” two arguments are to each others; a smoother func-
tion is more desirable. Furthermore, the frequency of each argument
in the training set is not taken into account at all. Last but not least,
the model is not resilient to the presence of attacks in the training set;
just one occurrence of a malicious string would increase the length of
the maximum interval allowing argument of almost every length.

The improved version of the interval model uses a Gaussian dis-
tribution for modeling the argument length X,,4s = |args|, esti-
mated from the data in terms of sample mean and sample variance.
'The anomaly threshold is a percentile Ty,qs centered on the mean.
Arguments which length is outside the stochastic interval are flagged
as anomalous. This model is resilient to the presence of outliers in
the dataset. The Gaussian distribution has been chosen since is the
natural stochastic extension of a range interval for the length. An
example is shown in Figure 3.6.

97

3. HosT-Basep Anomary DeTECTION

98

Model Validation During detection the model self-assesses its pre-
cision by calculating the kurtosis measure [Joanes and Gill, 1998],
defined as yx = % Thin tailed distributions with a low peak
around the mean exhibit yx < 0 while positive values are typical of

fat tailed distributions with an acute peak. We used §x = £5* -3 to
X

estimate vx. Thus, if 7x,, ., < 0 means that the sample is spread on
a big interval, while positive the values indicates a less “fuzzy” set of
values. It is indeed straightforward that highly negative values indi-
cates not significant estimations as the interval would include almost
all lengths. In this case, the model falls back to a simple interval.

3.3.1.2 DoS Detection Using Edge Traversal Frequency

DoS attacks which force the process to get stuck in a legal section
of the normal control flow could be detected by S?’A?DE as viola-
tions of the Markov model, but not by FSA-DF. On the other hand,
the statistical models implemented in S?A2DE are more robust but
have higher False Negative Rates (FNRs) than the deterministic de-
tection implemented in FSA-DF. However, as already stated in Sec-
tion 3.2, the cumulative probability of the traversed edges works well
only with execution traces of similar and fixed length, otherwise even
the rescaled score decreases to zero, generating false positives on long
traces.

To solve these issues a stochastic model of the edge frequency
traversal is used. For each trace of the training set, our algorithm
counts the number of edge traversals (i.e., Markov model edge or
FSA edge). The number is then normalized w.r.t. all the edges
obtaining frequencies. Each edge is then associated to the sample
Xedge = %1,22,.... We show that the random samples Xcqge is
well estimated using a Beta distribution. Figure 3.7 shows sample
plots of this model estimated using the mt-daapd training set; the
quantiles associated to the thresholds are computed and shown as
well. As we did for the Gaussian model, the detection thresholds
are defined at configuration time as a percentile T¢qge centered on
the mean (Figure 3.7). We chose the Beta for its high flexibility; a

Gaussian is unsuitable to model skewed phenomena.

Model Validation ~Our implementation is optimized to avoid over-
fitting and meaningless estimations. A model is valid only if the

3.3. Mixing Deterministic and Stochastic Models

(a) (b)

Ficure 3.7: Two different estimations of the edge frequency
distribution. Namely, Beta(178.445, 157.866) with thresholds
[0.477199, 0.583649] (left) and Beta(10.3529,181.647) with thresh-
olds [0.0266882, 0.0899057] (right).

training set includes a significant (e.g., | min;{z;} — max;{z;}| >
0Zmin = 0.04) amount (N:;ZZ = 6) of paths. Otherwise it con-
struct a simpler frequency range model. The model exhibits the side
effect of discarding the extreme values found in training and leads
to erroneous decisions. More precisely, if the sample is Xcgge =
1,1,...,0.9,1, the right boundary will never be exactly 1, and there-
fore legal values will be discarded. To solve this issue, the quantiles
close to 1 are approximated to 1 according to a configuration param-

eter X, For instance, if X.,; = 3 the quantile Fx(-) = 0.999 is
approximated to 1.

3.3.1.3 Path Similarity Using Self Organizing Maps

Path argument models are already implemented in S?’A?DE and
FSA-DF. Several, general-purpose string comparison techniques have
been proposed so far, especially in the field of database systems and
data cleansing [Elmagarmid et al., 2007]. We propose a solution
based on Symbol-SOMs [Somervuo, 2004] to define an accurate dis-
tance metric between paths. Symbol SOM implements a smooth
similarity measure otherwise unachievable using common, crisp dis-
tance functions among strings (e.g., edit distance).

The technique exploits SOMs, which are unsupervised neural al-
gorithms. A SOM produces a compressed, multidimensional repre-

99

3. HosT-Basep Anomary DeTECTION

sentation (usually a bi-dimensional map) of the input space by pre-
serving the main topological properties. It is initialized randomly,
and then adapted via a competitive and cooperative learning process.
At each cycle, a new input is compared to the known models, and
the BMU node is selected. The BMU and its neighborhood models
are then updated to make them better resemble future inputs.

We use the technique described in [Kohonen and Somervuo,

1998] to map strings onto SOMs. Formally, let

Sy = [s¢e(1) - s¢(L)]

denote the ¢-th string over the alphabet A of size |A|. Each
symbol s;(7),4 = 1...L, is then encoded into a vector s, (i) of size
| A initialized with zeroes except at the w-th position which corre-
sponds to the index of the encoded symbol (e.g., s:(7) = ‘b’ would be
5,(1))=[0100---0]7, w = 2). Thus, each string S; is represented
with sequence of L vectors like 5,(i), i.e. a L x |A|-matrix: S,.

Let S, and M, denote two vector-encoded strings, where M is
the model associated with SOM node k. The distance between the
two strings is D'(Sy, My) = D(S,, M,). D(:,-) is also defined in
the case of Lg, = |S¢| # |Mg| = Ly, relying on dynamic time
warping techniques to find the best alignment between the two se-
quences before computing the distance. Without going into details,
the algorithm [Somervuo, 2004] aligns the two sequences s,(i) €

S, my(j) € M, usingamapping [s, (i), my (5)] = [s,(i(p)), my,(j (p))]
defined through the warping function F : [i, j] + [i(p), j(p)]:

'The distance function D is defined over the warping alignment
of size P, D(S,, M,) = Zle d(i,j), whichis P = Lg, = Ly, if
the two strings have equal lengths. More precisely:

d(i, j) = d(i(p), ()5 (i(p)) — my, (())I]-

The distance is defined upon g; ; = ¢(i,), the variable which
stores the cumulative distance in each trellis point (4, j) = (i(p), i(p)).
The trellis is first initialized to 0 in (0, 0), to +o0 for both (0, -) and
(+,0), otherwise:

100

3.3. Mixing Deterministic and Stochastic Models

/ b i n / s h

0 +o0 400 400 400 4o oo 400
+00 0 1.414 2.828 4.242 4.242 5.656 7.071
+oo 1.414 1.414 2.828 4.242 5.656 5.656 7.071
+oo 2.828 2.828 2.828 4.242 5.656 7.071 7.071
400 4.242 5.656 5.656 5.656 4.242 5.656 7.071
4.242 4242 4.242 4.242 5.656 7.071 8.485
400 5.656 5.656 7.071 7.071 5.656 5.656 7.071
400 7.071 7.071 7.071 8485 7.071 7.071 7.071
4+oo 8.485 8.485 8.485 8.485 8.485 8.485 8.485

g O T~ " O < >~
+
8

Ficure 3.8: Distance computation example.

g(i7j - 1) +d<7’7.7)
g(imj):min g(i_lvj_1)+d(i’j)
g(i_ 17j) +d(lv.])

Note that ¢ € [1,Lg,] and j € [1, Ly, | thus the total distance
is D(S,,M,) = g(Ls,, L,). A simple example of distance com-
putation is show in Figure 3.8 (A is the English alphabet plus extra
characters). The overall distance is D’(Sy, My,) = 8.485. We used
a symmetric Gaussian neighborhood function i whose center is lo-
cated at the BMU c(t). More precisely

_d(e(t),k)

h(k, C(t), t) = a(t)@ 202 (t)

where a(t) controls the learning rate and o (%) is the actual width
of the neighborhood function. The SOM algorithm uses zwo training
cycles. During (1) adaptation the map is more flexible, while during
(2) tuning the learning rate .y and the width of the neighborhood
0.y are decreased. On each phase such parameters are denoted as
a1,02,01,02.

Symbol SOMs are “plugged” into FSA-DF by associating each
transition with the sez of BMUs learned during training. At detec-
tion, an alert occurs whenever a path argument falls into neighbor-
hood of a non-existing BMU. Similarly, in the case of S?A2DE , the

neighborhood function is used to decide whether the string is anoma-

101

3. HosT-Basep Anomary DeTECTION

102

lous or not, according to a proper threshold which is the minimum
value of the neighborhood function encountered during training, for
each node.

3.3.2 Experimental Results

In this section we describe our efforts to cope with the lack of reliable
testing datasets for intrusion detections. The testing methodology is
here detailed along with the experiments we designed. Both detec-
tion accuracy and performance overhead are subjects of our tests.

In order to evaluate and highlight the impact of each specific
model, we performed targeted tests rather than reporting general
DRs and FPRs only. Also, we ensured that all possible alerts types
are inspected (i.e., true/false positive/negative). In particular, for
each IDS, we included one /ega/ trace in which file operations are per-
formed on files never seen during training but with a similar name
(e.g., training on /tmp/log, testing on /tmp/10g2); secondly, we in-
serted a trace which mimics an attack.

3.3.2.1 Comparison of Detection Accuracy

The detection accuracy of Hybrid IDS (H), FSA-DF (F) and S?A2DE
(S) is here analyzed and compared. Both training parameters and de-
tection results are summarized in Table 3.12. The parameters used
to train the SOM are fixed except for o1 (t): aq(t) = 0.5 + 0.01,
o2(t) = 3 and as(t) = 0.1 <+ 0.01. Percentiles for both X, and
Xeage are detailed. 'The “paths/cycle%” (paths per cycle) row indi-
cates the amount of paths arguments used for training the SOM.
The settings for clustering stage of S2A?DE are constant: minimum
number of clusters (3, or 2 in the case of the open); maximum merg-
ing distance (6, or 10 in the case of the open); the “null” and the “don’t
care” probability values are fixed at 0.1 and 10, respectively, while 10
is the maximum number of leaf clusters. In order to give a better un-
derstanding of how each prototype works, we analyzed by hand the
detection results on each target application.

sing: Hybrid IDS is not tricked by the false positive mimic trace in-
serted. The Symbol SOM model recognizes the similarity of
/tmp/10g3 with the other paths inserted in the training. In-
stead, both FSA-DF and S?A?DE raise false alarms; the for-

mer has never seen the path during training while the latter

3.3. Mixing Deterministic and Stochastic Models

TRAINING THROUGHPUT

Ses. #Calls #Progr. t(Clust, HMM) [s] X [call/s]

1 97644 111 12.056 (7.683, 3.268) 8099
2 34931 67 3.415 (1.692, 1.356) 10228
3 41133 129 6.721 (3.579, 2.677) 6120
4 50239 152 7.198 (3.019, 3.578) 6979
5 38291 115 4.503 (2.219, 1.849) 8503
Avg. processing time 1.2910-10~*

DETECTION THROUGHPUT
Ses. #Calls #Progr. t [s] X [call/s]
1 109160 149 6.722 16239
2 160565 186 12.953 12395
3 103605 143 4.653 22266
4 115334 107 5.212 22128
5 112242 147 5.674 19781
Avg. processing time 5.6581 - 107

Table 3.11: Training and detection throughput X. On the same
dataset, the average processing time with S2A?DE disabled is around
0.08741084, thus, in the worst case, S>A?DE introduces a 0.1476%
overhead (estimated).

sing mt-daapd proftpd sudo BitchX

SOM 15 x 15 15 x 15 15 x 15 15 x 15 10 x 10
Traces 18 18 18 18 14

Syscalls 5808 194879 64640 52034 103148

Paths 2700 2700 23632 1316 14921
Paths/cycle% 2 2 1 8 1

Table 3.12: Parameters used to train the IDSs. Values includes the
number of traces used, the amount of paths encountered and the
number of paths per cycle.

103

3. HosT-Basep Anomary DeTECTION

recognizes the string in the tree path model but an alarm is
raised because of threshold violation. S2A?DE recognizes the
attack containing the longer subsequent invocations of mmap2;
FSA-DF also raises a violation in the file name because it has
never been trained against /etc/passud nor /etc/shadow; and
Hybrid IDS is triggered because the paths are placed in a dif-
ferent SOM region w.r.t. the training.

mt-daapd: The legit traces violate the binary and unary relations caus-

ing several false alarms on FSA-DF. On the other hand, the
smoother path similarity model allows Hybrid IDS and S?A?DE
to pass the test with no false positives. The changes in the con-
trol flow caused by the attacks are recognized by all the IDSs.
In particular, the DoS attack (special-crafted request sent fifty
times) triggers an anomaly in the edge frequency model.

proftpd: The legit trace is correctly handled by all the IDSs as well as

sudo:

the anomalous root shell that causes unexpected calls (setuid,
setgid and execve) to be invoked. However, FSA-DF flags
more than 1000 benign system calls as anomalous because of
temporary files path not present in the training.

Legit traces are correctly recognized by all the engines and at-
tacks are detected without errors. S2A2DE fires an alert be-
cause of a missing edge in the Markov model (i.e., the un-
expected execution of choun root:root script and chmod +s
script). Also, the absence of the script string in the train-
ing triggers a unary relation violation in FSA-DF and a SOM
violation in Hybrid IDS. The traces which mimic the attack
are erroneously flagged as anomalous, because the system call
sequences are s¢rictly similar to the attack.

BitchX: The exploit is easily detected by all the IDSs as a control

104

flow violation through extra execve system calls are invoked
to execute injected commands. Furthermore, the Hybrid IDS
anomaly engine is triggered by three edge frequency violations
due to paths passed to the FSA when the attack is performed
which are different w.r.t. the expected ones.

3.3. Mixing Deterministic and Stochastic Models

3.3.2.2 Specific Comparison of SOM-S*A2DE and S2A2DE

We also specifically tested how the introduction of a Symbol SOM
improves over the original probabilistic tree used for modeling the
path arguments in S?A2DE . Training parameters are reported in
Table 3.14 while results are summarized in Table 3.15, the FPR de-
creases in the second test. However, the first test exhibits a lower
FNR as detailed in the following.

The ncueject utility is affected by a stack overflow CVE-2007-
1719 caused by improper bounds checking. Root privileges can be
gained if mcueject is setuid. Launching the exploit is as easy as e ject
-t illegal_payload, but we performed it through the userland execu-
tion technique we describe in Section 3.4.1 to make it more stealthy
avoiding the execve that obviously triggers an alert in the S2A2DE
for a missing edge in the Markov chain. Instead, we are interested in
comparing the string models only. SOM-S?A’DE detects it with
no issues because of the use of different “types” of paths in the opens.

An erroneous computation of a buffer length is exploited to exe-
cute code via a specially crafted PAX archives passed to bsdtar (CVE-
2007-3641). A heap overflow allows to overwrite a structure pointer
containing itself another pointer to a function called right after the
overflow. The custom exploit [Maggi et al., 2008] basically redirects
that pointer to the injected shellcode. Both the original string model
and the Symbol SOM models detect the attack when an unexpected
special file (i.e., /dev/tty) is opened. However, the original model
raises many false positives when significantly different paths are en-
countered. This situation is instead handled with no false positives
by the smooth Symbol SOM model.

Since this dataset has been originally prepared for [Maggi et al.,
2008, 2009a], details on its generation are described in Section 3.1.

3.3.2.3 Performance Evaluation and Complexity Discussion

We performed both empirical measurements and theoretical analysis
of the performance of the various proposed prototypes. Detection
speed results are summarized in Table 3.16. The datasets for detec-
tion accuracy were reused: we selected the five test applications on
which the IDSs performed worst. Hybrid IDS is slow because the
BMU algorithm for the symbol SOM is invoked for each system call

with a path argument (opens are quite frequent), slowing down the

105

3. HosT-Basep Anomary DeTECTION

sing mt-daapd profdtpd sudo BitchX
Traces 22 18 21 22 15
Syscalls 1528 9832 18114 3157 107784
S?A’DE 10.0% 0% 0% 10.0% 0.0%
FSA-DS 5.0% 16.7% 28% 15.0% 0.0%
Hybrid IDS 0.0% 0% 0% 10.0% 0.0%

Table 3.13: Comparison of the FPR of S2A2DE vs. FSA-DF vs.
Hybrid IDS. Values include the number of traces used. Accurate de-
scription of the impact of each individual model is in Section 3.3.2.1

mcweject bsdtar
SOM 15 x 15 15 x 15
Traces 10 240
Syscalls 84 12983
Paths 48 3477
Paths/cycle% 50 2

Table 3.14: Parameters used to train the IDSs. Values includes the

number of traces used, the amount of paths encountered and the
number of paths per cycle.

mcweject bsdtar
Traces 12 2
Syscalls 75 102
S2A2DE 0.0% 8.7%
SOM-S2A2DE 0.0% 0.0%

Table 3.15: Comparison of the FPR of S2A2DE vs. SOM-S2A2DE

. Values include the number of traces used.

106

3.3. Mixing Deterministic and Stochastic Models

sing sudo BitchX mcuweject bsdtar
System calls 3470 15308 12319 97 705 Speed
S?A’DE 0.4 0.8 1.9 0.1 0.1 8463
FSA-DF 1.3 1.5 1.2 - - 7713
Hybrid IDS 29 5.8 27.7 - - 1067
SOM-S2A2DE - - - 8.8 19 25

Table 3.16: Detection performance measured in “seconds per system
call”. The average speed is measured in system calls per second (last
column).

detection phase. Also, we recall that the current prototype relies on
a system call interceptor based on ptrace which introduces high run-
time overbeads, as shown in [Bhatkar et al., 2006]. To obtain better
performance, an in-kernel interceptor could be used. The theoret-
ical performance of each engine can be estimated by analyzing the
bottleneck algorithm.

3.3.2.4 Complexity of FSA-DF

During training, the bottleneck is the binary relation learning algo-
rithm. T = O(S - M + N), where M is the total number of
system calls, S = |Q)| is the number of states of the automaton, and
N is the sum of the length of all the string arguments in the training
set. At detection T4%, - =O(M + N).

Assuming that each system call has O(1) arguments, the training
algorithm is invoked O(M) times. The time complexity of each i-th
iteration is Y; + | X;|, where Y; is the time required to compute all
the unary and binary relations and | X;| indicates the time required
to process the ¢ — th system call X. Thus, the overall complexity is
bounded by Zf\il Y+ |X;|=M-Y+ Zf\il | X|. The second fac-
tor Zf\il | X;| can be simplified to N because strings are represented
as a tree; it can be shown [Bhatkar et al., 2006] that the total time
required to keep the longest common prefix information is bounded
by the total length of all input strings. Furthermore, Y is bounded
by the number of unique arguments, which in turn is bounded by S;
thus, 78" = O(S - M + N). 'This also prove the time complexity
of the detection algorithm which, at each state and for each input,
requires unary and binary checks to be performed; thus, its cost is

107

3. HosT-Basep Anomary DeTECTION

108

bounded by M + N. [

3.3.2.5 Complexity of Hybrid IDS

In the training phase, the bottleneck is the Symbol SOM creation
time: 7" = O(C - D - (L? + L)), where C is the number of
learning cycles, D is the number of nodes, and L is the maximum
length of an input string. At detection time T4t = O(M - D - L?).

Tirain depends on both the number of training cycles, the BMU
algorithm and node updating. 'The input is randomized at each train-
ing session and a constant amount of paths is used, thus the input size
is O(1). The BMU algorithm depends on both the SOM size and
the distance computation, bounded by Linput - Lnode = L?, where
Linput and Lyoqe are the lengths of the input string and the node
string, respectively. More precisely, the distance between strings is
performed by comparing all the vectors representing, respectively,
each character of the input string and each character of the node
string. ‘The char-by-char comparison is performed in O(1) because
the size of each character vector is fixed. Thus, the distance com-
putation is bounded by L? ~ Linput - Lnode- The node updating
algorithm depends on both the number of nodes D, the length of
the node string Lyo4. and the training cycles C, hence each cycle
requires O(D - (L% + L)), where L is the length of the longest string.
The creation of the FSA is similar to the FSA-DF training, except
for the computation of the relations between strings which time is no
longer O(N) but it is bounded by M - D L? (i.e., the time required to
find the Best Matching Unit for one string). Thus, according to Proof
1, this phase requires O(S- M + M -D - L?*) < O(C-D-(L*+ L)).
The detection time T2¢ is bounded by the BMU algorithm, that is
O(M -D-L?). |

The clustering phase of S2A’DE is O(N?) while with SOM-
S?A’DE it grows to O(N2L?).

In the worst case, the clustering algorithm used in [Maggi et al.,
2009a] is known to be O(N?), where N is the number of system calls:
the distance function is O(1) and the distance matrix is searched for
the two closest clusters. In the case of SOM-S2A?DE , the distance
function is instead O(L?) as it requires one run of the BMU algo-
rithm. |

3.4. Forensics Use of Anomaly Detection Techniques

3.4 Forensics Use of Anomaly Detection Techniques

Anti-forensics is the practice of circumventing classical forensics anal-
ysis procedures, making them unreliable or impossible. In this sec-
tion we describe how machine learning algorithms and anomaly de-
tection techniques can be exploited to cope with a wide class of defini-
tive anti-forensics techniques. In [Maggi et al., 2008] we tested
S?A%DE , described in Section 3.2 including the improvements de-
tailed in Section 3.3, on a dataset we created through the implemen-
tation of an innovative technique of anti-forensics, and we show that
our approach yields promising results in terms of detection.

Computer forensics is usually defined as the process of applying
scientific, repeatable analysis processes to data and computer systems,
with the objective of producing evidence that can be used in an in-
vestigation or in a court of law. More in general, it is the set of tech-
niques that can be applied to understand if, and how, a system has
been used or abused to commit mischief [Mohay et al., 2003]. The
increasing use of forensic techniques has led to the development of
anti-forensic techniques that can make this process difficult, or im-
possible [Garfinkel, 2007; Berghel, 2007; Harris, 2006].

Anti-forensics techniques can be divided into at least two groups,
depending on their target. If the identification phase is targeted, we
have fransient anti-forensics techniques, which make the acquired
evidence difficult to analyze with a specific tool or procedure, but not
impossible to analyze in general. If instead the acquisition phase is
targeted, we have the more effective class of definitive anti-forensics
techniques, which effectively deny once and forever any access to the
evidence. In this case, the evidence may be destroyed by the attacker,
or may simply not exist on the media. This is the case of in-memory
injection techniques that are described in the following.

In particular, we propose the use of machine learning algorithms
and anomaly detectors to circumvent such techniques. Note that,
referring once again to the aforementioned definition of computer
forensics in [Mohay et al., 2003], we focused only on detecting i
a system has been compromised. In fact, if definitive anti-forensics
techniques can make it impossible to detect how the system has been
exploited. We illustrate a prototype of anomaly detector which ana-
lyzes the sequence and the arguments of system calls to detect intru-
sions. We also use this prototype to detect in-memory injections of
executable code, and in-memory execution of binaries (the so-called

109

3. HosT-Basep Anomary DeTECTION

“userland exec” technique, which we re-implement in a reliable way).
'This creates a usable audit trail, without needing to resort to com-
plex memory dump and analysis operations [Burdach, 2009; Ring
and Cole, 2004].

3.4.1 Problem statement

Anti-forensics is defined by symmetry on the traditional definition
of computer forensics: it is the set of techniques that an attacker
may employ to make it difficult, or impossible, to apply scientific
analysis processes to the computer systems he penetrates, in order to
gather evidence [Garfinkel, 2007; Berghel, 2007; Harris, 2006]. The
final objective of anti-forensics is to reduce the quantity and spoil
the quality [Grugq, 2005] of the evidence that can be retrieved by an
investigation and subsequently used in a court of law.

Following the widely accepted partition of forensics [Pollitt, 1995]
in acquisition, identification, evaluation, and presentation, the only two
phases where technology can be critically sabotaged are both acqui-
sition and identification. Therefore, we can define anti-forensics as
follows.

Definition 3.4.1 (Anti-forensics) Anti-forensics is a combination of
all the methods that make acquisition, preservation and analysis of
computer-generated and computer-stored data difficult, unreliable or
meaningless for law enforcement and investigation purposes.

Even if more complex taxonomies have been proposed [Harris,
2006], we can use the traditional partition of the forensic process to
distinguish among two types of anti-forensics:

Transient anti-forensics when the identification phase is targeted, mak-
ing the acquired evidence difficult to analyze with a specific
tool or procedure, but not impossible to analyze in general.

Definitive anti-forensics when the acquisition phase is targeted, ru-
ining the evidence or making it impossible to acquire.

Examples of transient anti-forensics techniques are the fuzzing
and abuse of file-systems in order to create malfunctions or to ex-
ploit vulnerabilities of the tools used by the analyst, or the use of

110

3.4. Forensics Use of Anomaly Detection Techniques

log analysis tools vulnerabilities to hide or modify certain informa-
tion [Foster and Liu, 2005; Grugq, 2005]. In other cases, entire file-
systems have been hidden inside the metadata of other file-systems
[Gruggq, 2005], but techniques have been developed to cope with
such attempts [Piper et al., 2006]. Other examples are the use of
steganography [Johnson and Jajodia, 1998], or the modification of
file metadata in order to make filetype not discoverable. In these
cases the evidence is not completely unrecoverable, but it may es-
cape any quick or superficial examination of the media: a common
problem today, where investigators are overwhelmed with cases and
usually under-trained, and therefore overly reliant on tools.

Definitive anti-forensics, on the other hand, effectively denies
access to the evidence. 'The attackers may encrypt it, or securely
delete it from file-systems (this process is sometimes called “counter-
forensics”) with varying degrees of success [Geiger, 2005; Garfinkel
and Shelat, 2003]. Access times may be rearranged to hide the time
correlation that is usually exploited by analysts to reconstruct the
events timeline. The final anti-forensics methodology is not to leave
a trail: for instance, modern attack tools (commercial or open source)
such as Metasploit [Metasploit, 2009], Mosdef or Core IMPACT [Core
Security Technologies, 2009] focus on pivoting and in-memory in-
jection of code: in this case, nothing or almost nothing is written on
disk, and therefore information on the attack will be lost as soon as it
is powered down, which is usually standard operating procedure on
compromised machines. These techniques are also known as “disk-
avoiding” procedures.

Memory dump and analysis operations have been advocated in
response to this, and tools are being built to cope with the complex
task of the reliable acquisition [Burdach, 2009; Schatz, 2007] and
analysis [Burdach, 2009; Ring and Cole, 2004; Nick L. Petroni et al.,
2006] of a modern system’s memory. However, even in the case that
the memory can be acquired and examined, if the process injected
and launched has already terminated, once more, no trace will be
found of the attack: these techniques are much more useful against
in-memory resident backdoors and rootkits, which by definition are
persistent.

111

3. HosT-Basep Anomary DeTECTION

112

@ alignment

argc
Attacker Victim

argv []

1. Exploit code + SELF payload ——| SELF loader ready envp []

argv str

2. SELF auto-loader + arbitrary ELF —
. ELF's SP envp str
<« 3. Arbitrary ELF response —————

’08]S S,9p02 3|qeIBUINA

alignment

F1Gurke 3.9: An illustration of the in-memory execution technique.

3.4.2 Experimental Results

Even in this evaluation, we used the dataset described in Section 3.1.
However, a slight modification of the generation mechanism was
needed. More precisely, in the tests conducted we used a modified
version of SELF [Pluf and Ripe, 2005], which we improved in or-
der to reliably run under FreeBSD 6.2 and ported to a form which
could be executed through code injection (i.e., to shellcode format).
SELF implements a technique known as wuserland exec: it modifies
any statically linked Executable Linux Format (ELF) binary and, by
building a specially-crafted stack, it allows an attacker to load and run
that ELF in the memory space of a target process without calling the
kernel and, more importantly, without leaving any trace on the hard
disk of the attacked machine. This is done through a two-stage at-
tack where a shellcode is injected in the vulnerable program, and then
retrieves a modified ELF from a remote machine, and subsequently
injects it into the memory space of the running target process, as
shown schematically in Figure 3.9.

Eight experiments with both eject and bsdtar were performed.
Our anomaly detector was first trained with ten different execution
of eject and more than a hundred executions of bsdtar. We also
audited eight instances of the activity of eject under attack, while
for bsdtar we logged seven malicious executions. We repeated the
tests both with a simple shellcode which opens a root shell (a simple
execve of /bin/sh) and with our implementation of the userland exec
technique.

The overall results are summarized in Table 3.17. Let us con-
sider the effectiveness of the detection of the attacks themselves. The

3.4. Forensics Use of Anomaly Detection Techniques

Executable Regular shellcode Userland exec
FPR DR FPR DR

eject 0% 75% 0% 100%
bsdtar 7.81% 71% 7.81% 100%

Table 3.17: Experimental results with a regular shellcode and with
our userland exec implementation.

attacks against eject are detected with no false positive at all. The
exploit is detected in the very beginning: since a very long argument
is passed to the execve, this triggers the argument model. The detec-
tion accuracy is similar in the case of bsdtar, even if in this case there
are some false positives. The detection of the shellcode happens with
the first open of the unexpected special file /dev/tty. It must be un-
derlined that most of the true alerts are correctly fired at system call
level; this means that malicious ca/ls are flagged by our IDS because
of their unexpected arguments, for instance.

On the other hand, exploiting the userland exec an attacker launches
an otherwise normal executable, but of course such executable has
different system calls, in a different order, and with different argu-
ments than the ones expected in the monitored process. This reflects
in the fact that we achieved a 100% DR with no increase in false pos-
itives, as each executable we have run through SELF has produced
a Markov model which significantly differs from the learned one for
the exploited host process.

113

3. HosT-Basep Anomary DeTECTION

114

3.5 Concluding Remarks

In this chapter we first described in detail two contributions to host-
based anomaly detection and then demonstrated how these tech-
niques can be successfully applied to circumvent anti-forensics tools
often used by intruders to avoid to leave traces on the file-system.

First, we described a host-based IDS based on the analysis of
system calls arguments and sequences. In particular, we analyzed
previous literature on the subject, and found that there exists only a
handful of works which take into account the anomalies in such ar-
guments. We improved the models suggested in one of these works,
we added a stage of clustering in order to characterize normal invo-
cations of calls and to better fit models to arguments, and finally we
complemented it with Markov models in order to capture correlation
between system calls.

We showed how the prototype is able to correctly contextualize
alarms, giving the user more information to understand what caused
any false positive, and to detect variations over the execution flow, as
opposed to punctual variations over single instances. We also demon-
strated its improved detection capabilities, and a reduction of false
positives. The system is auto-tuning and fully unsupervised, even if
a range of parameters can be set by the user to improve the quality of
detection.

A possible future extension of the technique we described is the
analysis of complementary approaches (such as Markov model merg-
ing or the computation of distance metrics) to better detect anoma-
lies in the case of long system call sequences, which we identified
as a possible source of false positives. In the following section, we
describe how a deterministic behavioral model, i.e., an FSA, often
shows a better and more accurate characterization of the process flow.
However, to achieve better FPR of S?A2DE we had to add several
stochastic models to avoid many false detections; this, as expected, is
paid at the price of higher computational overheads.

Secondly, we demonstrated that a good alternative to using dis-
tance metrics between Markov models is the exploiting determinis-
tic models for the control flow. More precisely, we showed how the
deterministic dataflow relations between arguments implemented in
FSA-DF can be improved by using better statistical models. In ad-
dition, we partially addressed the problem of spurious datasets by
introducing a Gaussian string model, which has been shown to be

3.5. Concluding Remarks

more resilient to outliers (i.e. too long or too short strings). We
also proposed a new model for counting the frequency of traversal
of edges on FSA-DE, to make it able to detect DoS attacks. Both
systems needed an improved model for string (path) similarity. We
adapted the Symbol SOM algorithm to make it suitable for comput-
ing a distance between two paths. We believe that this is the core
contribution.

We tested and compared the original prototypes with an hybrid
solution where the Symbol SOM and the edge traversal models are
applied to the FSA, and a version of S>A2DE enhanced with the
Symbol SOM and the correction to the execution arguments model.
Both the new prototypes have the same DRs of the original ones, but
significantly Jower FPRs. This is paid in terms of a non-negligible
limit to detection speed, at least in our proof of concept implemen-
tation.

Future efforts will focus on re-engineering the prototypes to use
an in-kernel system call interceptor, and generically improve their
performance. We are studying how to speed up the Symbol SOM
node search algorithm, in order to bring the throughput to a rate
suitable for online use.

Last, we analyzed the wide class of definitive anti-forensics tech-
niques which try to eliminate evidence by avoiding disk usage. In
particular, we focused on in-memory injection techniques. Such tech-
niques are widely used by modern attack tools (both commercial and
open source).

As memory dump and analysis is inconvenient to perform, often
not part of standard operating procedures, and does not help except
in case of in-memory resident backdoors and rootkits, we proposed
an alternative approach to circumvent such techniques. We illus-
trated how a prototype which analyzes (using learning algorithms)
the sequence and the arguments of system calls to detect intrusions
can be used to detect in-memory injections of executable code, and
in-memory execution of binaries.

We proposed an experimental setup using vulnerable versions of
two widely used programs on FreeBSD, eject and bsdtar. We de-
scribed the creation of a training and testing dataset, how we adapted
or created exploits for such vulnerabilities, and how we recorded au-
dit data. We also developed an advanced in-memory execution pay-
load, based on SELF, which implements the “userland exec” tech-
nique through an injectable shellcode and a self-loading object (a

115

3. HosT-Basep Anomary DeTECTION

116

specially-crafted, statically linked ELF file). The payload executes
any statically linked binary in the memory space of a target process
without calling the kernel and, more importantly, without leaving
any trace on the hard disk of the attacked machine.

We performed several experiments, with excellent DRs for the
exploits, but even more importantly with a 100% DR for the in-
memory execution payload itself. We can positively conclude that our
technique yields promising results for creating a forensic audit trail of
otherwise “invisible” injection techniques. Future developments will
include a more extensive testing with different anti-forensics tech-
niques, and the development of a specifically designed forensic out-
put option for our prototype.

Anomaly Detection of Web-based Attacks 4

Anomaly detection techniques have been shown to be very effective
at mitigating the widespread of malicious activity against web appli-
cations. In fact, nowadays, the underground criminals’ preferred way
of spreading malware consists in compromising vulnerable web appli-
cations, deploying a phishing-, spamming-, malware-kit and infect-
ing an enormous amount of users that simply visit the website using
a vulnerable browser (or plug-in). Further exacerbating the situa-
tion is the use of botnets to exhaustively compromise vast amounts
of web applications. Thus, due to their popularity, web applications
play a significant role in the malware spreading work-flow. As a con-
sequence, by blocking attacks against web applications the majority
of potential infections can be avoided. Indirectly, all the visitors of
the website benefit from the adoption of web-based IDSs.
Unfortunately, even the most advanced anomaly detectors of web-
based attacks are not with their drawbacks. In particular, in this
chapter we discuss our contributions to overcome two relevant train-
ing issues, overfitting and concept-drift, that both manifest them-
selves as increased FPRs. First, we address overfitting due to train-
ing data scarcity, which results in under-trained activity models with
poor generalization capabilities. Consequently, a considerable amount
of normal events is classified as malicious. Secondly, we propose a
simple but extremely effective mechanism to detect changes in the

117

4. ANomary DETECTION OF WEB-BASED ATTACKS

monitored system to adapt the models to what we named web appli-
cation concept drift.

118

4.1. Preliminaries

4.1 Preliminaries

The two contributions described in Section 4.2 and 4.3 are both based
on the generic anomaly detection architecture described in the fol-
lowing. In this section, a generic model of an anomaly-based detector
of attacks against web applications is given. In addition, the details
of the datasets used to evaluate the effectiveness of both the approach
are described.

4.1.1 Anomaly Detectors of Web-based Attacks

Unless difterently stated, we use the shorthand term anomaly detector
to refer to anomaly-based detectors that leverage unsupervised ma-
chine learning techniques. Let us first overview the basic concepts.
Without loss of generality, a set of web applications A can be
organized into a set of resource paths or components R, and named
parameters P. For example, A = {a1, az} may contain a blog appli-
cation a; = blog.example.com and an e-commerce application ay =
store.example.con. They can be decomposed into their resource paths:

Ry = Ry =
ri1,1 = /article/, ro,1 = /list/,
r1,2 = /comments/, ro2 = [cart/,
r1,3 = /comments/edit/, rg,3 = /cart/add/,
r1,4 = /account/, ro,4 = [account/,
r1,5 = /account/passuord/ ro,5 = /account/passuord/

In this example, resource path r; 5 might take a set of parameters,
as part of the HTTP request. For instance, the following request to
r1,5 = /account/passuord/

GET /account/password/id/12/01dpwd/14m3/newpud/1337/ HTTP/1.1

can be parsed into the following abstract data structure:

(prsi= id wvgsi= 12),
Pis=1 (pis2= oldpu vi52= 14m3),
(P1,53 = neupu wys3= 1337)

A generic web application IDS based on unsupervised learning
techniques captures the system activity [as a sequence of reguests () =
{¢1,42, - ..}, similar to those exemplified in Section 2.1, issued by

119

4. ANomary DETECTION OF WEB-BASED ATTACKS

120

m

web clients to the set of monitored web applications. Each request
g € Q is represented by a tuple (a;,7; j, P;), where P, is a set of
parameter name-value pairs such that P, C F; ;.

During the initial zraining phase, the anomaly detection system
learns the characteristics of the monitored web applications in terms
of models. As new web application, resource path, and parameter in-
stances are observed, the sets A, R, and P are updated. For each
unique parameter p; ;) observed in association with a particular ap-
plication a; and path 7; ;, a set of models that characterize the various
features of the parameter is constructed. An activity profile (Defini-
tion 2.1.3) associated with each unique parameter instance is gener-
ated ¢y = <m(1), m2,...,m® . 7m(U)>, which we name (pa-
rameter) profile or model composition. Therefore, for each application
a; and resource path r; ;, a set C; ; of model compositions is con-
structed, one for each parameter p; ;1 € P; ;. The knowledge base
of an anomaly detection system trained on web application a; is de-
noted by Co; = |J; C; ;. A graphical representation of how a knowl-
edge base is modeled for multiple web applications is depicted in Fig-
ure 4.1.

Example 4.1.1 In webanomaly, a profile for a given parameter p; ; i
is the following tuple:
Cijk = <7,n(tok)7 m(inr)’ m(len), m(char), m(struct)>.

Similarly to LibAnomaly:

m(°%) models parameter values as a set of legal tokens (i.e., the set
of of possible values for the parameter gender, observed during
training).

m and men) describe normal intervals for literal integers and

string lengths, respectively, using the Chebyshev inequality.

(char) " hodels the character strings as a ranked frequency histogram,

named Idealized Character Distribution (ICD), that are com-
pared using the x? or G tests.

mGTet) models sets of character strings by inducing a HMM. The

HMM encodes a probabilistic grammar that represents a su-
perset of the strings observed in a training set. Aside from the
addition of m™ which is a straightforward generalization of

4.1. Preliminaries

m{) to numbers, the interested reader may refer to [Kruegel
et al., 2005] for further details.

In addition to requests, the structure of user sessions can be taken
into account to model the normal states of a server-side application.
In this case, the anomaly detector does not consider individual re-
quests independently, but models their sequence. This model cap-
tures the legitimate order of invocation of the resources, according to
the application logic. An example is when a user is required to in-
voke an authentication resource (e.g., /user/auth) before requesting
a private page (e.g., /user/profile). In [Kruegel et al., 2005], a ses-
sion S is defined as a sequence of resources in R. For instance, given
R ={ri,re,...,T10}, a sample session is S = (r3, r1,72,710, 2)-

Some systems also model HTTP responses that are returned by
the server. For example, in [Kruegel et al., 2005], a model m(doc) g
presented that takes into account the structure of documents (e.g.,
HyperText Markup Language (HTML), XML, and JavaScripr Ob-
Jject Notation (JSON)) in terms of partial trees that include security-
relevant nodes (e.g., <script /> nodes, nodes containing DOM event
handlers, and nodes that contain sensitive data such as credit card
numbers). These trees are iteratively merged as new documents are
observed, creating a superset of the allowed document structure and
the positions within the tree where client-side code or sensitive data

may appear. A similar approach is adopted in [Criscione et al., 2009].

Note 4.1.1 (Web Application Behavior) The concept of web appli-
cation behavior, used in the following, is a particular case of the sys-
tem behavior as defined by Definition 2.1.4. Depending on the ac-
curacy of each model, the behavior of a web application reflects the
characteristics and functionalities that the application offers and, as
a consequence, the content of the inputs (i.e., the requests) that it
process and the outputs (i.e., the responses) that it produces. Thus,
unless differently stated, we use the same term to indicate both the
ideas.

After training, the system is switched to defection mode, which
is performed online. The models trained in the previous phase are
queried to determine whether or not the new parameters observed
are anomalous. Without going into the details of a particular imple-
mentation, each parameter is compared to all the applicable models

121

4. ANomary DETECTION OF WEB-BASED ATTACKS

Co, Ca,
Cr,, ... o Gy
m@f: e QA.V e OC e m?.i.,x
| |
AEHQ...JSQV AST..QSQV

€0

O]

http : //blog.example.com,

http : //dav.example.com

QJ@

/article,

/comments,

/account,

/account /password

Cpij K

AST.

)

id=1
date = 10 — 11 — 2004
title = foo

F1GURE 4.1: Overview of web application model construction.

122

4.1. Preliminaries

and an aggregated anomaly score between 0 and 1 is calculated by
composing the values returned by the various models. If the anomaly
score is above a certain threshold, an alert is generated. For example,
in [Kruegel et al., 2003b], the anomaly score represents the proba-
bility that a parameter value is anomalous and it is calculated using a
Bayesian network that encodes the probability that a parameter value
is actually normal or anomalous given the scores returned by the in-
dividual models.

4.1.2 A Comprehensive Detection System to Mitigate
Web-based Attacks

'The approach described in [Kruegel et al., 2005] are further exploited
in a recent work, [Criscione et al., 2009], which we partially con-
tributed to. In particular, we defined a web application anomaly de-
tector that is able to detect a real-world threats against the clients
(e.g., malicious JavaScript code, trying to exploit browser vulnerabil-
ities), the application (e.g., cross-site scripting, permanent content
injection), and the database layer (e.g., SQL injection). A prototype
of the system, called Masibty, has been evaluated on a set of real-
world attacks against publicly available applications, using both sim-
ple and mutated versions of exploits, in order to assess the resilience
to evasion. Masibty has the following key characteristics:

e its models are designed with the explicit goal of not requiring
an attack-free dataset for training, which is an unrealistic re-
quirement in real-world applications. Even if in [Cretu et al,,
2008a] techniques are suggested to filter outliers (i.e., attacks)
from the training data, in absence of a ground truth there can
be no guarantee that the dataset will be effectively free of at-
tacks. Using such techniques before training Masibty would
surely improve its detection capabilities.

e As depicted in Figure 4.2, Masibty intercepts and process both

HTTP requests (i.e., PAnomaly) and responses (i.e., XSSAnomaly)

and protects against both server-side and client-side attacks,
an extremely important feature in the upcoming “Web 2.0” era
of highly interactive websites based mainly on user contributed
content. In particular, we devised two novel anomaly detection
models — referred to as “engines” — based on the representa-
tion of the responses as trees.

123

4. ANomary DETECTION OF WEB-BASED ATTACKS

124

e Masibty incorporates an optional data protection component,
i.e., QueryAnomaly that extracts and parses the SQL queries
sent to the database server. This component is part of the anal-
ysis of HT'TP requests, and thus is not merely a reverse proxy
to the database. In fact, it allows to bind the requests to the
SQL queries that they generate, directly or indirectly. Hence,
queries can be modeled although are not explicitly passed as a

parameter of the HT'TP requests.

4.1.3 Evaluation Data

'The experiments in Section 4.2 and 4.3 were conducted using a dataset
drawn from real-world web applications deployed on both academic
and industry web servers. Examples of representative applications in-
clude payroll processors, client management, and online commerce
sites. For each application, the full content of each HTTP connec-
tion observed over a period of several months was recorded. 'The
resulting flows were then filtered using the most advanced signature-
based detection system, Snort!, to remove known attacks. In total,
the dataset contains 823 distinct web applications, 36,392 unique
resource paths, 16,671 unique parameters, and 58,734,624 HTTP

quUCStS.

Note 4.1.2 (Dataset privacy) To preserve the privacy, the dataset used
has been given to the Computer Security Laboratory of UC Santa
Barbara under strict contractual agreements that denies to disclose
specific information identifying the web applications themselves.

Two sets of 100,000 and 1,000 attacks was introduced into the
dataset used for the approach described in Section 4.2 and 4.3, re-
spectively. These attacks were real-world examples and variations
upon XSS (e.g., CVE-2009-0781), SQL injections (e.g., CVE-2009-
1224), and command execution exploits (e.g., CVE-2009-0258) that
manifest themselves in request parameter values, which remain the
most common attacks against web applications. Representative ex-
amples of these attacks include:

e malicious JavaScript inclusion

1Source and attack signatures available for download at http://snort.org.

http://snort.org

4.1. Preliminaries

ToAT0S ¢[(uorjoadsur HS
Iajawvh mu::wwh

(paaouby)

amydnng | Higpwouy fisond)

A1onb A1onb

IOAISS OAN uorgoadsur d.L.LH eI
asuodsox asuodsox

arerdway,
fowSuyg S ‘dsu)) | ifippuwouy gy

IopI0) ‘@oussard ‘Yjsue
‘uornquuysi([‘woNqy, | ffippwouy g

1sonboa 9senbax

F1GURE 4.2: 'The logical structure of Masibty.

125

4. ANomary DETECTION OF WEB-BASED ATTACKS

126

<script src="http://example.com/maluare. js”></script>

e bypassing login authentication

'R x’='x’ -

e command injection

cat /etc/passud | mail attacker@gmail.com \#

More precisely, the XSS attacks are variations on those listed in
[Robert Hansen, 2009], the SQL injections were created similarly
from [Ferruh Mavituna, 2009], and the command execution exploits
were variations of common command injections against the Linux and
Windows platforms.

4.2. Training With Scarce Data

4.2 Training With Scarce Data

In this section, we describe our contributions [Robertson et al., 2009]
to cope with the difficulty of obtaining sufficient amounts of train-
ing data. As we explained in Section 2.2.2 and 2.4, this limitation
has heretofore not been well studied. We developed this technique
to work with webanomaly and, in general, to any learning-based
anomaly detection system against web attacks. In fact, the problem
described in the following is significantly evident in the case of web
applications. However, it can be easily applied to other anomaly-
based system, as long as they rely on behavioral models and learning
techniques such as those described in Section 3.2.

'The issue that motivates this work is that the number of web ap-
plication component invocations is non-uniformly distributed. In
fact, we noticed that relatively few components are dominant in the
traffic and the remainder components are accessed relatively infre-
quently. Therefore, for those components, it is difficult to gather
enough training data to accurately model their normal behavior. In
statistics, the infrequently accessed population is known as the “long
tail”. Note that, however, this does not necessarily imply a power law
distribution. Clearly, components that are infrequently accessed lead
to undertrained models (i.e., models that do not capture the normal
behavior accurately). Consequently, models are subject to overfitting
due to lack of data, resulting in increases in the FPR.

In particular, in this section, we describe our joint work with UC
Santa Barbara in which we propose to mitigate this problem by ex-
ploiting natural similarities among all web applications. In particular,
we show that the values of the parameters extracted from HTTP re-
quests can generally be categorized according to their type, such as
an integer, date, or string. Indeed, our experiments demonstrate that
parameters of similar type induce similar models of normal behavior.
This result is then exploited to supplement a local scarcity of training
data for a given web application component with similar data from
other web applications.

'This section is structured as follows. In Section 4.2.1 the prob-
lem of the non-uniform distribution to the different components of
a web application is discussed. In addition, we provide evidence that
it occurs in the real world. In Section 4.2.2 approach to address the
problem of model profile undertraining by using the notion of globa/
profiles that exploit similarities between web application parameters

127

4. ANomary DETECTION OF WEB-BASED ATTACKS

128

of similar type. In Section 4.2.3 the application of global profiles
is evaluated on a large dataset of real-world traffic from many web
applications, and demonstrate that utilizing global profiles allows
anomaly detectors to accurately model web application components
that would otherwise be associated with undertrained models.

4.2.1 Non-uniformly distributed training data

To describe the undertraining problem, in this section we refer to the
aforementioned, generic architecture of a web-based anomaly detec-
tor. To address the problem of undertraining, we leverage the set of
models described in the Example 4.1.1.

Because anomaly detection systems dynamically learn specifica-
tions of normal behavior from training data, it is clear that the qual-
ity of the detection results critically relies upon the quality of the
training data. For example, as mentioned in Section 2.4, a train-
ing dataset should be attack-free and should accurately represent the
normal behavior of the modeled features. To our knowledge, the dif-
ficulty of obtaining sufficient amounts of training data to accurately
model web applications is less well-known. In a sense, this issue is
similar to those addressed by statistical analysis methods with miss-
ing data [Little and Rubin, 1987]. Although a training procedure
would benefit from such mechanisms, they require a complete re-
design of the training algorithm specific to each model. Instead, a
non-obtrusive approach that can improve an existing system with-
out modifying the undertrained models is more desirable. Typically,
anomaly-based detectors cannot assume the presence of a testing en-
vironment that can be leveraged to generate realistic training data
that exercises the web application in a safe, attack-free environment.
Instead, an anomaly detection system is typically deployed in front of
live web applications with no a priori knowledge of the applications’
components and their behavior.

In particular, in the case of low-traffic web applications, prob-
lems arise if the rate of client requests is inadequate to allow models
to train in a timely manner. Even in the case of high-traffic web
applications, however, a large subset of resource paths might fail to
receive enough requests to adequately train the associated models.
This phenomenon is a direct consequence of the fact that resource
path invocations issued by web clients often follow a non-uniform
distribution. To illustrate this point, Figure 4.3 plots the normalized

4.2. Training With Scarce Data

Resource PAtH REeqQuEsTs

/article 95.0%
/comments 3.0%
/comments/edit 1.8%
/account 0.2%

/account/password 0.02%

Table 4.1: Client access distribution on a real-world web application

(based on 500,000 requests per day).

cumulative distribution function of web client resource path invoca-
tions for a variety of real-world, high-traffic web applications (details
on the source of this data are provided in Section 4.2.3). Although
several applications have an approximately uniform client access dis-
tribution, a clear majority exhibits highly skewed distributions. In-
deed, in many cases, a large percentage of resource paths receive a
comparatively minuscule number of requests. Thus, returning to the
example mentioned in Section 4.1.1, assuming an overall request vol-
ume of 500,000 requests per day, the resource path set would result
in the client access distribution detailed in Table 4.1.

Profiles for parameters to resource paths such as /article will
receive ample training data, while profiles associated with account
components will be undertrained. The impact of the problem is also
magnified by the fact that components of a web application that are
infrequently exercised are also likely to contain a disproportionately
large portion of security vulnerabilities. This could be a consequence
of the reduced amount of testing that developers invariably perform
on less prominent components of a web application, resulting in a
higher rate of software flaws. In addition, the relatively low request
rate from users of the web application results in a reduced exposure
rate for these flaws. Finally, when flaws are exposed and reported,
correcting the flaws may be given a lower priority than those in higher
traffic components of a web application.

4.2.2 Exploiting global knowledge

'The approach described in this section is based on a key observation:
parameters associated with the invocation of components belonging

129

4. ANomary DETECTION OF WEB-BASED ATTACKS

130

Access CDF

[0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
Resources

F1GURE 4.3: Web client resource path invocation distributions from
a selection of real-world web applications.

to different web applications often exhibit a marked similarity to each
other. For instance, many web applications take an integer value as
a unique identifier for a class of objects such as a blog article or com-
ment, as in the case of the id parameter. Similarly, applications also
accept date ranges similar to the date parameter as identifiers or as
constraints upon a search request. Similarly, as in the case of the
title parameter, web applications often expect a short phrase of text
as an input, or perhaps a longer block of text in the form of a comment
body. In some sense, each of these groupings of similar parameters
can be considered as distinct parameter types, though this need not
necessarily correspond to the concept of types as understood in the
programming languages context.

Our approach is based in the following assumption. Parameters
of the same type tend to induce model compositions that are similar
to each other in many respects. Consequently, if the lack of training
data for a subset of the components of a web application prevents an
anomaly detection system from constructing accurate profiles for the
parameters of those components, we claim that it is possible to sub-
stitute, with an acceptably low decrease in the DR, profiles for similar
parameters of the same type that were learned when enough training
data was available to construct accurate profiles. It must be under-

4.2. Training With Scarce Data

¢’ (undetrained)

R e T SRRt
i N
H = i !
on - |}

Clustering Querying ¢ (well-trained)

= | ;
Qa; : 27 phase (offtine) ' :3“1 phase (online) |
' ARy gupibiyts hc Aiyat APPRIL S Rl npupull eyl

F1GURE 4.4: Overall procedure. Profiles, both undertrained and well-
trained, are collected from a set of web applications. These profiles
are processed offline to generate the global knowledge base C and
index CT. C can then be queried to find similar global profiles.

lined that the substitution operates at the granularity of parameters
rather than requests (which may contain more than one parameter).
This increases the likelihood of finding applicable profile similarities,
and allows for the substitution of models taken from radically differ-
ent components. However, although the experiments on real-world
data, described in Section 4.2.3, confirm that the aforementioned in-
sight is realistic, our hypothesis might not hold in some very specific
settings. Thus, to minimize the risks brought by migrating global
knowledge across different deployments, we interpreted this result
only as an insight and developed a robust criterion able to find similar
profiles independently from the actual types of the modeled param-
eters.

As schematized in Figure 4.4 our approach is composed of three
phases.

First phase (offline) Enhancement of the training procedure origi-
nally implemented in [Kruegel et al., 2005].

Second phase (offline) It is divided into three sub-steps.

1. A global knowledge base of profiles C = |J,,. Ca, is con-
structed, where C,, are knowledge bases containing only
well-trained, stable profiles from anomaly detection sys-
tems previously deployed on a set of web applications

Ui a;.
2. A knowledge base C' = |, C. of undertrained pro-

files is then constructed as an index into C, where C/ is

131

4. ANomary DETECTION OF WEB-BASED ATTACKS

a knowledge base of undertrained profiles from the web
application a;.

3. Finally, a mapping f : {C'} x C,, > C is defined.

Third phase (online) For any new web application where insufficient
training data is available for a component’s parameter, the anomaly
detector first extracts the undertrained profile ¢’ from the lo-
cal knowledge base C,,. Then, the global knowledge base C is
queried to find a similar, previously constructed profile f (Cy, ') =
¢ € C. The well-trained profile ¢ is then substituted for the un-
dertrained profile ¢’ in the detection process.

The following sections detail how C; and C are constructed, and
how f maps elements in C; and C,, to elements in C.

4.2.2.1 First Phase: Enhanced Training

A significant refinement of the individual models described in [Kruegel
etal., 2005] is the criterion used to determine the length of the train-
ing phase. An obvious choice is to fix a constant training length, e.g.,
a thousand requests. Unfortunately, an appropriate training length is
dependent upon the complexity of modeling a given set of features.
Therefore, we have developed an automated method that leverages
two stop criteria, model stability and model confidence, to determine
when a model has observed enough training samples to accurately
approximate the normal behavior of a parameter.

Model Stability As new training samples are observed early in the
training phase, the state of a model typically exhibits frequent and
significant change as its approximation of the normal behavior of a
parameter is updated. Informally, in an information-theoretic sense,
the average information gain of new training samples is high. As
a model’s state converges to a more precise approximation of nor-
mal behavior, however, its state exhibits infrequent and incremental
changes. In other words, the information gain of new training sam-
ples approaches zero, and the model stabilizes. Note that, we refer to
the information gain as an informal and intuitive concept to explain
the rationale behind the development of a sound model stability cri-
terion. By no means we claim that our procedure relies on the actual
information gain to calculate when a model converges to stability.

132

4.2. Training With Scarce Data

Each model self-assesses its stability during the training phase by
maintaining a history of snapshots of its internal state. At regular
intervals, a model checks if the sequence of deltas between each suc-
cessive historical state is monotonically decreasing and whether the
degree of change drops below a certain threshold. If both conditions

are satisfied, then the model considers itself stable. Let K‘,S(;: &le denote
the number of training samples required for a model to achieve sta-
bility. A profile is considered stable when all of its constituent models

are stable.

Definition 4.2.1 (Profile stability) Let fgple be the number of train-
ing samples required for a single model to achieve stability. The ag-
gregated stability measure is defined as:
_ ()
Fistable = M A (4.1)

'The notion of model stability is also leveraged in the third phase,
as detailed in Section 4.2.2.2.

Note 4.2.1 Instead of describing the internal stop criterion specific

to each model, if any, we developed a model-agnostic minimization

algorithm detailed in Section 4.2.2.2 (and evaluated in Section 4.2.3.2)
that allows one to trade off detection accuracy against the number of
training samples available.

Model Confidence A related notion to model stability is that of
model confidence. Recall that the goal of a model is to learn an ab-
straction of the normal behavior of a feature from the training data.
There exists a well-known tension in the learning process between
accurately fitting the model to the data and generalizing to data that
has not been observed in the training set. Therefore, in addition to
detecting whether a model has observed enough training samples to
accurately model a feature, each model incorporates a self-confidence
measure z(*) that represents whether the model has generalized so
much as to lose all predictive power.

For example, the confidence of a token model should be directly
related to the probability that a token set is present.

Definition 4.2.2 (Token model confidence) The foken model confidence
is defined as:

133

4. ANomary DETECTION OF WEB-BASED ATTACKS

134

1 Ne— N

(tok) _ _ = c d

2 == —— 4.2

2 4dn(n-1)’ (42)

where n. and ng are the number of concordant and discordant

pairs, respectively, between the unique number of observed samples

and the total number of samples observed at each training step, and
n is the total number of training samples.

Note that, 2,0 is an adaptation of the 7 coefficient [Kendall,
1938].

For the integer and length models, the generality of a particular
model can be related to the statistical dispersion of the training set.

Definition 4.2.3 (Integer model confidence) Given the observed stan-
dard deviation o, minimum observed value u, and maximum ob-
served value v, the confidence of an integer or length model is defined
as:

S(tintien)) _ {1 ~ot fomu>0 (43)
1 otherwise
The confidence of a character distribution model is determined
by the variance of observed ICDs. Therefore, the confidence of this
model is given by a similar construction as the previous one, except
that instead of operating over observed values, the measure operates
over observed variances.

Definition 4.2.4 (Char. distr. model confidence) Given the standard
deviation of observed variances o, the minimum observed variance

u, and the maximum observed variance v, the confidence of a character

distribution model is:

1 9 ify—
Z(Char)_{ 2 ifv u>0. (4.4)

1 otherwise

Finally, the HMM induced by the structure model can be di-
rectly analyzed for generality. We perform a rough estimate of this
by computing the mean probability for any symbol from the learned
alphabet to be emitted at any state.

4.2. Training With Scarce Data

Definition 4.2.5 (Struct. model confidence) Given a structural model,
i.e. an HMM, specified by the tuple (S, O, Msxs, P (S,0), P (S)),
where S is the set of states, O is the set of emissions, Mgys is the
state transition probability matrix, P (S, Q) is the emission proba-
bility distribution over the set of states, and P (S) is the initial prob-
ability assignment, #he structural model confidence:

IS| |0

1
Z(struct) -1 W Z Z P (sia Oj) . (45)

i=1j=1

At the end of this phase, for each web application a;, the profiles
are stored in the corresponding knowledge base C,, and are ready to
be processed by the next phase.

4.2.2.2 Second Phase: Building a global knowledge base
'This phase is divided into the three sub-steps described in the fol-

lowing.

Well-trained profiles 'The construction of C begins by merging a
collection of knowledge bases {Cq,,Cq,, - - ,Cq, } that have previ-
ously been built by a web application anomaly detector over a set of
web applications | J; a;. The profiles in C are then clustered in order
to group profiles that are semantically similar to each other. Profile
clustering is performed in order to time-optimize query execution
when indexing into C, as well as to validate the notion of parameter
types. In this work, an agglomerative hierarchical clustering algo-
rithm using group average linkage was applied, although the cluster-
ing stage is, in principle, agnostic as to the specific algorithm. For
an in-depth discussion of clustering algorithms and techniques, we
refer the reader to [Xu and Wunsch, 2005].

Central to any clustering algorithm is the distance function, which
defines how distances between the objects to be clustered are calcu-
lated. A suitable distance function must reflect the semantics of the
objects under consideration, and should satisfy two conditions:

o the overall similarity (i.e., inverse of the distance) between el-
ements within the same cluster is maximized, and

o the similarity between elements within different clusters is min-
imized.

135

4. ANomary DETECTION OF WEB-BASED ATTACKS

136

We define the distance between two profiles to be the sum of the
distances between the models comprising each profile. More for-

mally.

Definition 4.2.6 (Profile distance) The distance between two profiles
¢; and ¢; is defined as:

1 () (u)
d(ci,c;) = ———— § Ou lm; 7 sms7), (4.6)
(]) ‘Cincj| (u) u)ec mc (J)

m;

where §,, : M, x M,, +— [0, 1] is the distance function defined
between models of type u € U = {tok, int, len, char, struct}.

The token model m (X js represented as a set of unique tokens

observed during the training phase. Therefore, two token models

k k . N o
ml(-m) and m§-t°) are considered similar if they contain similar sets

of tokens. More formally.

Definition 4.2.7 (Token models distance) 'The distance function for to-
ken models is defined as the Jaccard distance [Cohen et al., 2003]:

’m(tok (tok ’
6tok (mgtok), m§tok)) _

(tok tok ’ (4 7)

The integer model m (" is parametrized by the sample mean

. . . int

and variance o of observed integers. Two integer models ml(-l)
int

mg-m) are similar if these parameters are also similar.

and

Definition 4.2.8 (Integer models distance) The distance function for
integer models is defined as:

o} o3
T2 T T2
(int) (int)\ _ || #5 M5
Oint (mi ,m; = (4.8)
u; T u3

Note 4.2.2 (Length models distance) As the string length model is
internally identical to the integer model, its distance function Jj, is

defined similarly.

4.2. Training With Scarce Data

Recall that the character distribution model (<) learns the fre-
quencies of individual characters comprising strings observed during
the training phase. These frequencies are then ranked and coalesced
into a n bins to create an ICD. Two character distribution models
mgcm) and mg-c}m) are considered similar if each model’s ICDs are
similar. More formally.

Definition 4.2.9 (Char. distr. models distance) The character distri-
bution models distance is defined as:
(char) (chan)) _ = |IBi (1) — by (D)
5char (mi 7m_j) — ; m I

()= b; ()
s b () (4.9)

where b; (k) is the value of bin & for ml(.Char).
The structural model m) builds an HMM by observing a

sequence of character strings. The resulting HMM encodes a prob-

abilistic grammar that can produce a superset of the strings observed

during the training phase. The HMM is specified by the tuple (S, O, Mss, P (S,0), P (S)).

Several distance metrics have been proposed to evaluate the similar-

ity between HMMs [Stolcke and Omohundro, 1993a; Lyngsget al.,

1999; Stolcke and Omohundro, 1994a; Juang and Rabiner, 1985].

Their time complexity, however, is non-negligible. Therefore, we

adopt a less precise, but considerably more efficient, distance metric

between two structural models ml(srrucr) and m ™Y,

Definition 4.2.10 (Struct. models distance) The structural models dis-
tance is defined as the Jaccard distance between their respective emis-
sion sets:

(struct) (struct) \ |©1 ﬂ ©j |
Sairnee (ml ,m!) T ol (4.10)
Undertrained profiles Once the global knowledge base C has been
built, the next step is to construct a knowledge base of undertrained
models C!. This knowledge base is composed of profiles that have
been deliberately undertrained on £ < Kgyple for each of the web
applications a;. Because each member of C uniquely corresponds
to a member in C and undertrained profiles are built for each well-
trained profile in C, a bijective mapping f’ : C! ~ C exists between

137

4. ANomary DETECTION OF WEB-BASED ATTACKS

138

K=064 o . ° . ° . . .

K=232 o ° .

k=16 e . ° . ° . ° . E
&4
R

K=28 [e ° ° ° ° ° ° o] @l
53
=]
o

k=4 ° [o ° .].] . ° ol Qqé

k=2 L8] o] E_—3 + [
k=18 B « B B & & -

F1GURE 4.5: Partitioning of the training set () for various k.

C! and C. Therefore, when a web application parameter is identified
as likely to be undertrained, the corresponding undertrained profile
¢’ can be compared to a similar undertrained profile in C!, which is
then used to select a corresponding stable profile from C. This opera-
tion requires the knowledge base C! to be indexed. The construction
of the indices relies on the notion of model stability, described in
Section 4.2.2.1.

'The undertrained profiles that comprise C! are constructed us-

ing the following procedure. Let Q(P) = {qu), qu), ...} denote a
sequence of client requests containing parameter p for a given web
application. Over this sequence of requests, profiles are deliberately
undertrained on randomly sampled x-sequences. Each of the result-
ing profiles is then added to the set C. Figure 4.5 depicts this proce-
dure for various x. Note that the random sub-sampling is performed
with the goal of inducing undertraining to show that clustering is
feasible and leads to the desired grouping even — and especially — in
the presence of undertraining.

Recall that Kb is the number of training samples required for a
profile to achieve stability. Then, a profile is considered undertrained
when the number of training samples it has observed, &, is signifi-
cantly less than the number required to achieve stability. Therefore,
an undertrained knowledge base C’ is a set of profiles that have ob-
served x samples such that k£ < Kgple-

4.2. Training With Scarce Data

The selection of an appropriate value for « is central to both the
efficiency and the accuracy of this process. Clearly, it is desirable to
minimize x in order to be able to index into C as quickly as possible
once a parameter has been identified to be subject to undertraining
at runtime. On the other hand, setting x too low is problematic,
as Figure 4.6 indicates. For low values of k, profiles are distributed
with relatively high uniformity within Cf, such that clusters in C’
are significantly different than clusters of well-trained profiles in C.
'Therefore, slight differences in the state of the individual models can
cause profiles that are close in C to map to radically different profiles
in C. As K — Kguble, however, profiles tend to form meaningful
clusters, and tend to approximate those found in C. Therefore, as k
increases, profiles that are close in C! become close in C under f —in
other words, f becomes robust with respect to model semantics.

Note 4.2.3 (Robustness) Our use of the term “robustness” is related,
but not necessarily equivalent, to the definition of robustness in statis-
tics (i.e., the property of a model to perform well even in the presence
of small changes in the underlying assumptions).

Mapping undertrained profiles to well-trained profiles A princi-
pled criterion is required for balancing quick indexing against a robust
profile mapping. Accordingly, we first construct a candidate knowl-
edge base C. for a given £, as in the case of the global knowledge
base construction. Then, we define a robustness metric as follows. Let
H' =, h! be the set of clusters in C!, and H = |J, h; be the set of
clusters in C. Let g : H! +— N be a mapping from an undertrained
cluster to the maximum number of elements in that cluster that map
to the same cluster in C. The robustness metric p : {C'} + [0,1] is
then defined as

p(CI)ZﬁZg(hiI). (4.11)

With this metric, an appropriate value for can now be chosen
as

Fomin = min (p (CL) > puin) , (4.12)

where py;, is 2 minimum robustness threshold.

139

4. AnNomaLry DETECTION OF WEB-BASED ATTACKS

K = Kstable > Kmin

K = Kmin

k=4
k=2
k=1
k=0

F1GURE 4.6: Procedure for building global knowledge base indices.

140

4.2. Training With Scarce Data

With the construction of a global knowledge base C and an un-
dertrained knowledge base C!, online querying of C can then be per-
formed.

4.2.2.3 'Third Phase: Querying and Substitution

Given an undertrained profile ¢’ from an anomaly detector deployed
over a web application a;, the mapping f : {CI} X Cq, +— Cis
defined as follows. A nearest-neighbor match is performed between
¢’ and the previously constructed clusters HZ from C’ to discover the
most similar cluster of undertrained profiles. This is done to avoid a
full scan of the entire knowledge base, which would be prohibitively
expensive due to the cardinality of C’.

Then, using the same distance metric defined in Equation (4.6),
a nearest-neighbor match is performed between ¢’ and the members
of H' to discover the most similar undertrained profile ¢!. Finally,
the global, well-trained profile f’ (¢!) = c is substituted for ¢’ for
the web application a;.

To make explicit how global profiles can be used to address a
scarcity of training data, consider the example introduced in Sec-
tion 4.1.1. Since the resource path /account/passuord has received
only 100 requests (see Table 4.1: /account/passuord has received 0.02%
0£500,000 total requests), the profiles for each of its parameters {id, o1dpu, neupu }
are undertrained, as determined by each profile’s aggregate stability
measure. In the absence of a global knowledge base, the anomaly de-
tector would provide no protection against attacks manifesting them-
selves in the values passed to any of these parameters.

If, however, a global knowledge base and index are available, the
situation is considerably improved. Given C and C’, the anomaly de-
tector can simply apply f for each of the undertrained parameters to
find a well-trained profile from the global knowledge base that ac-
curately models a parameter with similar characteristics from another
web application. Then, these profiles can be substituted for the un-
dertrained profiles for each of {id, o1dpu, neupu}. As will be demon-
strated in the following section, the substitution of global profiles
provides an acceptable detection accuracy for what would otherwise
be an unprotected component (i.e., without a global profile 0% of the
attacks against that component would be detected).

Note 4.2.4 (HTTP parameters “semantics”) It is important to un-

141

4. ANomary DETECTION OF WEB-BASED ATTACKS

142

derline that the goal of this approach is not that of understanding
the types of the fields nor their semantic. However, if the system ad-
ministrator and the security officer had enough time and skills, the
use of manual tools such as live debuggers or symbolic execution en-
gines may help to infer the types of the fields and, once available, this
information may be exploited as a lookup criterion. Unfortunately,
this would be a human-intensive task, thus far from being automatic.

Instead, our goal is to find groups of similar models, regardless
of what this may imply in terms of types. According to our experi-
ments, similar models tend to be associated to similar types. Thus, in
principle, our method cannot be used to infer the parameters’ types
but can certainly give insights about parameters with similar features.

4.2.3 Experimental Results

'The goal of this evaluation is three-fold. First, we investigate the ef-
fects of profile clustering, and support the hypothesis of parameter
types by examining global knowledge base clusters. Then, we dis-
cuss how the quality of the mapping between undertrained profiles
and well-trained profiles improves as the training slice length & is in-
creased. Finally, we present results regarding the accuracy of a web
application anomaly detection system incorporating the application
of a global knowledge base to address training data scarcity.

4.2.3.1 Profile clustering quality

To evaluate the accuracy of the clustering phase, we first built a global
knowledge base C from a collection of well-trained profiles. The pro-
files were trained on a subset of the data mentioned in Section 4.1.3;
this subset was composed of 603 web applications, 27,990 unique
resource paths, 9,023 unique parameters, and 3,444,092 HT'TP re-
quests. 'The clustering algorithm described in Section 4.2.2.2 was
then applied to group profiles according to their parameter type. Sam-
ple results from this clustering are shown in Figure 4.7b. Each leaf
node corresponds to a profile and displays the parameter name and a
few representative sample values corresponding to the parameter.

As the partial dendrogram indicates, the resulting clusters in C are
accurately clustered by parameter type. For instance, date parameters
are grouped into a single hierarchy, while unstructured text strings are
grouped into a separate hierarchy.

4.2. Training With Scarce Data

notes: {1/29/087 - email, 18/26/86 thru, spoke}
notes: {1/29/87 - email, 18/26/86 thru, spoke}
notes: {1/29/87 - email, 18/26/86 thru, spoke}
notes: {1/29/87 - email, 18/26/86 thru, spoke}
type: {health care, wholesale}

notes: {1/29/07 - email, 18/26/86 thru, spoke}

name: {Foo LLC, Bar Inc.}
type: {General Auto, Painters, unknoun}

(a) k = 64

stdate: {01/01/1980, 84/81/2007, 05/81/2007}

stdate: {@1/01/1900, 04/61/2007, 85/01/200873

ref: {81/29/2007, 01/38/2007, 81/31/200873}

stdate: {@2/19/2004, 89/15/2005, 12/07/200853}

stdate: {01/81/1900, 85/08/208063

stdate: {081/31/2006, 11/81/20863

stdate: {01/36/2007, 82/18/20073

indate: {01/29/2087, 12/29/26063}

exp: {81/01/20088, 85/22/2007}

exp: {82/09/20087, 89/308/20063

exp: {62/81/2007, ©8/81/2086, 09/01/2886}

date: {1/29/07, 12/31/20863

date: {1/29/07, 12/31/20063}

note: {18-5, no ans, called and emailed, no client resp}
note: {16-5, no ans, called and emailed, no client resp}

(b) Kstable = 103

city: {OUR CITY, OTHER CITY, San Diego}
stat: {GA}

code: {0D}

u: {Ineligible, 01d}

cd: {XX3

type: {Payment, Sales}

code: {0D}

u: {Eligible, Neuw}

u: {Ineligible, Neu}

stat: {CA, TX}

stat: {CA, TX}

addr: {15 ROOF AVE, 373 W SMITH, 49 N Ave}

()k=28

thepage: {TKGGeneral, TKGGeneral, KZDA.pdf}
updateTask: {TKGGeneral, KZDA.pdf, Chan.cfm?taskna}
code: {CK-1886, NES}

thepage: {TKGGeneral, TKGGeneral, KZDA.pdf}

code: {CK-16@86, NES}

thepage: {TKGGeneral, TKGGeneral, KZDA.pdf}
accode: {r94, xzy}

code: {CK-1886, NZS}

code: {CK-1086, NZS}

code: {82-286, BE2}

thepage: {TKGGeneral, TKGGeneral, KZDA.pdf}

d)x =32
FiGURE 4.7: Clustering of C, (a-b), and C%, (c-d). Each leaf (a pro-

file) is labeled with the parameter name and samples values observed
during training. As & increases, profiles are clustered more accurately.

143

4. ANomary DETECTION OF WEB-BASED ATTACKS

144

The following experiment investigates how « affects the quality
of the final clustering.

4.2.3.2 Profile mapping robustness

Recall that in order to balance the robustness of the mapping f be-
tween undertrained profiles and global profiles against the speed with
which undertraining can be addressed, it is necessary to select an ap-
propriate value for . To this end, we generated undertrained knowl-
edge bases for increasing values of k = 1, 2,4, 8, 16, 32, 64 from the
same dataset used to generate C, following the procedure outlined in
Section 4.2.2.2. Partial dendrograms for various k are presented in
Figure 4.7¢, 4.7d, 4.7a.

At low values of & (e.g., Figure 4.7¢), the clustering process ex-
hibits non-negligible systemic errors. For instance, the parameter
stat clearly should be clustered as a token set of states, but instead
is grouped with unstructured strings such as cities and addresses. A
more accurate clustering would have dissociated the token and string
profiles into well-separated sub-hierarchies.

As shown in Figure 4.7d, larger values of x lead to more mean-
ingful groupings. Some inaccuracies are still noticeable, but the clus-
tering process of the sub-hierarchy is significantly better that the one
obtained at kK = 8. A further improvement in the clusters is shown
in Figure 4.7a. At K = 64, the separation between dates and un-
structured strings is sharper; except for one outlier, the two types are
recognized as similar and grouped together in the early stages of the
clustering process.

Figure 4.8 plots the profile mapping robustness p(-) against &
for different cuts of the dendrogram, indicated by Dy.. D is 2
threshold representing the maximum distance between two clusters.
Basically, for low Dy, the “cut” will generate many clusters with a
tew elements; on the other hand, for high values of Dy, the algo-
rithm will tend to form less clusters, each having a larger number of
elements. Note that this parameter is known to have two different
possible interpretations: it could indicate either a threshold on the
real distance between clusters, or a “cut level” in the dendrogram con-
structed by the clustering algorithm. Although they are both valid,
we prefer to utilize the former.

Figure 4.8 shows two important properties of our technique. First,
it demonstrates that the robustness is fairly insensitive to D,y. Sec-

4.2. Training With Scarce Data

Mapping robustness

F1GURE 4.8: Plot of profile mapping robustness for varying .

ond, the robustness of the mapping increases with & until saturation
at 32 < k < 64. This not only confirms the soundness of the map-
ping function, but it also provides insights on the appropriate choice
of Kmin to minimize the delay to global profile lookup while maxi-
mizing the robustness of the mapping.

4.2.3.3 Detection accuracy

Having studied the effects of profile clustering and varying values for
 upon the robustness of the profile mapping f, a separate experi-
ment was conducted in order to evaluate the detection accuracy of a
web application anomaly detector incorporating C, the global knowl-
edge base constructed in the previous experiments. In particular, the
goal of this experiment is to demonstrate that an anomaly detector
equipped with a global knowledge base exhibits an improved detec-
tion accuracy in the presence of training data scarcity.

'The data used in this experiment was a subset of the full dataset
described above, and was completely disjoint from the one used to
construct the global knowledge base and its indices. It consisted of
220 unique real-world web applications, 8,402 unique resource paths,
7,648 distinct parameters, and 55,290,532 HTTP requests.

The intended threat model is that of an attacker attempting to

145

4. ANomary DETECTION OF WEB-BASED ATTACKS

146

compromise the confidentiality or integrity of data exposed by a web
application by injecting malicious code in request parameters.

Note 4.2.5 (Threat model) Although the anomaly detector used in
this study is capable of detecting more complex session-level anoma-
lies, we restrict the threat model to request parameter manipulation
because we do not address session profile clustering.

To establish a worst-case bound on the detection accuracy of the
system, profiles for each observed request parameter were deliber-
ately undertrained to artificially induce a scarcity of training data for
all parameters. That is, for each value of k = 1,2,4,8, 16,32, 64,
the anomaly detector prematurely terminated profile training after &
samples, and then used the undertrained profiles to query C. 'The
resulting global profiles were then substituted for the undertrained
profiles and evaluated against the rest of the dataset. The sensitiv-
ity of the system was varied over the interval [0, 1], and the resulting
ROC curves for each & are plotted in Figure 4.9.

As one can clearly see, low values of « result in the selection of
global profiles that do not accurately model the behavior of the un-
dertrained parameters. As k increases, however, the quality of the
global profiles returned by the querying process increases as well. In
particular, this increase in quality closely follows the mapping robust-
ness plot presented in Figure 4.8. As predicted, setting x = 32,64
leads to fairly accurate global profile selection, with the resulting
ROC curves approaching that of fully-trained profiles. This means
that even if the component of a web application has received only
a few requests (i.e., 64), by leveraging a global knowledge base it is
possible to achieve effective attack detection. As a consequence, our
approach can improve the effectiveness of real-world web application
firewalls and web application anomaly detection systems.

Clearly, the detection accuracy will improve as more training sam-
ples (e.g., 128, 256) become available. However, the goal of this ex-
periment was to evaluate such an improvement with a very limited
training set, rather than showing the detection maximum accuracy
achievable. From these results, we conclude that for appropriate val-
ues of &, the use of a global knowledge base can provide reasonably
accurate detection performance even in the presence of training data
scarcity.

4.2. Training With Scarce Data

09l . L E— B

0.8

True positive rate

0.7

\

NN

0.6

il 2z = o

=
N
>
|
i
i
i

k=32 -
k=64 - - -
k-stable -—-—--

05 L ‘
0 0.01 0.02 0.03 0.04 0.05
False positive rate

F1Gure 4.9: Global profile ROC curves for varying . In the pres-
ence of severe undertraining (k < Kguple), the system is not able to
recognize most attacks and also reports several false positives. How-
ever, as k increases, detection accuracy improves, and approaches that
of the well-trained case (kK = Kgqble)-

One concern regarding the substitution of global profiles for local
request parameters is that a global profile that was trained on another
web application may not detect valid attacks against the undertrained
parameter. Without this technique, however, recall that a learning-
based web application anomaly detector would otherwise have no ef-
fective model whatsoever, and therefore the undertrained parameter
would be unprotected by the detection system (i.e., zero true positive
rate). Furthermore, the ROC curves demonstrate that while global
profiles are in general not as precise as locally-trained models, they
do provide a significant level of detection accuracy.

Note 4.2.6 If global profiles were found to be as accurate as local
profiles, this would constitute an argument against anomaly detection
itself.

More precisely, with x = 1, undertraining condition and system
off, only 67.5% of the attacks are detected, overall, with around 5%
of false positives. On the other hand, with k = 64 (undertraining
and system on), more than 91% of the attacks are detected with less

147

4. ANomary DETECTION OF WEB-BASED ATTACKS

148

than 0.2% of false positives (vs., 0.1% of false positives in the case
of no undertraining and system off). Therefore, we conclude that,
assuming no mistrust among the parties that share the global knowl-
edge base, our approach is a useful technique to apply in the presence
of undertrained models and, in general, in the case of training data
scarcity. Note that the last assumption is often satisfied because one
physical deployment (e.g., one server protected by our system) typ-
ically hosts several web applications under the control of the same
system administrator or institution.

'Therefore, we conclude that our approach is a useful technique to
apply in the presence of undertrained models and, in general, in case
of training data scarcity.

Note 4.2.7 (Configuration parameters) Our methods provide explicit
guidance, based on the training data of the particular deployment, to
choose the value of the only parameter required to trade off accu-
racy vs. length of the training phase. In addition, the “goodness” of
the approach with respect to different choices of such a parameter is
evaluated on real-world data in Section 4.

In particular, the ROC curve shows how the sampling size (%)
affects the detection accuracy, thus offer some guidance to the user.
In addition, Figure 8 shows that the system stabilizes for k > 32,
thus some more guidance about “what is a good value” is given.

4.3. Addressing Changes in Web Applications

4.3 Addressing Changes in Web Applications

In this section, we describe our proposal [Maggi et al., 2009¢] to cope
with FP due to changes in the modeled web applications. Recall that
detection is performed under the assumption that attacks cause sig-
nificant changes (i.e., anomalies) in the application behavior. Thus,
any activity that does not fit the expected, learned models is flagged
as malicious. This is true regardless of the type of system activity,
thus it holds for other types of IDSs than web-based ones.

In particular, one issue that has not been well-studied is the difh-
culty of adapting to changes in the behavior of the protected applica-
tions. This is an important problem because today’s web applications
are user-centric. That is, the demand for new services causes contin-
uous updates to an application’s logic and its interfaces.

Our analysis, described in Section 4.3.1, reveals that significant
changes in the behavior of web applications are frequent. We re-
fer to this phenomenon as web application concept drift. In the con-
text of anomaly-based detection, this means that legitimate behavior
might be misclassified as an attack after an update of the application,
causing the generation of false positives. Normally, whenever a new
version of an application is deployed in a production environment,
a coordinated effort involving application maintainers, deployment
administrators, and security experts is required. That is, developers
have to inform administrators about the changes that are rolled out,
and the administrators have to update or re-train the anomaly mod-
els accordingly. Otherwise, the amount of FPs will increase signifi-
cantly. In [Maggi et al., 2009¢] we describe a solution that makes
these tedious tasks unnecessary. Our technique examines the re-
sponses (HTML pages) sent by a web application. More precisely,
we check the forms and links in these pages to determine when new
elements are added or old ones removed. This information is lever-
aged to recognizes when anomalous inputs (i.e., HT'TP requests) are
due to previous, legitimate updates —changes— in a web application.
In such cases, FPs are suppressed by automatically and selectively re-
training models. Moreover, when possible, model parameters can be
automatically updated without requiring any re-training.

Note 4.3.1 (Re-training) Often, a complete re-training of all the mod-
els is expensive in terms of time; typically, it requires O(P) where P
represents the number of HT'TP messages required to train a model.

149

4. ANomary DETECTION OF WEB-BASED ATTACKS

150

More importantly, such re-training is not always feasible since new,
attack-free training data is unlikely to be available immediately after
the application has changed. In fact, to collect a sufficient amount
of data the new version of the application must be executed and real,
legitimate clients have to interact with it in a controlled environment.
Clearly, this task requires time and efforts. More importantly, those
parts that have changed in the application must be known in advance.

Our technique focuses on the fundamental problem of detecting
those parts of the application that have changed and that will cause
FPs if no re-training is performed. Therefore, the technique is ag-
nostic with respect to the specific training procedure, which is IDS-
specific and can be different from the one we propose.

'The core of this contribution is the exploiting of HT'TP responses,
which we show to contain important insights that can be effectively
leveraged to update previously learned models to take changes into
account. The results of applying our technique on real-world data
demonstrate that learning-based anomaly detectors can automati-
cally adapt to changes, and by doing this, are able to reduce their FPR
without decreasing their DR significantly. Note that, in general, re-
lying on HT'TP responses may lead to the issue of poisoning of the
models used to characterize them: this limitation is discussed in de-
tails in Section 4.3.2.3 in comparison with the advantages provided
by our technique.

In Section 4.3.1 the problem of concept drift in the context of
web applications is detailed. In addition, we provide evidence that
it occurs in practice, motivating why it is a significant problem for
deploying learning-based anomaly detectors in the real world. The
core of our contribution is described in Section 4.3.2 where we de-
tail the technique based on HT'TP response models that can be used
to distinguish between legitimate changes in web applications and
web-based attacks. A version of webanomaly incorporating these
techniques has been evaluated over an extensive real-world data set,
demonstrating its ability to deal with web application concept drift
and reliably detect attacks with a low false positive rate. The results
of this evaluation are discussed in Section 4.3.3.

4.3. Addressing Changes in Web Applications

4.3.1 Web Application Concept drift

In this section the notion of web application concept drift is defined.
We rely upon the generalized model of learning-based anomaly de-
tectors of web attacks described in Section 4.1.1. Secondly, evidence
that concept drift is a problem that exists in the real world is provided
to motivate why it should be addressed.

4.3.1.1 Changes in Web Applications’ Behavior

In machine learning, changes in the modeled behavior are known as
concept drift [Schlimmer and Granger, 1986]. Intuitively, the conceps
is the modeled phenomenon; in the context of anomaly detection it
may be the structure of requests to a web server, the recurring patterns
in the payload of network packets, etc. Thus, variations in the main
features of the phenomena under consideration result in changes, or
drifts, in the concept. In some sense, the concept corresponds to the
normal web application behavior (see also Definition 2.1.4).

Although the generalization and abstraction capabilities of mod-
ern learning-based anomaly detectors are resilient to noise (i.e., small,
legitimate variations in the modeled behavior), concept drift is diffi-
cult to detect and to cope with [Kolter and Maloof, 2007]. 'The reason
is that the parameters of the models may stabilize to different values.
For example, the string length model described in Section 3.3.1.1
—and also used in webanomaly— learns the sample mean and vari-
ance of the string lengths that are observed during training. In weba-
nomaly, during detection, the Chebyshev inequality is used to detect
strings with lengths that significantly deviate from the mean, tak-
ing into account the observed variance. As shown in Section 3.3.2,
the variance allows to account for small differences in the lengths of
strings that will be considered normal.

On the other hand, the mean and variance of the string lengths
can completely change because of legitimate and permanent modi-
fications in the web application. In this case, the normal mean and
variance will stabilize, or drift, to different values. If appropriate re-
training or manual updates are not performed, the model will classify
benign, new strings as anomalous. These examples allow us to better
define the web application concept drift.

Definition 4.3.1 (Web Application Concept Drift) The web applica-

tion concept drift is a permanent modification of the normal web ap-

151

4. ANomary DETECTION OF WEB-BASED ATTACKS

plication behavior.

Since the behavior of a web application is derived from the system
activity I during normal operation, a permanent change in I causes the
concept drift. Changes in web applications can manifest themselves
in several ways. In the context of learning-based detection of web
attacks, those changes can be categorized into three groups: request
changes, session changes, and response changes.

Request changes Changes in requests occur when an application
is upgraded to handle different HT'TP requests. These changes can
be further divided into two groups: parameter value changes and re-
quest structure changes. 'The former involve modifications of the ac-
tual value of the parameters, while the latter occur when parameters
are added or removed. Parameter renaming is the result of removal
plus addition.

Example 4.3.1 (Request change) A new version of a web forum in-
troduces internationalization (I18N) and localization (L10N). Be-
sides handling different languages, I18N and L10N allow several
types of strings to be parsed as valid dates and times. For instance,
valid strings for the datet ime parameter are ‘3 May 2089 3:00°, ‘3/12/2809°,
‘3/12/2009 3:08 PM GMT-@88°, ‘now’. In the previous version, valid
date-time strings had to conform to the regular expression ‘ [8-91{1,2}/[8-91{2}/[@-91{4}".
A model with good generalization properties would learn that the
field datetime is composed of numbers and slashes, with no spaces.
Thus, other strings such as “nou’ or *3/12/2609 3:88 PM GMT-88° would

be flagged as anomalous. Also, in our example, tz and 1ang parame-

ters have been added to take into account time zones and languages.

To summarize, the new version introduces two classes of changes.
Clearly, the parameter domain of datetime is modified. Secondly,
new parameters are added.

Changes in HT'TP requests directly affect the request models:

1. parameter value changes affect any models that rely on the
parameters’ values to extract features. For instance, consider
two of the models used in the system described in [Kruegel

et al., 2005]: m() and mGwe) - The former models the
strings’ character distribution by storing the frequency of all

152

4.3. Addressing Changes in Web Applications

the symbols found in the strings during training, while the lat-
ter models the strings’ structure as a stochastic grammar, us-
ing a HMM. In the aforementioned example, the 118N and
L10N introduce new, legitimate values in the parameters; thus,
the frequency of numbers in m/(char) changes and new sym-
bols (e.g., “-’, ‘[a-zR-Z]’ have to be taken into account. It is
straightforward to note that mruet) is affected in terms of new
transitions introduced in the HMM by the new strings.

2. Request structure changes may affect any type of request model,
regardless of the specific characteristics. For instance, if a model
for a new parameter is missing, requests that contain that pa-
rameter might be flagged as anomalous.

Session changes Changes in sessions occur whenever resource path
sequences are reordered, inserted, or removed. Adding or removing
application modules introduces changes in the session models. Also,
modifications in the application logic are reflected in the session mod-
els as reordering of the resources invoked.

Example 4.3.2 (Session change) A new version of a web-based com-
munity software grants read-only access to anonymous users (i.e., with-
out authentication), allowing them to display contents previously avail-
able to subscribed users only. In the old version, legitimate sequences
were (/site, /auth, /blog) or (/site, /auth, /files), where /site
indicates the server-side resource that handles the public site, /auth
is the authentication resource, and /blog and /files were formerly
private resources. Initially, the probability of observing /auth before
/blogor /files is close to one (since users need to authenticate before
accessing private material). This is no longer true in the new version,
however, where /files|/blog|/auth are all possible after /site.

Changes in sessions impact all models that rely on the sequence of
resources that are invoked during the normal operation of an applica-
tion. For instance, consider the model m () described in [Kruegel
et al., 2005], which builds a probabilistic finite state automaton that
captures sequences of resource paths. New arcs must be added to take
into account the changes mentioned in the above example. These
types of models are sensitive to strong changes in the session struc-
ture and should be updated accordingly when they occur.

153

4. ANomary DETECTION OF WEB-BASED ATTACKS

154

Response changes Changes in responses occur whenever an appli-
cation is upgraded to produce different responses. Interface redesigns
and feature addition or removal are example causes of changes in the
responses. Response changes are common and frequent, since page
updates or redesigns often occur in modern websites.

Example 4.3.3 (Response change) A new version of a video sharing
application introduces Web 2.0 features into the user interface, allow-
ing for the modification of user interface elements without refreshing
the entire page. In the old version, relatively few nodes of documents
generated by the application contained client-side code. In the new
version, however, many nodes of the document contain event han-
dlers to trigger asynchronous requests to the application in response
to user events. Thus, if a response model is not updated to reflect the
new structure of such documents, a large of number of false positives
will be generated due to /legitimate changes in the characteristics of
the web application responses.

4.3.1.2 Concept Drift in the Real World

To understand whether concept drift is a relevant issue for real-world
websites, we performed three experiments. For the first experiment,
we monitored 2,264 public websites, including the Alexa Top 500’
and other sites collected by querying Google with popular terms ex-
tracted from the Alexa Top 500%s. The goal was to identify and quan-
tify the changes in the forms and input fields of popular websites at
large. 'This provides an indication of the frequency with which real-
world applications are updated or altered.

First Experiment: Frequency of Changes Once every hour, we vis-
ited one page for each of the 2,264 websites. In total, we collected
3,303,816 pages, comprising more than 1,390 snapshots for each
website, between January 29 and April 13, 2009. One tenth of the
pages were manually selected to have a significant number of forms,
input fields, and hyperlinks with GET parameters. By doing this, we
gathered a considerable amount of information regarding the HT'TP
messages generated by some applications. Examples of these pages
are registration pages, data submission pages, or contact form pages.
For the remaining websites, we simply used their home pages. Note
that, the pages we selected may not be fully representative of the

4.3. Addressing Changes in Web Applications

whole website. To overcome this limitation and to further confirm
our intuition, we performed a more detailed experiment — described
in Section 4.3.1.2 — on the source code of large, real-world web ap-
plications.

For each website w, each page sample crawled at time ¢ is asso-
ciated with a tuple |F' |tw), |7 |tw), the cardinality of the sets of forms
and input fields, respectively. By doing this, we collected samples of
the variables || = |F|{, ..., |F[{, [I|Y = [I|,...,[I|{, with
0 < n < 1,390. Figure 4.10 shows the relative frequency of the

variables

Xp = sedev([1]).... sedev(|1]0)
Xr = stdev(|F|(“’1)),‘..,stdev(|F|(7~Uk)).

'This demonstrates that a significant amount of websites exhibit
variability in the response models, in terms of elements modified
in the pages, as well as request models, in terms of new forms and
parameters. In addition, we estimated the expected time between
changes of forms and inputs fields, E[Tr| and E[T}], respectively.
In terms of forms, 40.72% of the websites drifted during the ob-
servation period. More precisely, 922 out of 2,264 websites have a
finite E[TF]. Similarly, 29.15% of the websites exhibited drifts in
the number of input fields, i.e., E[T;] < +oo for 660 websites. Fig-
ure 4.10 shows the relative frequency of (b) E[Tr], and (d) E[T}].
E[Tr]. This confirms that a non-negligible portion of the websites
exhibit significantly frequent changes in the responses.

Second Experiment: Type of Changes 'We monitored in depth three
large, data-centric web applications over several months: Yahoo! Mail,
YouTube, and MySpace. We dumped HT'TP responses captured by
emulating user interaction using a custom, scriptable web browser
implemented with Html-Unit. Examples of these interactions are as
follows: visit the home page, login, browse the inbox, send messages,
return to the home page, click links, log out. Manual inspection re-
vealed some major changes in Yahoo! Mail. For instance, the most
evident change consisted of a set of new features added to the search
engine (e.g., local search, refined address field in maps search), which
manifested themselves as new parameters found in the web search
page (e.g. to take into account the country or the ZIP code). User

155

4. ANomary DETECTION OF WEB-BASED ATTACKS

156

150 200
I

Frequency

50
I

r T T T T T T 1 r T T T 1
00 05 10 15 20 25 30 35 0 100 200 300 400

stdev(IFl) E[T]between changes in IF| [hours]

(a) Changes of forms. (b) Avg. time between changes in | F|.

400
|

300
I

Frequency

100
I
100

r T T T 1 T T T 1
0 10 2 30 40 0 100 200 300 400

stdev(lll) E[T] between changes in 11l [hours]

(c) Changes of inputs. (d) Avg. time between changes in |I|

FicUre 4.10: Relative frequency of the standard deviation of the
number of forms (a) and input fields (c). Also, the distribution of the
expected time between changes of forms (b) and input fields (d) are
plotted. A non-negligible portion of the websites exhibits changes
in the responses. No differences have been noticed between home
pages and manually-selected pages.

pages of YouTube were significantly updated with new functionali-
ties between 2008 and 2009. For instance, the new version allows
users to rearrange widgets in their personal pages. To account for the
position of each element, new parameters are added to the profile
pages and submitted asynchronously whenever the user drags wid-
gets within the layout. The analysis on MySpace did not reveal any
significant change. The results of these two experiments show that

4.3. Addressing Changes in Web Applications

changes in server-side applications are common. More importantly,
these modifications often involve the way user data is represented,
handled, and manipulated.

Third Experiment: Abundance of Code Change We analyzed changes

in the requests and sessions by inspecting the code repositories of
three of the largest, most popular open-source web applications: Word-
Press, Movable Type, and PhpBB. The goal was to understand whether
upgrading a web application to a newer release results in signifi-
cant changes in the features that are used to determine its behav-
ior. In this analysis, we examined changes in the source code that
affect the manipulation of HT'TP responses, requests, and session
data. We used StatSVN, an open-source tool for tracking and visu-
alizing the activity of SubVersioN (SVN) repositories (e.g., the num-
ber of lines changed or the most active developers). We modified
StatSVN to incorporate a set of heuristics to compute approximate
counts of the lines of code that, directly or indirectly, manipulate
HTTP session, request or response data. In the case of PHP Hy-
pertext Preprocessor (PHP), examples representative of such lines in-
clude, but are not limited to, REQUEST|_SESSION|_POST| _GET|session_-
[a-z]+|http_|strip_tags|addsiashes. In order to take into account
data manipulation performed through library functions (e.g., Word-
Press’ custom Http class), we also generated application-specific code
patterns by manually inspecting and filtering the core libraries. Fig-
ure 4.11 shows, over time, the lines of code in the repositories of
PhpBB, WordPress, and Movable Type that manipulate HTTP re-
sponses, requests and, sessions. These results show the presence of
significant modifications in the web application in terms of relevant
lines of code added or removed. More importantly, such modifica-
tions affect the way HT'TP data is manipulated and, thus, impact
request, response or session models.

The aforementioned experiments confirm that the class of changes
we described in Section 4.3.1.1 is common in real-world web ap-
plications. Therefore, anomaly detectors for web applications must
incorporate procedures to prevent false alerts due to concept drift.
In particular, a mechanism is needed to discriminate between legit-
imate and malicious changes, and respond accordingly. Note that,
this somehow coincides with the original definition of ID (i.e., dis-
tinguishing among normal vs. malicious activity); however, our focus

157

4. ANomary DETECTION OF WEB-BASED ATTACKS

900000 T T T T T T
850000 | b
800000 |- b
750000 | b
@ 700000 1
3
8
S
5 650000 B
2
2
= 600000 - B
550000 | b
500000 |- b
450000 |-
400000 L L . L . L
o = 9 < S o Y °
S S < S S <3 <3 z
] 5]]] g]]
S) S S S) S S
(a) PhpBB
480000
460000 - b
440000 |- b
420000 |- b
400000 - b
380000 - b
360000 - b
340000 b
320000 b
300000
280000
2 9 T T 8 8 8§ g 5 5 8 B ¥ g
S g & & g g g g g g g g g g
= 8§ £ & = E £ E Z E Z & =z =8
S ¢ & ¢ & g & g & g & g & g
) > S =) S =))) S 5) 5) S

(b) WordPress

850000 T T T T T T T T T T T

800000 1
750000 - IIJ 1

700000 4

650000 q

600000 q

550000 [1

500000 q

450000

01/04/06

01/07/06 |
01/10/06
01/01/07 |
01/04/07
01/07/07 |
01110007
01/01/08
01/04/08
01/07/08
01/10/08
01/01/09 |
01/04/09

(c) Movable Type

F1GURE 4.11: Lines of codes in the repositories of PhpBB, WordPress,
and Movable Type, over time. Counts include only the code that
158 manipulates HTTP responses, requests and sessions.

4.3. Addressing Changes in Web Applications

is to recognizes changes in the application activity that could lead to
concept drift as opposed to spotting out changes in the application
behavior (i.e., ID).

4.3.2 Addressing concept drift

In this section, a technique is presented to distinguish between legit-
imate changes in web application behavior and evidence of malicious
behavior.

4.3.2.1 Exploiting HTTP responses

An HTTP response is composed of a header and a body. Under the
hypothesis of content-type text/htn1, the body of HT'TP responses
contains a set of links L; and forms F; that refer to a set of target
resources. Each form also includes a set of input fields /;. In addi-
tion, each link I; ; € L; and form f; ; € F; has an associated set of
parameters.

A request g; to aresource r; returns a response resp;. From resp;
the client follows a link I; ; or submits a form f; ;. Either of these
actions generates a new HT TP request to the web application with
a set of parameter key-value pairs, resulting in the return of a new
HTTP response to the client, 41, the body of which contains a
set of links L; 1 and forms F; ;. According to the specifications of
the HT'TP, this process continues until the session has ended (i.e.,
either the user has explicitly logged out, or a timeout has occurred).

‘We then define:

Definition 4.3.2 (Candidate Resource Set) Given a resource r within
a web application, the candidate resource set of r is defined as:

candidates(r) := L,UF, =
= {ll,lg,...JN}U
{fisfoyo oo fua}-

where:
e [y :=resp.a().href,

e f() = resp.form.y.action,

159

4. ANomary DETECTION OF WEB-BASED ATTACKS

e resp. is the plain/text body of the response resp,
e resp.<element>(.y.<attribute> is the content of the attribute,

e <attribute>, of the HTML <element> ..

Our key observation is that, at each step of a web application ses-
sion, a subset of the pozential target resources is given exactly by the
content of the current resource. That is, given r;, the associated sets
of links L; and forms F; directly encode a significant sub-set of the
possible ;1. Furthermore, each link /; ; and form f; ; indicates a
precise set of expected parameters and, in some cases, the set of le-
gitimate values for those parameters that can be provided by a client.

Consider a hypothetical banking web application, where the cur-
rent resource r; = /account presented to a client is an account overview.
'The response resp; may contain:

<body class="account”>
/* o *
<form action="/search” method="get”>
<input name="term” type="text” value="Insert term” />
<input type="submit” value="Search!” />

</form>

<hl>Transfer funds</hl>
Submit transfer

/* o0 %/

<tr><td>See details</td></tr>

<tr><td>See details</td></tr>

/* oo */

Logout
/* oo %/

<h2>Feedback on this page?</h2>
<form action="/feedback” method="post” class="feedback-form”>

160

4.3. Addressing Changes in Web Applications

<select name="subject”>
<option>General</option>
<option>User interface</option>
<option>Functionality</option>

</select>

<textarea name="message” />

<input type="submit” />

</form>

/* - */
</body>

containing a set of links L;, represented as their URL, for instance:

/account/history?aid=3288496608322,

/account/history?aid=446825759916,
L; = /account/transfer/submit

/account/transfer,

/1ogout

Forms are represented as their target action. For instance: F; =
{/feedback, /search}.

From L; and F;, we can deduce the set of legal candidate re-
sources for the next request ;1. Any other resource would, by defi-
nition, be a deviation from a legal session flow through the web appli-
cation as specified by the application itself. For instance, it would not
be expected behavior for a client to directly access /account/transfer/submit
(i.e., a resource intended to submit an account funds transfer) from
r;. Furthermore, for the resource /account/history, it is clear that
the web application expects to receive a single parameter aid with an
account number as an identifier.

In the case of the form with target /feedback, let the associated
input elements be:

<select name="subject”>
<option>General</option>
<option>User interface</option>
<option>Functionality</option>

</select>

<textarea name="message” />

It immediately follows that any invocation of the /feedback re-
source from r; should include the parameters subject and message.

161

4. ANomary DETECTION OF WEB-BASED ATTACKS

162

In addition, the legal set of values for the parameter subject is given
by enumerating the enclosed <option /> tags. Valid values for the
new tz and datetime parameters mentioned in the example of Sec-
tion 4.3.1.1 can be inferred using the same algorithm. Any deviation
from these specifications could be considered evidence of malicious
behavior.

In this section we described why responses generated by a web ap-
plication constitute a specification of the intended behavior of clients
and the expected inputs to an application’s resources. As a conse-
quence, when a change occurs in the interface presented by a web ap-
plication, this will be reflected in the content of its responses. There-
fore, as detailed in the following section, an anomaly detection sys-
tem can take advantage of response modeling to detect and adapt to
changes in monitored web applications.

4.3.2.2 Adaptive response modeling

In order to detect changes in web application interfaces, the response
modeling of webanomaly has been augmented with the ability to
build L; and F; from the HTML documents returned to a client.
'The approach is divided into two phases.

Extraction and parsing The anomaly detector parses each HTML
document contained in a response issued by the web application to a
client. For each <a /> tag encountered, the contents of the href at-
tribute is extracted and analyzed. The link is decomposed into tokens
representing the protocol (e.g., http, https, javascript, mailto), tar-
get host, port, path, parameter sequence, and anchor. Paths are sub-
ject to additional processing; for instance, relative paths are normal-
ized to obtain a canonical representation. This information is stored
as part of an abstract document model for later processing.

A similar process occurs for forms. When a <form /> tag is en-
countered, the action attribute is extracted and analyzed as in the case
of the link href attribute. Furthermore, any <input />, <textarea />,
or <select /> and <option /> tags enclosed by a particular <form />
tag are parsed as parameters to the corresponding form invocation.
For <input /> tags, the type, name, and value attributes are extracted.
For <textarea /> tags, the name attribute is extracted. Finally, for
<select /> tags, the name attribute is extracted, as well as the content
of any enclosed <option /> tags. The target of the form and its pa-

4.3. Addressing Changes in Web Applications

Tesp. - TESP,
- - Parsing f--F-----------—- S
Li, F;
Tit1 Gi+1
L - Change or attack? - e >
Client Anomaly detector Web app. server

FIGURE 4.12: A representation of the interaction between the client
and the web application server, monitored by a learning-based
anomaly detector. After request g; is processed, the corresponding
response resp; is intercepted and link L; and forms F; are parsed to
update the request models. This knowledge is exploited as a change
detection criterion for the subsequent request g; 1.

rameters are recorded in the abstract document model as in the case

for links.

Analysisand modeling The set of links and forms contained in a re-
sponse is processed by the anomaly engine. For each link and form,
the corresponding target resource is compared to the existing known
set of resources. If the resource has not been observed before, a new
model is created for that resource. The session model is also updated
to account for a potential transition from the resource associated with
the parsed document and the target resource by training on the ob-
served session request sequence.

For each of the parameters parsed from links or forms contained
in aresponse, a comparison with the existing set of known parameters
is performed. If a parameter has not already been observed (e.g., the
new tz parameter), a profile is created and associated with the target
resource model.

Any values contained in the response for a given parameter are
processed as training samples for the associated models. In cases
where the total set of legal parameter values is specified (e.g., <select />
and <option /> tags), the parameter profile is updated to reflect this.
Otherwise, the profile is trained on subsequent requests to the asso-
ciated resource.

As a result of this analysis, the anomaly detector is able to adapt
to changes in session structure resulting from the introduction of
new resources. In addition, the anomaly detector is able to adapt to
changes in request structure resulting from the introduction of new
parameters and, in a limited sense, to changes in parameter values.

163

4. ANomary DETECTION OF WEB-BASED ATTACKS

164

4.3.2.3 Advantages and limitations

Due to the response modeling algorithm described in the previous
section, an anomaly detector is able to automatically adapt to many
common changes observed in web applications as modifications are
made to the interface presented to clients. Both changes in session
and request structure such as those described in Section 4.3.1.1 can
be accounted for in an automated fashion.

Example 4.3.4 (118N and L10N) The aforementioned modification
is correctly handled as it consists in an addition of the tz parameter
and a modification of the datetime parameter.

Furthermore, we claim that web application anomaly detectors
that do not perform response modeling cannot reliably distinguish
between anomalies caused by legitimate changes in web applications
and those caused by malicious behavior. Therefore, as will be shown
in Section 4.3.3, any such detector that solely monitors requests is
more prone to false positives in the real world.

Clearly, the technique relies upon the assumption that the web ap-
plication has not been compromised. Since the web application, and
in particular the documents it generates, is treated as an oracle for
whether a change has occurred, if an attacker were to compromise the
application in order to introduce a malicious change, the malicious
behavior would be learned as normal by the detector. Of course, in
this case, the attacker would already have access to the web applica-
tion. However, modern anomaly detectors like webanomaly observes
all requests and responses to and from untrusted clients, therefore,

any attack that would compromise response modeling would be de-
tected and blocked.

Example 4.3.5 An attacker could attempt to evade the anomaly de-
tector by introducing a malicious change in the HT'TP responses and
then exploits the change detection technique that would interpret the
new malicious request as a legit change.

For instance, the attacker could incorporate a link that contain a
parameter used to inject the attack vector. To this end, the attacker
would have to gain control of the server by leveraging an existing vul-
nerability of the web application (e.g., a buffer overflow, a SQL injec-
tion). However, the HTTP requests used by the attacker to exploit

4.3. Addressing Changes in Web Applications

the vulnerability will trigger several models (e.g., the string length
model, in the case of a buffer overflow) and, thus, will be flagged as
anomalous?.

In fact, our technique does not alter the ability of the anomaly

detector to detect attacks. On the other hand, it avoids many false
positives, as demonstrated in Section 4.3.3.2.

Besides the aforementioned assumption, three limitations are im-

portant to note.

e The set of target resources may not always be statically deriv-
able from a given resource. For instance, this can occur when
client-side scripts are used to dynamically generate page con-
tent, including links and forms. Accounting for dynamic be-
havior would require the inclusion of script interpretation. This,
however, has a high overhead, is complex to perform accu-
rately, and introduces the potential for denial of service attacks
against the anomaly detection system. For these reasons, such
a component is not implemented in the current version of web-
anomaly, although further research is planned to deal with dy-
namic behavior.

The technique does not fully address changes in the behavior
of individual request parameters in its current form. In cases
where legitimate parameter values are statically encoded as part
of an HTML document, response modeling can directly ac-
count for changes in the legal set of parameter values. Unfor-
tunately, in the absence of any other discernible changes in the
response, changes in parameter values provided by clients can-
not be detected. However, heuristics such as detecting when
all clients switch to a new observable behavior in parameter
values (i.e., all clients generate anomalies against a set of mod-
els in a similar way) could serve as an indication that a change
in legitimate parameter behavior has occurred.

The technique cannot handle the case where a resource is the
result of a parametrized query and the previous response has
not been observed by the anomaly detector. In our experience,

2The threat model assumes that the attacker can interact with the web application
only by sending HTTP requests.

165

4. ANomary DETECTION OF WEB-BASED ATTACKS

166

however, this does not occur frequently in practice, especially
for sensitive resources.

4.3.3 Experimental Results

In this section, we show that our techniques reliably distinguish be-
tween legitimate changes and evidence of malicious behavior, and
present the resulting improvement in terms of detection accuracy.

'The goal of this evaluation is twofold. We first show that concept
drift in modeled behavior caused by changes in web applications re-
sults in lower detection accuracy. Second, we demonstrate that our
technique based on HT'TP responses effectively mitigates the effects
of concept drift. To this end, we adopted the training dataset de-
scribed in Section 4.1.3.

4.3.3.1 Effects of concept drift

In the first experiment, we demonstrate that concept drift as observed
in real-world web applications results in a significant negative impact
on false positive rates.

1. webanomaly was trained on an unmodified, filtered data set.
Then, the detector analyzed a test data set () to obtain a base-
line ROC curve.

2. After the baseline curve had been obtained, the test data set
was processed to introduce new behaviors corresponding to the
effects of web application changes, such as upgrades or source
code refactoring, obtaining Q4yfr. In this manner, the set of
changes in web application behavior was explicitly known. In
particular, as detailed in Table 4.2:

sessions 6,749 new session flows were created by introducing
requests for new resources and creating request sequences
for both new and known resources that had not previ-
ously been observed;

parameters new parameter sets were created by introducing
6,750 new parameters to existing requests;

values the behavior of modeled features of parameter values
was changed by introducing 5,785 mutations of observed
values in client requests.

4.3. Addressing Changes in Web Applications

For example, each sequence of resources

(/10gin, /index, /article)

might be transformed to

(/10gin, /article).

Similarly, each request like /categories found in the traffic
might be replaced with /foobar. For new parameters, a set
of link or form parameters might be updated by changing a
parameter name and updating requests accordingly.

It must be noted that in all cases, responses generated by the
web application were modified to reflect changes in client be-
havior. To this end, references to new resources were inserted
in documents generated by the web application, and both links
and forms contained in documents were updated to reflect new
parameters.

3. webanomaly—without the HT'TP response modeling technique
enabled — was then run over Qg to determine the effects of
concept drift upon detector accuracy.

The resulting ROC curves are shown in Figure 4.13a. The con-
sequences of web application change are clearly reflected in the in-
crease in false positive rate for Qquf versus that for (). Each new
session flow and parameter manifests as an alert, since the detector is
unable to distinguish between anomalies due to malicious behavior
and those due to legitimate change in the web application.

4.3.3.2 Change detection

'The second experiment quantifies the improvement in the detection
accuracy of webanomaly in the presence of web application change.
As before, the detector was trained over an unmodified filtered data
set, and the resulting profiles were evaluated over both () and Qyifr.
In this experiment, however, the HTTP response modeling tech-
nique was enabled.

Figure 4.13b presents the results of analyzing HTTP responses

on detection accuracy. Since many changes in the behavior of the

167

4. ANomary DETECTION OF WEB-BASED ATTACKS

168

True poslve rate
True poslve rate

Octecion aparad (Bpn) : oo T

o 005 01 015 02 o 005 01 015 02
Faise posiive rate Faise posiive rate

(a) Response modeling disabled. (b) Response modeling enabled.

F1GURE 4.13: Detection and false positive rates measured on () and

Qaifr, with HTTP response modeling enabled in (b).

web application and its clients can be discovered using our response
modeling technique, the false positive rate for Q gy is greatly reduced
over that shown in Figure 4.13a, and approaches that of ¢}, where no
changes have been introduced. The small observed increase in false
positive rate can be attributed to the effects of changes in parameter
values. 'This occurs because a change has been introduced into a pa-
rameter value submitted by a client to the web application, and no
indication of this change was detected on the preceding document
returned to the client (e.g., because no <select /> were found).

Table 4.2 displays the individual contributions to the reduction
of the false positive rate due to the response modeling technique.
Specifically, the total number of anomalies caused by each type of
change, the number of anomalies erroneously reported as alerts, and
the corresponding reduction in the false positive rate is shown. The
results displayed were generated from a run using the optimal op-
erating point (0.00144, 0.97263) indicated by the knee of the ROC
curve in Figure 4.13b. For changes in session flows and parameters
sets, the detector was able to identify an anomaly as being caused by
a change in web application behavior in all cases. This resulted in a
large net decrease in the false positive rate of the detector with re-
sponse modeling enabled. The modification of parameters is more
problematic, though; as discussed in Section 4.3.2.3, it is not always
apparent that a change has occurred when that change is limited to
the type of behavior a parameter’s value exhibits.

From the overall improvement in false positive rates, we conclude

4.3. Addressing Changes in Web Applications

CHANGE TYPE ANOMALIES FP RepucTtiON

New session flows 6,749 0 100.0%
New parameters 6,750 0 100.0%
Modified parameters 5,785 4,821 16.6%

Total 19,284 4,821 75.0%

Table 4.2: Reduction in the false positive rate due to HI'TP response
modeling for various types of changes.

that HTTP response modeling is an effective technique for distin-
guishing between anomalies due to legitimate changes in web appli-
cations and those caused by malicious behavior. Furthermore, any
anomaly detector that does not do so is prone to generating a large
number of false positives when changes do occur in the modeled ap-
plication. Finally, as it has been shown in Section 4.3.1, web applica-
tions exhibit significant long-term change in practice, and, therefore,
concept drift is a critical aspect of web application anomaly detection
that must be addressed.

169

4. ANomary DETECTION OF WEB-BASED ATTACKS

4.4 Concluding Remarks

In this chapter we described in detail two approaches to mitigate
training issues. In particular, we presented a technique to reduce FPs
due to scarce training data and a mechanism to automatically recog-
nize changes in the monitored applications, such as code updates,
and re-train the models without any human intervention.

First, we have described our efforts to cope with an issue that
must be addressed by web application anomaly detection systems in
order to provide a reasonable level of security. The impact of this
issue is particularly relevant for commercial web-based anomaly de-
tection systems and web application firewall, which have to operate
in real-world environment where sufficient training data might be
unavailable within a reasonable time frame.

We have proposed the use of global knowledge bases of well-
trained, stable profiles to remediate a local scarcity of training data
by exploiting global similarities in web application parameters. We
found that although using global profiles does result in a small re-
duction in detection accuracy, the resulting system, when given ap-
propriate parameters, does provide reasonably precise modeling of
otherwise unprotected web application parameters.

A possible future extension of the described approach is to inves-
tigate the use of other types of models, particularly HT'TP response
and session models. An additional line of future work is the applica-
tion of different clustering methods in order to improve the efficiency
of the querying procedure for high-cardinality knowledge bases.

Secondly, we have identified the natural dynamicity of web ap-
plications as an issue that must be addressed by modern anomaly-
based web application anomaly detectors in order to prevent increases
in the false positive rate whenever the monitored web application is
changed. We named this frequent phenomenon the web application
concept drift.

In [Maggi et al., 2009¢] we proposed the use of novel HTTP re-
sponse modeling techniques to discriminate between legitimate changes
and anomalous behaviors in web applications. More precisely, re-
sponses are analyzed to find new and previously unmodeled parame-
ters. This information is extracted from anchors and forms elements,
and then leveraged to update request and session models. We have
evaluated the effectiveness of our approach over an extensive real-
world data set of web application traffic. The results show that the

170

4.4. Concluding Remarks

resulting system can detect anomalies and avoid false alerts in the
presence of concept drift.

We plan to investigate the potential benefits of modeling the be-
havior of JavaScript code, which is becoming increasingly prevalent
in modern web applications. Also, additional, richer, and media-
dependent response models must be studied to account for inter-
active client-side components, such as Adobe Flash and Microsoft
Silverlight applications.

171

Network and Host Alert Correlation 5

Either as part of an IDS or as a post-processing step, the alert cor-
relation task is meant to recognize relations among alerts. For in-
stance, a simple correlation task is to suppress all the alerts regard-
ing unsuccessful attacks. A more complex example envisions a large
enterprise network monitored by multiple IDSs, both host- and net-
work-based. Whenever a misbehaving application is detected on a
certain machine, the HIDS interacts with the NIDS that is monitor-
ing the network segment of that machine to, say, validate the actual
detection result. A more formal definition of alert correlation and
alert correlation systems can be found in Section 2.1.2.

In this section we focus on practical aspects of alert correlation
by first presenting the model we used in our prototype tools. Based
on this model we concentrate on two challenging phases, namely ag-
gregation, which has to do with grouping similar alerts together, and
correlation, which is the actual correlation phase. In particular, in
Section 5.1 we investigate the use of fuzzy metrics to time-based ag-
gregation, which has been proposed recently as a simple but effective
aggregation criterion. Unfortunately, given a threshold of, say, 10s,
this approach will fail if two alerts are at, say, 10.09s to each other.
In Section 5.3 we focus on the actual correlation task. We exploit
non-parametric statistical tests to create a simple but robust corre-
lation system that is capable of recognizing series of related events

173

5. NeTwork AND HosT ALErRT CORRELATION

without relying on previous knowledge. Last, in Section 5.2 we pro-
pose a methodology to compare alert correlation systems which are
as difficult as IDSs to evaluate.

174

5.1. Fuzzy Models and Measures for Alert Fusion

IDS { Normalization }—" Prioritization

A 4—{ Verification ‘<—{ Correlation

Ficure 5.1: Simplified version of the correlation approach proposed

in [Valeur et al., 2004].

l«—— Aggregation

5.1 Fuzzy Models and Measures for Alert Fusion

In this section we focus on the aggregation of IDS alerts, an im-
portant component of the alert correlation process as shown on Fig-
ure 5.1. We describe our approach [Maggi et al., 2009b], which
exploit fuzzy measures and fuzzy sets to design simple and robust
alert aggregation algorithms. Exploiting fuzzy sets, we are able to
robustly state whether or not two alerts are “close in time”, dealing
with noisy and delayed detections. A performance metric for the
evaluation of fusion systems is also proposed. Finally, we evaluate
the fusion method with alert streams from anomaly-based IDS.

Alert aggregation becomes more complex when taking into ac-
count anomaly detection systems, because no information on the type
or classification of the observed attack is available to any of the fusion
algorithms. Most of the algorithms proposed in the current litera-
ture on correlation make use of the information regarding the match-
ing attack provided by misuse detectors; therefore, such methods are
inapplicable to purely anomaly based intrusion detection systems.
Although some approaches, e.g., [Portokalidis and Bos, 2007], in-
corporate techniques to correlate automatically-generated signatures,
such techniques are aimed at creating more general signatures in or-
der to augment the DR. Instead, our focus is that of reducing the
FPR by fusing more information sources. However, as described in
Section 2.1, since anomaly and misuse detection are symmetric, it is
reasonable and noteworthy to try to integrate different approaches
through an alert fusion process.

Toward such goal, we explore the use of fuzzy measures [Wang

175

5. NeTwork AND HosT ALErRT CORRELATION

176

and Klir, 1993] and fuzzy sets [Klir and Folger, 1987] to design sim-
ple, but robust aggregation algorithms. In particular, we contribute
to one of the key issues, that is how to state whether or not two alerts
are “close in time”. In addition, uncertainties on both timestamp
measurements and threshold setting make this process even more
difficult; the use of fuzzy sets allows us to precisely define a time-
distance criterion which “embeds” unavoidable errors (e.g., delayed
detections).

5.1.1 Time-based alert correlation

As proposed in most of the reviewed literature, a first, naive approach
consists in exploiting the time distance between alerts for aggregation;
the idea is to aggregate “near” alerts. In this section we focus on this
point, starting by the definition of “near”.

Time-distance aggregation might be able to catch simple sce-
narios like remote attacks against remote applications vulnerabilities
(e.g., web servers). For instance, consider the scenario where, at time
to, an attacker violates a host by exploiting a vulnerability of a server
application. An IDS monitoring the system recognizes anomalous
activity at time ¢, = to + 7,,. Meanwhile, the attacker might esca-
late privileges and break through another application; the IDS would
detects another anomaly at ¢, = o + 75,. In the most general case ¢,
is “close” to t, (with t,, < tp), so if ty, — t,, < Thear the two alerts
belong to the same attack.

The idea is to fuse alerts if they are both close in time, raised from
the same IDS, and refer to the same source and destination. This
intuition obviously needs to be detailed. First, the concept of “near” is
not precisely defined; secondly, errors in timestamping are not taken
into account; and, a crisp time distance measure is not robust. For
instance, if |t — t,| = 2.451 and Theqr = 2.450 the two alerts
are obviously near, but not aggregated, because the above condition
is not satisfied. To overcome such limitations, we propose a fuzzy
approach to time-based aggregation.

In the following, we will use the well-known dot notation, as in
object-oriented programming languages, to access a specific alert at-
tribute: e.g., a.start_ts indicates the value of the attribute start_ts
of the alert a. Moreover, we will use T7.) to indicate a threshold vari-
able: for instance, Tyeqr is the threshold variable called (or regarding
to) “near”.

5.1. Fuzzy Models and Measures for Alert Fusion

T T
Instantaneous alert —+—

Crisp window

Degree of membership
T
.

=
T
L

02 | 4

0 02 04 06 08 1 12

Time (s)
@
12 :
Fuzzy alertevent —+—
Fuzzy window
, Closeness —x— |
I
/
/
L2ost / 1
< /
3 /
2 |
£ /
2 /
E 06 | / 4
5 /
¢ /
I /
2 /
o |
04 | / 4
/
02 | 4
0 . % . .
0 02 04 06 08 1 12
Time (s)

Ficure 5.2: Comparison of crisp (a) and fuzzy (b) time-windows.
In both graphs, one alert is fired at ¢ = 0 and another alert occurs at
t = 0.6. Using a crisp time-window and instantaneous alerts (a), the
distance measurement is not robust to neither delays nor erroneous
settings of the time-window size. Using fuzzy-shaped functions (b)
provides more robustness and allows to capture the concept of “close-
ness”, as implemented with the T-norm depicted in (b). Distances in
time are normalized in [0,1] (w.r.t. the origin).

177

5. NeTwork AND HosT ALErRT CORRELATION

178

We rely on fuzzy sets for modeling both the uncertainty on the
timestamps of alerts and the time distance in a robust manner. Re-
garding the uncertainty on measurements, we focus on delayed de-
tections by using triangle-shaped fuzzy sets to model the occurrence
of an alert. Since the measured timestamp may be affected by errors
or delays, we extend the singleton shown in Figure 5.2 (a) with a tri-
angle, as depicted in Figure 5.2 (b). We also take into account uncer-
tainty on the dimension of the aggregation window: instead of using
a crisp window (as in Figure 5.2 (a)), we extend it to a trapezoidal
fuzzy set, resulting in a more robust distance measurement. In both
graphs, one alert is fired at t = 0 and another alert occurs at ¢ = 0.6.
Using a crisp time-window and instantaneous alerts (Figure 5.2 (a)),
the distance measurement is not robust to neither delays nor erro-
neous settings of the time-window size. Using fuzzy-shaped func-
tions (Figure 5.2 (b)) provides more robustness and allows to capture
the concept of “closeness”, as implemented with the T-norm depicted
in Figure 5.2 (b). In Figure 5.2 distances in time are normalized in
[0,1] (w.r.t. the origin).

Note that, Figure 5.3 compares two possible manners to model
uncertainty on alert timestamps: in Figure 5.3 (a) the alert is recorded
at 0.5 seconds but the measurement may have both positive (in the
future) and negative (in the past) errors. Figure 5.3 (b) is more re-
alistic because positive errors are not likely to happen (i.e., we can-
not “anticipate” detections), while events are often delayed, especially
in network environments. In comparison to our proposal of using
“fuzzy timestamps”, the IDMEF describes event occurrences using
three timestamps (Create-, Detect-, and Analyzer-Time): this is obvi-
ously more generic and allows the reconstruction of the entire event
path from the attack to the analyzer that reports the alert. However,
all timestamps are not always known: for example, the IDS might not
have such a feature, thus the IDMEF Alerts cannot be completely
filled.

As stated above, the main goal is to measure the time distance
between two alerts, a; and ag (note that, in the following, as occurs
after aq). We first exemplify the case of instantaneous alerts, that is
a;.start_ts = a;.end_ts = a;.ts fori € {1,2}. To state whether
or not a is close to ay we use a T},cq, sized time window: in other
words, an interval spreading from a;.ts to a1.ts + Tyeqr (Figure 5.2
(a) shows the described situation for a1.ts = 0, Theqr = 0.4, and
ag.ts = 0.6: values have been normalized to place a; alert in the

5.1. Fuzzy Models

and Measures for Alert Fusion

12 T T T T T
Alert ——
b
208 | 4
v
] \
2 \
£ \
] \
£ 06 \ 4
s \
@ \
o \
<) \
g \
Q g4 \
02 | \
0 . i \ . .
o 02 04 06 08 1 12
Time (s)
(@)
12 T T T T
Alert ——
1]
2 08
k4
©
8
£
g
E sl
5
o
@
<
g
o
041]
02 4
o . | . . .
o 02 04 06 08 1 12
Time (s)

Ficure 5.3: Comparing two possible models of uncertainty on
timestamps of single alerts.

179

5. NeTwork AND HosT ALErRT CORRELATION

origin).

Extending the example shown in Figure 5.2 (a) to uncertainty in
measurements is straightforward; let us suppose to have an average
uncertainty of 0.15 seconds on the measured (normalized w.r.t. the
origin) value of as.ts: we model is as a triangle-shaped fuzzy set as
the one drawn in Figure 5.2 (b).

In the second place, our method takes into account uncertainty
regarding the thresholding of the distance between two events, mod-
eled in Figure 5.2 (b) by the trapezoidal fuzzy window: the smooth-
ing factor, 0.15 seconds, represents potential errors (i.e., the time
values for which the membership function is neither 1 nor 0). Given
these premises, the fuzzy variable “near” is defined by a T-norm [Klir
and Folger, 1987] as shown in Figure 5.2 (b): the resulting triangle
represents the alerts overlapping in time. In the example we used
min(-) as T-norm.

In the above examples, simple triangles and trapezoids have been
used but more accurate/complex membership functions could be used
as well. However, we remark here that trapezoid-like sets are con-
ceptually different from triangles as the former have a membership
value of 100%; this means certainty on the observed/measured phe-
nomenon (i.e., closeness), while lower values mean uncertainty. Trapezoids-
like functions should be used whenever a 100%-certainty interval is
known: for instance, in Figure 5.2 (b) if two alerts occur within 0.4
seconds they are near at 100%; between 0.4 and 0.55 seconds, such
certainty decreases accordingly.

Note 5.1.1 (Extended crisp window) Itisimportant to underline that,
from a purely practical point of view, one may achieve the same ef-
fect on alert fusion by building a more “flexible” crisp time window
(e.g., by increasing its size by, say, 15%). However, from a theo-
retical point of view, it must be noted that our approach explicitly
models the errors that occur during the alert generation process. On
the other hand, by increasing a time window of a certain percentage
would only give more flexibility, without giving any semantic defini-
tion of “near alerts”. There is a profound difference between saying
“15% larger” and assigning a precise membership function to a certain
variable and defining T-norms for aggregation.

'The approach can be easily generalized to take into account non-
instantaneous events, i.e. a;.start_ts < a;.end_ts. In this case,

180

5.1. Fuzzy Models and Measures for Alert Fusion

12 :

T
Alert —+—
Measured start timestamp

Degree of membership
o o
> %
T T

|

Real start timestamp
Measured end timestamp
L

0 . . .
0 02 04 0.6 08 1 12
Time (s)

Ficure 5.4: Non-zero long alert: uncertainty on measured times-
tamps are modeled.

alerts delays have to be represented by a trapezoidal fuzzy set. Note
that, smoothing parameters are configurable values as well as fuzzy
set shapes, in order to be as generic as possible w.r.t. the particu-
lar network environment; in the most general case, such parameters
should be estimated before the system deployment. In Figure 5.4 the
measured value of a;.start_ts is 0.4, while a;.end_ts = 0.8; more-
over, a smoothing factor of 0.15 seconds is added as a negative error,
allowing the real a;.start_ts to be 0.25.

5.1.1.1 Alert pruning

As suggested by the IDMEF confidence attribute both the IDS de-
scribed in Chapter 3 and [Zanero and Savaresi, 2004; Zanero, 2005b]
— that we also use in the following experiments — feature an attack_-
belief value. For a generic alert a the attack_belief represents the
deviation of the anomaly score, a.score, from the threshold, T. The
concept of anomaly score is typical of anomaly detectors and, even
if there is no agreement about its definition, it can intuitively inter-
preted as an internal, absolute indicator of abnormality. To complete

181

5. NeTwork AND HosT ALErRT CORRELATION

182

our approach we consider the attack_belief attribute for alert prun-
ing, after the aggregation phase.

Many IDSs, including the ones that we proposed, rely on proba-
bilistic scores and thresholds in order to isolate anomalies from nor-
mal activity; thus, we implemented a first naive belief measure:

Bel(a) = |a.score — Tanomaly| € [0,1] (5.1)

We remark that a.score € [0, 1] ATanomaiy € [0,1] = Bel(a) €
[0, 1]. Also note that in the belief theory [Wang and Klir, 1993; Klir
and Folger, 1987] Bel(B) indicates the belief associated to the hy-
pothesis (or proposition) B; with an abbreviate notation, we indicate
Bel(a) meaning the belief of the proposition “the alert a is associated
to a real anomaly”. In this case, the domain of discourse is the set of
all the alerts, which contains both the alerts that are real anomalies
and the alerts that are not.

The belief theory has been used to implement complex decision
support systems, such as [Shortliffe, 1976], in which a more compre-
hensive belief model has been formalized taking into account both
belief and misbelief. The event (mis)belief basically represents the
amount of evidence is available to support the (non-)occurrence of
that event. In a similar vein, we exploit both the belief and the a-
priori misbelief, the FPR. The FPR tells how much the anomaly
detector is likely to report false alerts (i.e., the a-priori probability of
reporting false alerts, or the so called #ype I error), thus it is a good
candidate for modeling the misbelief of the alert. ‘The more the FPR
increases, the more the belief associated to an alert should decrease.
In the first place, such intuition can be formalized using a linear-
scaling function:

Beljin(a) = (1 — FPR)Bel(a) (5.2)
misbelief

However, such a scaling function (see, dashed-line plot in Figure
5.5) makes the belief to decrease too fast w.r.t. the misbelief. As
Figure 5.5 shows, a smoother rescaling function is the following:

Beleyp(a) = (1 — FPR)Bel(a)e ! (5.3)

The above defined attack belief is exploited to further reduce the
resulting set of alerts. Alerts are reported only if

5.1. Fuzzy Models and Measures for Alert Fusion

0.4

Bel
0.2

0.0
|

0.0 0.2 0.4 0.6 0.8 1.0

FPR

Ficure s5.5: A sample plot of Beley,(a) (with |a.score —
Tanomaly|, FPR € [0,1]) compared to a linear scaling function, i.c.
Belj;y, (a) (dashed line)

a;.attack_belief > Tpe

where Tpe; must be set to reasonable values according to the par-
ticular environment (in our experiments we used 0.66). The attack
belief variable may be modeled using fuzzy variables with, for exam-
ple, three membership functions labeled as “Low”, “Medium”, and
“High” (IDMEF uses the same three-values assignment for each alert
Confidence attribute and we used crisp numbers for it), but this has
not been implemented yet in our working prototype.

Let us now to summarize the incremental approaches; the first
“naive time-distance’ uses a crisp window (as in Figure 5.2 (a)) to
groups alerts w.r.t. their timestamps. The second approach, called
“fuzzy time-distance”, extends the first method: it relies on fuzzy
sets (as shown in Figure 5.2 (b)) to take into account uncertainty
on timestamping and window sizing. The last version, “fuzzy time-
distance with belief-based alert pruning”, includes the last explained
criterion. In the following we will show the results of the proposed
approaches on a realistic test bench we have developed using alerts
generated by our IDS on the complete IDEVAL testing dataset (both
host and network data).

183

5. NeTwork AND HosT ALErRT CORRELATION

184

5.2 Mitigating Evaluation Issues

This section investigates the problem of testing an alert fusion en-
gine. In order to better understand the data we used, the experimen-
tal setup is here detailed and, before reporting the results obtained
with the fuzzy approach introduced, we also briefly sketch the theo-
retical foundations, the accuracy, and the peculiarities of the overall
implementation of the IDSs used for gathering the alerts. At the
end of the section, we compare the results of the aggregation phase
in comparison with an analysis of the accuracy of an alternative fusion
approach [Qin and Lee, 2003].

5.2.1 A common alert representation

The output format of our prototypes has been designed with IDMEF
in mind, to make the normalization process — the first step Fig-
ure 5.1 — as straightforward as possible. Being more precise, alerts
are reported by our tools as a modified version of the original Snort
[Roesch, 2009] alert format, in order to take into account both the
peculiarities of the anomaly detection approach, namely the lack of
attacks name, and suggestions from the IDMEF data model. In this
way, our testing tools can easily implement conversion procedures
from and to IDMEF.

Basically, we represent an alert as a tuple with the following 9
attributes:

(ids_id, src, dst, ids_type, start.ts, end.ts, attack.class, attack_bel,
target_resource)

The ids_id identifies the IDS, of type ids_type (host or network),
that has reported the alert; src and dst are the IP source and desti-
nation addresses, respectively; start_ts and end_ts are the detection
Network Time Protocol (NTP) [Mills, 1992] timestamps: they are
both mandatory, even if the alert duration is unknown (i.e., start_ts
equals end_ts). 'The discrete attribute attack_class (or name) indi-
cates the name of the attack (if known); anomaly detectors cannot
provide such an information because recognized attacks names are
not known, by definition. Instead, anomaly detectors are able to
quantify “how anomalous an activity is” so we exploited this char-
acteristic and defined the attack_belief. Finally, the target_resource

5.2. Mitigating Evaluation Issues

attribute stores the TCP port (or service name), if known, or the
program begin attacked. An example instance is the following one:

(127.9.0.1-z70129f, 127.0.8.1, 127.8.8.1, H, Bxbc723b45.8xef449129,
@xbc723b45.0xff449130, -, 8.141044, fdformat(2351))

'The example reports an attack detected from an host IDS (ids_-
type = H), identified by 127.8.8.1-270812gf: the attack against fdformat
is started at NTP-second 0xbc723b45 (picosecond 0xef449129) and
finished at NTP-second 0xbc723b45 (picosecond 0xff449130); the
analyzer detected the activity as an attack with a belief of 14.1044%.
An equivalent example for the network IDS (ids_type = N) anomaly
detector would be something like:

(172.16.87.101/24-a032j11, 172.16.87.183/24, 172.16.87.1008/24, N,
8xbc723b45.08xef449129, Bxbc723b45.8xff449138, -, 0.298937, smtp)

Here the attack is against the smtp resource (i.e., protocol) and
the analyzer believes there is an attack at 29.0937%.

5.2.2 Proposed Evaluation Metrics

Alert fusion is a relatively new problem, thus evaluation techniques
are limited to a few approaches [Haines et al., 2003]. The develop-
ment of solid testing methodologies is needed from both the theo-
retical and the practical points of view (a problem shared with IDS
testing).

The main goal of fusion systems is to reduce the amount of alerts
the security analyst has to check. In doing this, the globa/ DR should
ideally not decrease while the globa/ FPR should be reduced as much
as possible. This suggests that the first sub-goal of fusion systems
is the reduction of the global FPR (for instance, by reducing the total
number of alerts fired by source IDS through a rejection mechanism).
Moreover, the second sub-goal is to limit the decreasing of the global
DR. Let us now formalize the concepts we just introduced.

We indicate with A; the alers ser fired by the i-th IDS. An alers
stream is actually a structure (A;, <) over A;, where the binary rela-
tion < means “occurs before”. More formally

VYa,a' € A;:a < d = a.start_ts < a.start_ts.

185

5. NeTwork AND HosT ALErRT CORRELATION

186

with a.start_ts,a’.start_ts € RT. We assume that common oper-
ations between sets such as the union U preserves the order or, oth-
erwise, that the order can be recomputed; hence, given the union
between two alert sets Ay, = A; U A, the alert stream (i.e., ordered
set) can be always reconstructed.

In the second place, we define the two functions d : A x O —
[0,1], f : A x O — [0,1] representing the computation of the
DR and the FPR, respectively, that is: DR; = d(A;, Q), FPR; =
f(A;,). The set O contains each and every true alert; O is a par-
ticular instance of O containing alerts occurring in the system under
consideration (i.e., those listed in the truth file). We can now define

the global DR, DRy, and the global FPR, F PR, as:

A = UAi (5.4)
el

DR, = d(A,@) (5.5)

FPR, = f(A,@) (5.6)

'The output of a generic alert fusion system, is another alert stream
A’ with |A’] < |A|; of course, |A'| = |A] is a degenerative case. To
measure the “impact” of an alert fusion system we define the Alerz
Reduction Rate (ARR) which quantifies:

A/
ARR = A (5.7)

The aforementioned sub-goals can now be formalized into two
g
erformance metrics. The ideal correlation system would maximize
Y

DRy, a . . . FPR,
both ARR and 3 R meanwhile, it would minimize e Oof

course, ARR = 1 and ARR = 0 are degenerative cases. Low (i.e.,

close to 0.0) ?ZIE’ means that the fusion system has significantly

decreased the original FPR; in a similar vein, high (i.e., close to 1.0)
%I;‘X means that, while reducing false positive alerts, the loss of de-
tection capabilities is minimal.

Therefore, a fusion system is better than another if it has 2ozh a

D FP .
greater D};%i/ and a lower 4 PI;{;’ rate than the latter. This criterion by

no means has to be considered as complete or exhaustive. In addition,

5.2. Mitigating Evaluation Issues

1.000 ==

0.90

0.800~

o

3

S
T

0.600

Global DR

0.400

0.200

I I
0.02 0.04 0.06

I
0.08

I I I
0.1 0.12 0.14 0.16 0.18 0.2

Alert Reduction Rate

0.055

(a)

0.045

o
o
2

0.035

Global FPR

o
9
=)

0.025

I I I
0 0.02 0.04 0.06

0.08 01 0
Alert Reduction Rate

I I I I
.12 0.14 0.16 0.18 0.2

(b)

Ficure 5.6: Hypothetical plots of (a) the global DR, DRy, vs.
ARR and (b) the global FPR, FPR,/, vs. ARR.

187

5. NeTwork AND HosT ALErRT CORRELATION

itis useful to compare DRy and F' PRy plots, vs. ARR, of different
correlation systems obtaining diagrams like the one exemplified in
Figure 5.6; this gives a graphical idea of which correlation algorithm
is better. For instance, Figure 5.6 show that the algorithm labeled as
Best performances is better than the others, because it shows higher
F PR, reduction while DR,/ does not significantly decrease.

Note 5.2.1 (Configuration parameters) One limitation of our approach
is that it relies on the attack belief threshold. Currently, there is no
rigorous procedure for deriving it in practice. In our experiments,
we run the aggregation algorithm several times on the same data-set
under the same conditions until acceptable values of DR and FPR.

Similarly, the current version of our algorithm relies on alpha cut
values for deciding whether or not two alerts can be fused or not.
However, note that this is different from setting thresholds on time,
e.g., fusing alerts that are delayed, say, 60 seconds. In fact, such a
threshold would have direcz impact on the fusion procedure; instead,
different values of alpha cuts and shapes of trapezoid fuzzy sets have
a much smoother effects on the results. In addition, a user of our
system may not be aware of what does it means for two alerts to be,
say, 60-seconds-close in time; it might be easier for the user to just
configure the system to fuse alerts that are 50%-close.

5.2.3 Experimental Results

In these experiments we used two prototypes for network- and host-
based anomaly detection. In particular, we use the system described
in Chapter 3 (host-based) and [Zanero and Savaresi, 2004; Zanero,
2005b] (network-based). These tools were used to generate alert
streams for testing the three variants of the fuzzy aggregation algo-
rithm we proposed. The same tools were also used to generate alerts
data for testing our correlation algorithm detailed in Section 5.3.
Because of the well known issues of IDEVAL and to avoid bi-
ased interpretation of the results, in our testing we used the IDE-
VAL dataset with the following simplification: we just tried to fuse
the stream of alerts coming from a HIDS sensor and a NIDS sen-
sor, which is monitoring the whole network. To this end, we ran
the two prototypes on the whole 1999 IDEVAL testing dataset, us-
ing the network dumps and the host-based logs from pascal. We
ran the NIDS prototype on tcpdump data and collected 128 alerts for

188

5.2. Mitigating Evaluation Issues

attacks against the host pascal.eyrie.af.mil. The NIDS also gener-
ated 1009 alerts related to other hosts. Using the HIDS prototype we
generated 1070 alerts from the dumps of the host pascal.eyrie. af .-
mil. The NIDS was capable of detecting almost 66% of the attacks
with less than 0.03% of false positives; the HIDS performs even bet-
ter with a DR of 98% and 1.7% of false positives. However, in this
experiment we focus on the aggregated results rather than the detec-
tion capabilities of the single system.

In the following, we use this shorthand notation: Net is the sub-
stream of all the alerts generated by the NIDS. HostP is the sub-
stream of all the alerts generated by the HIDS installed on pascal. -
eyrie.af.mil, while NetP regards all the alerts (with pascal as a tar-
get) generated by the NIDS; finally, NetO = Net\ NetP indicates
all the alerts (with all but pascal as a target) generated by the NIDS.

Using the data generated as described above, and the metrics pro-
posed in Section 5.2.2, we compared three different versions of the
alert aggregation algorithms described in Section 5.1. In particular
we compare the use of crisp time-distance aggregation, the use use
of a simple fuzzy time-distance aggregation; and finally, the use of
attack belief for alert pruning.

Numerical results are plotted in in Figure 5.7 for different values
of ARR. As we discussed in Section 5.2, Figure 5.7 (a) refers to the
reduction of DR while Figure 5.7 (b) focuses on FPR. DR,/ and
F PR, were calculated using the complete alert stream, network and
host, at different values of ARR. The values of ARR are obtained
by changing the parameters values: in particular, we set T5; = 0.66,
the alpha cut of T}yeqr to 0.5, the window size to 1.0 seconds, and
varied the smoothing of the trapezoid between 1.0 and 1.5 seconds,
and the alert delay between 0 and 1.5 seconds. It is not useful to plot
the increase in false negatives, as it can be easily deduced from the
decrease in DR.

The last aggregation algorithm, denoted as “Fuzzy (belief)”, shows
better performances since the DRy is always higher w.r.t. the other
two aggregation strategies; this algorithm also causes a significant re-
duction of the FFPR,,. Note that, taking into account the attack_-
belief attribute makes the difference because it avoids true positives
to be discarded; on the other hand, rea/ false positive are not reported
in the output alert stream because of their low belief.

It is difficult to properly compare our approach with other other
fusion approaches proposed in the reviewed literature, because the

189

5. NeTwork AND HosT ALErRT CORRELATION

4

%

a
T

Global DR

o
@
T

I I I I I I I I I
0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2
Alert Reduction Rate

()

0.7

0.055 T T

0.045

o
°
g

0.035

Global FPR

=4
=
@

0.025 - ol

0.015

I I I I I I I I I
[0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2
Alert Reduction Rate

(b)
Ficure 5.7: Plot of the DRy (a) and FPRy/ (b) vs. ARR. “Crisp”

refers to the use of the crisp time-distance aggregation; “Fuzzy” and
“Fuzzy (belief)” indicates the simple fuzzy time-distance aggregation
and the use of the attack_belief for alert discarding, respectively.

190

5.2. Mitigating Evaluation Issues

latter were not specifically tested from the aggregation point of view,
separately from the correlation one. Since the prototypes used to
produce results are not released, we are only able to compare our ap-
proach with the overal/ fusion systems presented by others.

191

5. NeTwork AND HosT ALErRT CORRELATION

192

5.3 Using Non-parametric Statistical Tests

In this section we analyze the use of different types of statistical tests
for the correlation of anomaly detection alerts. We show that the
technique proposed in [Qin and Lee, 2003] and summarized in Sec-
tion 2.3, one of the few proposals that can be extended to the anomaly
detection domain, strongly depends on good choices of a parameter
which proves to be both sensitive and difficult to estimate. Rather
than using the Granger Causality Test (GCT) we propose alternative
approach [Maggi and Zanero, 2007] based on a set of simpler sta-
tistical tests. We proved that our criteria work well on a simplified
correlation task, without requiring complex configuration parame-
ters. More precisely, in [Maggi and Zanero, 2007] we explored the
use of statistical causality tests, which have been proposed for the cor-
relation of IDS alerts, and which could be applied to anomaly based
IDS as well. We redefine the problem in terms of a simpler statistical
test, and experimentally validate it.

5.3.1 ‘The Granger Causality Test

WEe tested the sensitivity of the GCT to the choice of two parameters:
the sampling time of the time series that represent the alerts, w, and
the time lag [, i.e., the order of the AR model being fitted. In [Qin
and Lee, 2003] the sampling time was arbitrarily set to w = 60s,
while the choice of [is not documented. However, our experiments
show that the choice of these parameters can strongly influence the
results of the test. As explained in [Maggi et al., 2009b], other values
of [lead to awkward results.

We used the same dataset described in Section 5.2.3, with the
following approach: we tested if NetP has any causal relationship!
with HostP; we also tested HostP > NetP. Since only a reduced
number of alerts was available and since it was impossible to aggre-
gate alerts along the “attack name” attribute (unavailable on anomaly
detectors), we preferred to construct only two, large time series: one
from NetP (denoted as NetP(k)) and one from HostP (denoted
as HostP(k)). In the experiment reported in [Qin and Lee, 2003]
the sampling time, w, has been fixed at 60 seconds, although we

In the following we will use the symbol “~” to denote “Granger-causes” so, for
instance, “A ~» B” has to be read as “A causes B”; the symbol “»#” indicates the negated
causal relationship, i.e., “does not Granger-cause”.

5.3. Using Non-parametric Statistical Tests

tested different values from 60 to 3600 seconds. In our simple ex-
periment, the expected result is that NetP ~» HostP, and that
HostP + NetP (the ~ indicates “causality” while + is its nega-
tion).

Since the first experiment (w = 60) led us to unexpected results
(i-e., using a lag, I, of 3 minutes, both NetP (k) >+ HostP(k), and
vice versa) we decided to plot the test results (i.e., p-value and GCI)
vs. both [and w. In Figure 5.8 (a) [is reported in minutes while
the experiment has been performed with w = 60s; the dashed line
is the p-value of the test “NetP(k) ~ HostP(k)”, the solid line is
opposite one. As one may notice, neither the first nor the second
test passed, thus nothing can be concluded: fixing the test signifi-
cance at @ = 0.20 is the only way for refusing the null hypothesis
(around [~ 2.5 minutes) to conclude both that NetP ~» HostP”
and that HostP>+NetP; the GCI plotted in Figure 5.8 (b) con-
firms the previous result. However, for other values of [the situation
changes leading to opposite results.

Figure 5.9 shows the results of the test for w = 1800 seconds and
I € [50, 300] minutes. If we suppose a test significance of & = 0.05
(dotted line), for | ~ 120 the result is that HostP ~~ NetP while
NetP>sHostP, the opposite of the previous one. Moreover, for
other values of [the p-value leads to different results.

'The last experiment results are shown in Figure 5.10: for I > 230
minutes, one may conclude that NetP ~» HostP and HostP >+
NetP; ie., the expected result, even if the p-value for the second
test is close to a = 0.05.

The previous experiments show only that the GCT failed on the
dataset we generated, not that it does not work well in general. It
may be the case that it is not suitable for “blind” alerts (i.e., without
any information about the attack) reported by anomaly detectors: in
fact, [Qin and Lee, 2003] used time series built from hyper-alerts
resulting from an aggregation along a// attributes: instead, in the
anomaly-based case, the lack of attack names does not allow such
hyper-alerts to be correctly constructed. In any case, the test result
significantly depends on [(i.e., the test is asymptotic); this means
that an appropriate choice of [will be required, depending on specific
environmental conditions. The optimal [is also likely to change over
time in a given environment.

A possible explanation is that the GCT is significant only if both

the linear regression models are optimal, in order to calculate the

193

5. NeTwork AND HosT ALErRT CORRELATION

e]
o '
c | ,
o |
g s
© ! '
> -
S B
o o
N VY
o 1,’
o
S
T T T T T
0 10 20 30 40
Lag [minutes]
(a)
o
o~]
5 o | o
kel — !
£ o
z P
s [
S e |1
T - \
(@] N
o]
(o))
j
© To)
S o 7
o |
© T T T T T
0 10 20 30 40
Lag [minutes]
(b)

F1Gurke 5.8: p-value (a) and GCI (b) vs. [(in minutes) for the first
194 GCT experiment (w = 60.0 seconds): “NetP (k) ~» HostP(k)”
(dashed line), “HostP(k) ~~ NetP(k)” (solid line).

5.3. Using Non-parametric Statistical Tests

0.4

0.3
1

p-Value

0.1

0.0
|

Lag [minutes]

@

6
1

Granger Causality Index
4
|

2
1

T T T T T
50 100 150 200 250

Lag [minutes]

(b)
Ficure 5.9: p-value (a) and GCI (b) vs. [(in minutes) for the
first Granger causality test experiment (w = 1800.0 seconds): 195
“NetP(k) ~» HostP(k)” (dashed line), “HostP(k) ~ NetP(k)”
(solid line).

5. NeTwork AND HosT ALErRT CORRELATION

196

correct residuals. If we use the Akaike Information Criterion (AIC)
[Akaike, 1974] to estimate the optimal time lag [over different win-
dows of data, we find out that p wildly varies over time, as it is shown
in Figure 5.11. 'The fact that there is no stable optimal choice of [,
combined with the fact that the test result significantly depends on it,
makes us doubt that the Granger causality test is a viable option for
general alert correlation. The choice of w seems equally important
and even more difficult to perform, except by guessing.

Of course, our testing is not conclusive: the IDEVAL alert sets
may simply not be adequate for showing causal relationships. An-
other, albeit more unlikely, explanation, is that the GCT test may
not be suitable for anomaly detection alerts: in fact, in [Qin and Lee,
2003] it has been tested on misuse alerts. But in fact there are also
theoretical reasons to doubt that the application of the Granger test
can lead to stable, good results. First, the test is asymptotic w.r.t. {
meaning that the results reliability decreases as [increases because of
the loss of degrees of freedom. Second, it is based on the strong as-
sumption of /inearity in the auto-regressive model fitting step, which
strongly depends on the observed phenomenon. In the same way,
the stationarity assumption of the model does not always hold.

5.3.2 Modeling alerts as stochastic processes

Instead of interpreting alert streams as time series (as proposed by the
GCT-based approach), we propose to change point of view by using
a stochastic model in which alerts are modeled as (random) events
in time. This proposal can be seen as a formalized extension of the
approach introduced in [Valeur et al., 2004] (see Figure 5.1), which
correlates alerts if they are fired by different IDS within a “negligible”
time frame, where “negligible” is defined with a crisp, fixed threshold.
For simplicity, once again we describe our technique in the simple
case of a single HIDS and a single NIDS which monitors the whole
network. The concepts, however, can be easily generalized to take
into account more than two alert streams, by evaluating them couple
by couple. For each alert, we have three essential information: a
timestamp, a “target” host (fixed, in the case of the HIDS, to the
host itself), and the generating sensor (in our case, a binary value).
With a self-explaining notation, define the following random
variables: Tnetp are the arrival times of network alerts in NetP
(TNeto, THostp are similarly defined); enerp (Eneto) are the de-

5.3. Using Non-parametric Statistical Tests

e |
«© _|
o
©
2 S
©
>
& <
o
N
© | o= N
o | T T
© T T T T T
100 150 200 250 300
Lag [minuti]
(a)
9
- \
3 o |
g /
2 !
= o | /
T o
>
©
O o
& o]
(o))
C
S 5
S o 7
o _|
(9]

100 150 200 250 300

Lag [minuti]

(b)

Ficure s5.1o: p-value (a) and GCI (b) vs. [(in minutes) for

the first Granger causality test experiment (w = 3600.0 seconds): 197
“NetP(k) ~» HostP(k)” (dashed line), “HostP(k) ~ NetP(k)”

(solid line).

5. NeTwork AND HosT ALErRT CORRELATION

198

o 2 -
F |
£ o
§ &1 l
N T T T T T T

0 2 4 6 8 10 12 14

Data range (1073)

F1Gure 5.11: The optimal time lag p = I given by the AIC criterion
strongly varies over time.

lays (caused by transmission, processing and different granularity in
detection) between a specific network-based alert regarding pascal
(not pascal) and the corresponding host-based one. The actual val-
ues of each T,y is nothing but the set of timestamps extracted from
the corresponding alert stream. We reasonably assume that € yetp
and T'etp are stochastically independent (the same is assumed for
eneto and Teo). Figure 5.12 shows how delays between network
and host alerts are calculated.

In an ideal correlation framework with two equally perfect IDS
with 2 100% DR and 0% FPR, if two alert streams are correlated (i.e.,
they represent independent detections of the same attack occurrences
by different IDSs [Valeur et al., 2004]), they also are “close” in time.
NetP and HostP should evidently be an example of such a couple
of streams. Obviously, in the real world, some alerts will be missing
(because of false negatives, or simply because some of the attacks
are detectable only by a specific type of detector), and the distances
between related alerts will therefore have some higher variability. In
order to account for this, we can “cut off” alerts that are too far away
from a corresponding alert in the other time series, presuming them
to be singletons. In our case, knowing that single attacks did not
last more than 400s in the original dataset, we tentatively set a cutoft
threshold at this point.

Under the given working assumptions, the proposed stochastic
model is used to formalize the correlation problem as a set of two
statistical hypothesis tests:

HO Hl
Thostp 7 INetp +eNnetp V5. THostp = TNetp + ENetp
(5.8)

5.3. Using Non-parametric Statistical Tests

1 b1t 1
. 1 it 1

Ficure 5.12: How delays between network and host alerts are cal-
culated.

THostP 7é TNetO + ENeto VUS. THostP = TNetO + ENeto
(5.9
Let {¢; 1} be the observed timestamps of T;,Vi € {HostP,
NetP, NetO}, the meaning of the first test is straightforward: within

arandom amount of time, € yt p, the occurring of a host alert, ¢ o5t P,k

is preceded by a network alert, teip k. If this does not happen for
a statistically significant amount of events, the test result is that alert
stream Ty p is uncorrelated to Thos p; in this case, we have enough
statistical evidence for refusing Hy and accepting the null one. Sym-
metrically, refusing the null hypothesis of the second test means that
the NetO alert stream (regarding to all hosts but pascal) is correlated
to the alert stream regarding pascal.

Note that, the above two tests are strongly related to each other:
in an ideal correlation framework, it cannot happen that both “Net P
is correlated to HostP” and “NetO is correlated to HostP”: this
would imply that the network activity regarding to all hosts but pascal
(which raises NetO) has to do with the host activity of pascal (which
raises Host P) with the same order of magnitude of Net P, that is an
intuitively contradictory conclusion. Therefore, the second test acts
as a sort of “robustness” criterion.

From our alerts, we can compute a sample of €e:p by simply
picking, for each value in Net P, the value in Host P which is closest,
but greater (applying a threshold as defined above). We can do the
same for € yet0, using the alerts in NetO and HostP.

'The next step involves the choice of the distributions of the random
variables we defined above. Typical distributions used for model-
ing random occurrences of timed events fall into the family of ex-
ponential Probability Density Functions (PDFs) [Pestman, 1998]. In
particular, we decided to fit them with Gamma PDFs, because our

199

5. NeTwork AND HosT ALErRT CORRELATION

200

HostP - NetP
8
S 2 4 o °
(=] © o
3 g | ®
8 1 ®
= o
3
g &7 s
S 4
2 o g (<)
2 N 2 &7 4
g o gy i 5
8 4 . °
S 2
N - °®
- N ~ o
8 1 &
S R 00
S~ o
o - o [
g J °
© T T T T 1 T T T T
0 100 200 300 400 100 200 300 400
e_NetP Estimator
HostP - NetO

e_NetO

Density
0.002 0.003 0.004 0.005

0.000 0.001

0 100 200 300 400 100 200 300 400

e_NetO Estimator

Ficure 5.13: Histograms vs. estimated density (red dashes) and Q-
Q_plots, for both fo and fp.

experiments show that such a distribution is a good choice for both
the e yerp and eneto.

The estimation of the PDF of e netp, fP := fen.ip> a0d ENetO,
fo = fenuio» is performed using the well known Maximum Likelihood
(ML) technique [Venables and Ripley, 2002] as implemented in the
GNU S package: the results are summarized in Figure 5.13. fp and
fo are approximated by

Gamma(3.0606, 0.0178)

Gamma(1.6301, 0.0105)

5.3. Using Non-parametric Statistical Tests

HostP - NetP HostP — NetO
© — ©
o 4 o -
S} [S)
< <
o 4 o 4
o o
2 2
ko) @
2 — 4 |
[j°3
a a
o [aY)
Q H S
(=] o
(=3 (=3
S S
°© T T T T 1 °© T T T T T T 1
10 20 30 40 50 0 10 20 30 40 50 60
e_NetP e_NetO

F1Gure 5.14: Histograms vs. estimated density (red dashes) for both
fo and fp (IDEVAL 1998)

respectively (standard errors on parameters are 0.7080, 0.0045 for fp
and 0.1288, 0.009 for fo). From now on, the estimator of a given
density f will be indicated as f.

Figure 5.13 shows histograms vs. estimated density (red, dashed
line) and quantile-quantile plots (Q-Q_plots), for both fo and fp.
We recall that Q-Q plots are an intuitive graphical “tool” for compar-
ing data distributions by plotting the quantile of the first distribution
against the quantile of the other one.

Considering that the samples sizes of ¢(.) are around 40, Q-Q_
plots empirically confirms our intuition: in fact, fo and fp are both
able to explain real data well, within inevitable but negligible estima-
tion errors. Even if f p and fo are both Gamma-shaped, it must be
noticed that they significantly differ in their parametrization; this is
a very important result since it allows to set up a proper criterion to
decide whether or not € et p and €ycto are generated by the same
phenomenon.

Given the above estimators, a more precise and robust hypotheses
test can be now designed. The Test 5.8 and 5.9 can be mapped into
two-sided Kolmogorov-Smirnoff (KS) tests [Pestman, 1998], achiev-
ing the same result in terms of decisions:

201

5. NeTwork AND HosT ALErRT CORRELATION

202

Hy H,y
5.10
eEnetp ~ fp VS, enetp % fP (.10)
eEneto ~ fo Vs. eneto #* fo (5.11)

where the symbol ~ means “has the same distribution of”. Since
we do not know the real PDF's, estimators are used in their stead. We
recall that the KS-test is a non-parametric test to compare a sample
(or a PDF) against a PDF (or a sample) to check how much they
differs from each other (or how much they fit). Such tests can be
performed, for instance, with ks.test() (a GNU R native procedure):
resulting p-values on IDEVAL 1999 are 0.83 and 0.03, respectively.

Noticeably, there is a significant statistical evidence to accept the
null hypothesis of Test 5.10. It seems that the ML estimation is capa-
ble of correctly fitting a Gamma PDF for fp (given € netp samples),
which double-checks our intuition about the distribution. The same
does not hold for fo: in fact, it cannot be correctly estimated, with a
Gamma PDF, from € neto. The low p-value for Test 5.11 confirms
that the distribution of € yc¢o delays is completely different than the
one of € et p. Therefore, our criterion doest not only recognize noisy
delay-based relationships among alerts stream if they exists; it is also
capable of detecting if such a correlation does not hold.

We also tested our technique on alerts generated by our NIDS
and HIDS running on IDEVAL 1998 (limiting our analysis to the
first four days of the first week), in order to cross-validate the above
results. We prepared and processed the data with the same proce-
dures we described above for the 1999 dataset. Starting from al-
most the same proportion of host/net alerts against either pascal
or other hosts, the ML-estimation has computed the two Gamma
densities shown in Figure 5.14: fp and fo are approximated by
Gamma(3.5127,0.1478) and Gamma(1.3747,0.0618), respectively
(standard errors on estimated parameters are 1.3173, 0.0596 for fp
and 0.1265, 0.0068 for fo). These parameter are very similar to the
ones we estimated for the IDEVAL 1999 dataset. Furthermore, with
p-values of 0.51 and 0.09, the two KS tests confirm the same statis-
tical discrepancies we observed on the 1999 dataset.

'The above numerical results show that, by interpreting alert streams
as random processes, there are several (stochastic) dissimilarities be-
tween net-to-host delays belonging to the same net-host attack ses-
sion, and net-to-host delays belonging to different sessions. Ex-

5.3. Using Non-parametric Statistical Tests

IDEVAL 1998 IDEVAL 1999
@ B o B

fp 3.512(1.317) 0.147(0.059) 3.060 (0.708) 0.017 (0.004)
fo 1.374(0.126) 0.061(0.006) 1.630(0.128) 0.010 (0.009)

Table 5.1: Estimated parameters (and their estimation standard er-
ror) for the Gamma PDFs on IDEVAL 1998 and 1999.

ploiting these dissimilarities, we may find out the correlation among
streams in an unsupervised manner, without the need to predefine
any parameter.

203

5. NeTwork AND HosT ALErRT CORRELATION

204

5.4 Concluding Remarks

In this chapter we first described and evaluated a technique which
uses fuzzy sets and measures to fuse alerts reported by the anomaly
detectors. After a brief framework description and precise problem
statement, we analyzed previous literature about alert fusion (i.e., ag-
gregation and correlation), and found that effective techniques have
been proposed, but they are not really suitable for anomaly detec-
tion, because they require a-priori knowledge (e.g., attack names or
division into classes) to perform well.

Our proposal defines simple, but robust criteria for computing
the time distance between alerts in order to take into account uncer-
tainty on both measurements and the threshold-distance sizing. In
addition, we considered the implementation of a post-aggregation
phase to remove non-aggregated alerts according to their belief, a
value indicating how much the IDS believes the detected attack to
be real. Moreover, we defined and used some simple metrics for the
evaluation of alert fusion systems. In particular, we propose to plot
both the DR and the FPR vs. the degree of output alert reduction
vs. the size of the input alert stream.

We performed experiments for validating our proposal. To this
end, we used two prototypes we previously developed: a host anomaly
detector, that exploits the analysis of system calls arguments and be-
havior, and a network anomaly detector, based on unsupervised pay-
load clustering and classification techniques that enables an effective
outlier detection algorithm to flag anomalies. During our experi-
ments, we were able to outline many shortcomings of the IDEVAL
dataset (the only available IDS benchmark) when used for evaluating
alert fusion systems. In addition to known anomalies in network and
host data, IDEVAL is outdated both in terms of background traffic
and attack scenarios.

Our experiments showed that the proposed fuzzy aggregation ap-
proach is able to decrease the FPR at the price of a small reduction
of the DR (a necessary consequence). The approach defines the no-
tion of “closeness” in time as the natural extension of the naive, crisp
way; to this end, we rely both on fuzzy set theory and fuzzy measures
to semantically ground the concept of “closeness”. By definition, our
method is robust because it takes into account major uncertainties on
timestamps; this means the choice of window size is less sensitive to
fluctuations in the network delays because of the smoothing allowed

5.4. Concluding Remarks

by the fuzziness of the window itself. Of course, if the delays are
varying too much, a dynamic resizing is still necessary. The biggest
challenge with our approach would be its extension to the correlation
of distributed alerts: in the current state, our modeling is not com-
plete, but can potentially be extended in such a way; being the lack
of alert features the main difficult.

Secondly, we analyzed the use of of different types of statistical
tests for the correlation of anomaly detection alerts, a problem which
has little or no solutions available today. One of the few correlation
proposals that can be applied to anomaly detection is the use of a
GCT. After discussing a possible testing methodology, we observed
that the IDEVAL datasets traditionally used for evaluation have var-
ious shortcomings, that we partially addressed by using the data for a
simpler scenario of correlation, investigating only the link between a
stream of host-based alerts for a specific host, and the corresponding
stream of alerts from a network based detector.

We examined the usage of a GCT as proposed in earlier works,
showing that it relies on the choice of non-obvious configuration pa-
rameters which significantly affect the final result. We also showed
that one of these parameters (the order of the models) is absolutely
critical, but cannot be uniquely estimated for a given system. Instead
of the GCT, we proposed a simpler statistical model of alert genera-
tion, describing alert streams and timestamps as stochastic variables,
and showed that statistical tests can be used to create a reasonable cri-
terion for distinguishing correlated and non correlated streams. We
proved that our criteria work well on the simplified correlation task
we used for testing, without requiring complex configuration param-
eters.

'These were exploratory works, and further investigations on longer
sequences of data, as well as further refinements of the tests and the
criteria we proposed, are surely needed. Another possible extension
of this work is the investigation of how these criteria can be used
to correlate anomaly and misuse-based alerts together, in order to
bridge the gap between the existing paradigms of intrusion detection.
In particular, another possible correlation criteria could be build upon
the observation that a compromised host behaves differently (e.g., its
response time increases).

205

Conclusions 6

'The main question that we attempted to answer with our research
work is, basically, o what extent classic ID approaches can be adapted
and integrated to mitigate todays’ Internet threats. Examples of such
threats include attacks against web applications like SQL injections,
client-side malware that force the browser to download viruses or
connect to botnets, and so forth. Typically, these attempts are la-
beled as malicious activities. The short answer to the question is the
following.

As long as the technologies (e.g., applications, protocols, devices)
will prevent us to reach a sophistication level such that malicious ac-
tivity is seamlessly camouflaged as normal activity, then ID tech-
niques will constitute an effective countermeasure. This is because
IDSs — in particular those that leverage anomaly-based techniques
— are specifically designed to detect unexpected events in a com-
puter infrastructure. The crucial point of anomaly-based techniques
is they are conceived to be generic. In principle, they indeed make
no difference between an alteration of a process’ control flow caused
by an attempt to interpret a crafted JavaScript code and one due to a
buffer overflow being exploited. Thus, as long as the benign activity
of a system is relatively simple to model, then ID techniques are the
building block of choice to design effective protections.

Like many other researches, this work is meant to be a longer and

207

6. CONCLUSIONS

208

more articulated answer to the aforementioned question. The con-
cluding remarks of Chapter 3, 4, and 5, summarize the results of our
contributions to mitigate the issues we identified in host and web
IDSs, and alert correlation systems. A common line to the works
presented in this thesis is the problem of false detections, which is
certainly one of the most significant barriers to the wide adoption of
anomaly-based systems. In fact, the tools that are available to the
public already offer superb detection capabilities that can recognize
all the known ! threats and, in theory, are effective also against un-
known malicious activities. However, a large share of the alerts fired
by these tools are negligible; either because they regard threats that do
not apply to the actual scenario (e.g., unsuccessful attacks or vulnera-
ble software version mismatches) or because the recognized anomaly
does not reflect an attack at all (e.g., a software is upgraded and a
change is confused with an threat). False detections mean time spent
by the security officers to investigate the possible causes of the attack,
thus, false detections mean costs.

We demonstrated that most of the false detections, especially
false positives, can be prevented by carefully designing the models
of normal activity. For example, we have been able to suppress many
false positives caused by too strict model constraints. In particular, we
substituted the “crisp” checks performed by deterministic relations
learned over system calls’ arguments with “smoother” models (e.g.,
Gaussian distributions instead of simple ranges) that, as we shown
in Section 3.3.1, preserve the detection capabilities and decrease the
rate of false alerts.

We also have shown that another good portion of false positives
can be avoided by solving training issues. In particular, our contribu-
tions on detection of attacks against web applications have identified
that, in certain cases, training is responsible for more than 70% of the
false positives. We proposed to solve this issue by dynamically up-
dating models of benign activity while the system is running. Even
though our solution may pose new, limited risks in some situations,
it is capable of suppressing all the false detections due to incomplete
training; and, given the low base-rate of attacks we pointed out in
Section 2.4.2, the resulting system offers a good balance between
protection and costs (due to false positives).

1Recall that a large portion of the systems proposed in the literature have been
tested using Snort as a baseline, as we argue in Section 2.4

Another important, desirable feature of an IDS is its capabil-
ity of recognizing logically-related alerts. Note that, however, this
is nothing but a slightly more sophisticated alert reduction mecha-
nism, which once again means decreasing the effort of the security
officer. In fact, as we have shown in the last chapter of this work,
alert aggregation techniques can be leveraged to reduce the amount
of false detections, not just for compressing them into more compact
reports. However, alert correlation is a very difficult task and many
efforts have been proposed to address it. Our point is that the re-
search on this topic is still very limited and no common directions

can be identified as we highlighted in Section 2.5.

'The main future directions of our research have been already de-
lineated in each chapter’s conclusions. In addition, there are a few
ideas that are not mature enough and thus have not been developed
yet, even though they were planned to be included in this work.
Regarding client-side protection mechanisms for browsers, we are
designing a Firefox extension to learn the structure of benign web
pages in terms of objects of different types typically contained. Here,
the term “structure” refers to both the #ypes of objects (i.e., images,
videos) and the order these objects are fetched with and from which
domains. We believe that this is a minimal set of features that can be
used to design very simple classification features to distinguish be-
tween legit and malicious pages. One of our goals is to detect pages
that contain an unexpected “redirection pattern” due to <iframe />s
leveraged by drive-by downloads.

Regarding server-side protection techniques we are currently in-
vestigating the possibility of mapping some features of an HTTP
request, such as the order of the parameters or the characteristics of
their content, with the resulting SQL query, if any. If such a map-
ping is found, many of the existing anomaly detection techniques
used to protect the DBs can be coupled with web-based IDS to offer
a double layer protection mechanism. This idea can be leveraged to
distinguishing between high-risk requests, which permanently mod-
ify a resource, and low-risk ones, which only temporarily affect a web

page.

209

Bibliography

H. Akaike. A new look at the statistical model identification. Aufo-
matic Control, IEEE Transactions on, 19(6):716—723, 1974.

Jesse Alpert and Nissan Hajaj. We knew the web was
big... Available online at http://googleblog.blogspot.comn/20808/
87/ue-kneu-web-was-big.htm1, Jul 2008.

J. P. Anderson. Computer security threat monitoring and surveil-
lance. Technical report,]J. P. Anderson Co., Ft. Washington,
Pennsylvania, April 1980.

Thomas Augustine, Us Naval Academy, Ronald C. Dodge, and
Us Military Academy. Cyber defense exercise: Meeting learning
objectives thru competition, 2006.

S. Axelsson. Intrusion detection systems: A survey and taxonomy.
Technical report, Chalmers University of Technology, Dept. of
Computer Engineering, G
“oteborg, Sweden, March 2000a.

Stefan Axelsson. The Base-Rate Fallacy and the Difficulty of In-
trusion Detection. ACM Transactions on Information and System

Security, 3(3):186-205, August 2000b.

Hal Berghel. Hiding data, forensics, and anti-forensics. Com-
munications ACM, 50(4):15-20, 2007. ISSN 0001-0782. doi:
http://doi.acm.org/10.1145/1232743.1232761.

S. Bhatkar, A. Chaturvedi, and R. Sekar. Dataflow anomaly detec-
tion. Security and Privacy, 2006 IEEE Symposium on, page 15, May
2006. ISSN 1081-6011. doi: 10.1109/SP.2006.12.

211

http://googleblog.blogspot.com/2008/07/we-knew-web-was-big.html
http://googleblog.blogspot.com/2008/07/we-knew-web-was-big.html

BisLioGRAPHY

212

Damiano Bolzoni, Sandro Etalle, Pieter H. Hartel, and Emmanuele
Zambon. Poseidon: a 2-tier anomaly-based network intrusion de-
tection system. In IWIA, pages 144-156. IEEE Computer Society,
2006. ISBN 0-7695-2564-4.

Damiano Bolzoni, Bruno Crispo, and Sandro Etalle. Atlantides: an
architecture for alert verification in network intrusion detection
systems. In LISA07: Proceedings of the 21st conference on Large In-
stallation System Administration Conference, pages 1-12, Berkeley,
CA, USA, 2007. USENIX Association. ISBN 978-1-59327-152-
7.

Mariusz Burdach. In-memory forensics tools. available online at
http://forensic.seccure.net/, 2009.

J. B. D. Cabrera, L. Lewis, and R.K. Mehara. Detection and clas-
sification of intrusion and faults using sequences of system calls.
ACM SIGMOD Record, 30(4), 2001.

Sanghyun Cho and Sungdeok Cha. Sad: web session anomaly de-
tection based on parameter estimation. In Computers & Securizy,
volume 23, pages 312-319, 2004. doi: DOI:10.1016/j.cose.2004.
01.006.

Privacy Rights Clearinghouse. A chronology of data breaches. Tech-
nical report, Privacy Rights Clearinghouse, July 2009.

William W. Cohen. Fast effective rule induction. In Armand Priedi-
tis and Stuart Russell, editors, Proceedings of the 12th International
Conference on Machine Learning, pages 115-123, Tahoe City, CA,
Jul 1995. Morgan Kaufmann. ISBN 1-55860-377-8.

W.W. Cohen, P. Ravikumar, and S.E. Fienberg. A comparison of
string distance metrics for name-matching tasks. In Proceedings
of the IJCAI-2003 Workshop on Information Integration on the Web
(ITWeb-03), 2003.

Core Security Technologies. CORE Impact. http://uuwu.
coresecurity.com/?module=ContentMod&action=item&id=32, 2009.

Manuel Costa, Jon Crowcroft, Miguel Castro, Antony Rowstron,
Lidong Zhou, Lintao Zhang, and Paul Barham. Vigilante: end-
to-end containment of internet worms. SIGOPS Oper. Syst. Rev.,

http://forensic.seccure.net/
http://www.coresecurity.com/?module=ContentMod&action=item&id=32
http://www.coresecurity.com/?module=ContentMod&action=item&id=32

Bibliography

39(5):133-147, 2005. ISSN 0163-5980. doi: http://doi.acm.org/
10.1145/1095809.1095824.

Gabriela F. Cretu, Angelos Stavrou, Michael E. Locasto, Salva-
tore J. Stolfo, and Angelos D. Keromytis. Casting out demons:
Sanitizing training data for anomaly sensors. Security and Pri-
vacy, IEEE Symposium on, 0:81-95, 2008a. doi: http://doi.
ieeecomputersociety.org/10.1109/5P.2008.11.

Gabriela F. Cretu, Angelos Stavrou, Michael E. Locasto, Salvatore J.
Stolfo, and Angelos D. Keromytis. Casting out Demons: Sani-
tizing Training Data for Anomaly Sensors. In Proceedings of the
2008 IEEE Symposium on Security and Privacy (SEP 2008), pages
81-95, Oakland, CA, USA, May 2008b. IEEE Computer Soci-

ety.

Claudio Criscione, Federico Maggi, Guido Salvaneschi, and Stefano
Zanero. Integrated detection of attacks against browsers, web ap-
plications and databases. In European Conference on Computer Net-
work Defence - EC2ND 2009, 2009.

Frédéric Cuppens and Alexandre Miage. Alert correlation in a coop-
erative intrusion detection framework. In Proceedings of the 2002
IEEE Symposium on Security and Privacy, page 202, Washington,
DC, USA, 2002. IEEE Computer Society. ISBN 0-7695-1543-
6.

O. Dain and R. Cunningham. Fusing heterogeneous alert streams
into scenarios. In Proceedings of the ACM Workshop on Data Mining
Jfor Security Applications, pages 1-13, Nov 2001.

H. Debar, M. Dacier, and A. Wespi. Towards a taxonomy of
intrusion-detection systems. Comput. Networks, 31(8):805-822,
1999.

H. Debar, M. Dacier, and A. Wespi. A revised taxonomy for
intrusion-detection systems. Annals of Telecommunications, 55(7):
361-378, 2000.

H. Debar, D. Curry, and B. Feinstein. The Intrusion Detection
Message Exchange Format. Technical report, France Telecom and

Guardian and TNT, Mar. 2006.

213

BisLioGRAPHY

214

Hervé Debar and Andreas Wespi. Aggregation and correlation
of intrusion-detection alerts. In Proceedings of the 4th Interna-
tional Symposium on Recent Advances in Intrusion Detection, pages
85-103, London, UK, 2001. Springer-Verlag. ISBN 3-540-
42702-3.

Dorothy E. Denning. An Intrusion-Detection Model. IEEE Trans-
actions on Software Engineering, 13(2):222-232,1987. ISSN 0098-
5589. doi: http://dx.doi.org/10.1109/TSE.1987.232894.

S. Eckmann, G. Vigna, and R. Kemmerer. STATL: An attack lan-
guage for state-based intrusion detection. In Proceedings of the

ACM Workshop on Intrusion Detection, Athens, Nov. 2000.

AK Elmagarmid, PG Ipeirotis, and VS Verykios. Duplicate Record
Detection: A Survey. Knowledge and Data Engineering, IEEE
Transactions on, 19(1):1-16, 2007.

Facebook. Statistics. Available online at http://uuu.facebook.con/
press/info.php?statistics, 2009.

Ferruh Mavituna. SQL Injection Cheat Sheet. http://ferruh.
mavituna.com/sql—1'njection—cheatsheet—oku/,]une 2009.

Christof Fetzer and Martin Suesskraut. Switchblade: enforcing dy-
namic personalized system call models. In Eurosys 08: Proceed-
ings of the 3rd ACM SIGOPS/EuroSys European Conference on Com-
puter Systems 2008, pages 273-286, New York, NY, USA, 2008.
ACM. ISBN 978-1-60558-013-5. doi: http://doi.acm.org/10.
1145/1352592.1352621.

Stephanie Forrest, Steven A. Hofmeyr, Anil Somayaji, and
Thomas A. Longstaff. A sense of self for Unix processes. In Pro-
ceedings of the 1996 IEEE Symp. on Security and Privacy, Washing-
ton, DC, USA, 1996. IEEE Computer Society. ISBN 0-8186-
7417-2.

J.C. Foster and V. Liu. Catch me if you can... In Blackhat Briefings
2005, Las Vegas, NV, August 2005. URL http://uuu.blackhat.
com/presentations/bh-usa-85/bh-us-85-foster-1iu-update.pdf.

Vanessa Frias-Martinez, Salvatore J. Stolfo, and Angelos D.
Keromytis. Behavior-Profile Clustering for False Alert Reduction

http://www.facebook.com/press/info.php?statistics
http://www.facebook.com/press/info.php?statistics
http://ferruh.mavituna.com/sql-injection-cheatsheet-oku/
http://ferruh.mavituna.com/sql-injection-cheatsheet-oku/
http://www.blackhat.com/presentations/bh-usa-05/bh-us-05-foster-liu-update.pdf
http://www.blackhat.com/presentations/bh-usa-05/bh-us-05-foster-liu-update.pdf

Bibliography

in Anomaly Detection Sensors. In Proceedings of the Annual Com-
puter Security Applications Conference (ACSAC 2008), Anaheim,
CA, USA, December 2008.

Alessandro Frossi, Federico Maggi, Gian Luigi Rizzo, and Ste-
fano Zanero. Selecting and Improving System Call Models for
Anomaly Detection. In Ulrich Flegel and Michael Meier, editors,
DIMTVA, Lecture Notes in Computer Science. Springer, 2009.

Simson Garfinkel. Anti-Forensics: Techniques, Detection and
Countermeasures. In Proceedings of the 2nd International Confer-
ence on i-Warfare and Security (ICIW), pages 89, 2007.

SL Garfinkel and A. Shelat. Remembrance of data passed: a study
of disk sanitization practices. Security && Privacy Magazine, IEEE,
1(1):17-27, 2003.

M. Geiger. Evaluating Commercial Counter-Forensic Tools. In Pro-
ceedings of the 5th Annual Digital Forensic Research Workshop, 2005.

Jonathon T. Giffin, David Dagon, Somesh Jha, Wenke Lee, and
Barton P. Miller. Environment-sensitive intrusion detection. In
Proceedings of the Recent Advances in Intrusion Detection (RAID),
pages 185-206, 2005.

Gene H. Golub and Charles F. Van Loan. Matrix computations (3rd
ed.). Johns Hopkins University Press, Baltimore, MD, USA, 1996.
ISBN 0-8018-5414-8.

Sarah Granger. Social engineering fundamentals, part i: Hacker tac-
tics. Awvailable online at http://uuw.securityfocus.com/infocus/

1527, Dec 2001.

Grugq. 'The art of defiling: defeating forensic analysis. In Blackhat
briefings 2005, Las Vegas, NV, August 2005. URL http://uuu.
blackhat.com/presentations/bh-usa-65/bh-us-85-grugq. pdf.

P. Haccou and E. Meelis. Statistical analysis of behavioural data. An
approach based on timestructured models. Oxford university press,

1992.

Joshua Haines, Dorene Kewley Ryder, Laura Tinnel, and Stephen
Taylor. Validation of sensor alert correlators. IEEE Security and
Privacy, 01(1):46-56, 2003. ISSN 1540-7993.

215

http://www.securityfocus.com/infocus/1527
http://www.securityfocus.com/infocus/1527
http://www.blackhat.com/presentations/bh-usa-05/bh-us-05-grugq.pdf
http://www.blackhat.com/presentations/bh-usa-05/bh-us-05-grugq.pdf

BisLioGRAPHY

216

J. Han and M. Kamber. Data Mining: concepts and techniques.
Morgan-Kauffman, 2000.

Ryan Harris. Arriving at an anti-forensics consensus: Examining
how to define and control the anti-forensics problem. In Proceed-
ings of the 6th Annual Digital Forensic Research Workshop (DFRWS
'06), volume 3 of Digital Investigation, pages 44-49, Septem-
ber 2006. URL http://uwu.sciencedirect.com/science/article/
B7CW4-4KCPVBY-4/2/1858565608fb7d3b59798e99c9089f7754.

Harry. Exploit for CVE-2007-1719. available online at http: //uuu.
milwerm.com/exploits/3578, 2007.

S. Hofmeyr, S. Forrest, and A. Somayaji. Intrusion detection using

sequences of system calls. J. of Computer Security, 6:151-180, 1998.

‘Thorsten Holz. A short visit to the bot zoo. IEEE Security & Privacy,
3(3):76-79, 2005.

Kenneth L. Ingham, Anil Somayaji, John Burge, and Stephanie
Forrest. Learning dfa representations of http for protecting web
applications. Computer Networks, 51(5):1239-1255, April 2007.
ISSN 1389-1286. doi: http://dx.doi.org/10.1016/j.comnet.2006.
09.016.

S.Jha, K. Tan, and R. A. Maxion. Markov chains, classifiers, and in-
trusion detection. In CSFW 01: Proc. of the 14th IEEE Workshop on
Computer Security Foundations, page 206, Washington, DC, USA,
2001. IEEE Computer Society.

DN Joanes and CA Gill. Comparing Measures of Sample Skewness
and Kurtosis. The Statistician, 47(1):183-189, 1998.

N.F. Johnson and S. Jajodia. Exploring steganography: Seeing the
unseen. COMPUTER, 31(2):26-34, 1998.

Wen-Hua Juand Y. Vardi. A hybrid high-order Markov chain model
for computer intrusion detection. Journal of Computational and

Graphical Statistics, 10:277-295, 2001.

B.H. Juang and LR Rabiner. A probabilistic distance measure for
hidden Markov models. ATEST Bell Laboratories Technical Journal,
64(2):391-408, 1985.

http://www.sciencedirect.com/science/article/B7CW4-4KCPVBY-4/2/185856560fb7d3b59798e99c909f7754
http://www.sciencedirect.com/science/article/B7CW4-4KCPVBY-4/2/185856560fb7d3b59798e99c909f7754
http://www.milw0rm.com/exploits/3578
http://www.milw0rm.com/exploits/3578

Bibliography

Klaus Julisch and Marc Dacier. Mining intrusion detection alarms for
actionable knowledge. In KDD °02: Proceedings of the eighth ACM
SIGKDD International Conference on Knowledge discovery and data
mining, pages 366-375, New York, NY, USA, 2002. ACM Press.
ISBN 1-58113-567-X.

M. G. Kendall. A New Measure of Rank Correlation. Biometrika,
30(1-2):81-93, June 1938.

George J. Klir and Tina A. Folger. Fuzzy sets, uncertainty, and infor-
mation. Prentice-Hall, Inc., Upper Saddle River, NJ, USA, 1987.
ISBN 0-13-345984-5.

Calvin Ko, George Fink, and Karl Levitt. Automated detection of
vulnerabilities in privileged programs by execution monitoring. In
Proc. of the 10th Ann. Computer Security Applications Conf., volume
XII1, pages 134-144. IEEE Computer Society Press, Los Alami-
tos, CA, USA, 1994,

T. Kohonen. Self Organizing Maps. Springer-Verlag, 2000.

Teuvo Kohonen and Panu Somervuo. Self-organizing
maps of symbol strings. Neurocomputing, 21(1-3):19-30,
1998. URL http://uwu.sciencedirect.com/science/article/
B6V18-3V7570G-3/2/1439043d6f41dbBafaz2ed6c6f2b889a.

J.Z. Kolter and M.A. Maloof. Dynamic weighted majority: An en-
semble method for drifting concepts. The Journal of Machine Learn-
ing Research, 8:2755-2790, 2007.

C. Kruegel, D. Mutz, F. Valeur, and G. Vigna. On the detection
of anomalous system call arguments. In Proceedings of the 2003
European Symp. on Research in Computer Security, Gjovik, Norway,
Oct. 2003a.

Christopher Kruegel and William Robertson. Alert Verification:
Determining the Success of Intrusion Attempts. In Proceedings
of the Workshop on the Detection of Intrusions and Malware & Vul-
nerability Assessment (DIMVA 2004), Dortmund, North Rhine-
Westphalia, GR, July 2004.

Christopher Kruegel, Thomas Toth, and Engin Kirda. Service-
Specific Anomaly Detection for Network Intrusion Detection. In

217

http://www.sciencedirect.com/science/article/B6V10-3V7S70G-3/2/1439043d6f41db0afa22e46c6f2b809a
http://www.sciencedirect.com/science/article/B6V10-3V7S70G-3/2/1439043d6f41db0afa22e46c6f2b809a

BisLioGRAPHY

218

Proceedings of the Symposium on Applied Computing (SAC 2002),
Spain, March 2002.

Christopher Kruegel, Darren Mutz, William Robertson, and Fredrik
Valeur. Bayesian Event Classification for Intrusion Detection. In
Proceedings of the Annual Computer Security Applications Conference
(ACSAC 2003), Las Vegas, NV, USA, December 2003b.

Christopher Kruegel, William Robertson, and Giovanni Vigna. A
Multi-model Approach to the Detection of Web-based Attacks.
Journal of Computer Networks, 48(5):717-738, July 2005.

Christopher Kruegel, Darren Mutz, William Robertson, Fredrick
Valeur, and Giovanni Vigna. LibAnomaly (website). available
online at http://uuu.cs.ucsb.edu/~seclab/projects/libanomaly/

index.htm1, 2009.
K. Labib and R. Vemuri. NSOM: A real-time network-based in-

trusion detection system using self-organizing maps. Technical
report, Department of Applied Science, University of California,
Davis, 2002.

Sin Yeung Lee, Wai Lup Low, and Pei Yuen Wong. Learning finger-
prints for a database intrusion detection system. In ESORICS "02:
Proceedings of the 7th European Symposium on Research in Computer
Security, pages 264-280, London, UK, 2002. Springer-Verlag.
ISBN 3-540-44345-2.

Wenke Lee and Salvatore Stolfo. Data mining approaches for intru-
sion detection. In Proceedings of the 7th USENIX Security Symp.,
San Antonio, TX, 1998.

Wenke Lee and Salvatore J. Stolfo. A framework for construct-
ing features and models for intrusion detection systems. ACM
Transactions on Information and System Security, 3(4):227-261,
2000. ISSN 1094-9224. doi: http://doi.acm.org/10.1145/
382912.382914.

Wenke Lee and Dong Xiang. Information-Theoretic Measures for
Anomaly Detection. In Proceedings of the IEEE Symposium on Secu-
rity and Privacy (§¢P 2001), pages 130-143, Oakland, CA, USA,
May 2001. IEEE Computer Society.

http://www.cs.ucsb.edu/~seclab/projects/libanomaly/index.html
http://www.cs.ucsb.edu/~seclab/projects/libanomaly/index.html

Bibliography

Richard Lippmann, Robert K. Cunningham, David J. Fried, Isaac
Graf, Kris R. Kendall, Seth E. Webster, and Marc A. Zissman.
Results of the DARPA 1998 offline intrusion detection evaluation.
In Recent Advances in Intrusion Detection, 1999.

Richard Lippmann, Joshua W. Haines, David]. Fried, Jonathan Ko-
rba, and Kumar Das. The 1999 DARPA off-line intrusion detec-
tion evaluation. Comput. Networks, 34(4):579-595, 2000. ISSN
1389-1286.

RJ.A. Little and D.B. Rubin. Szatistical analysis with missing data.
Wiley New York, 1987.

Rune B. Lyngsg, Christian N. S. Pedersen, and Henrik Nielsen.
Metrics and similarity measures for hidden markov models. In
Proceedings of the Seventh International Conference on Intelligent Sys-
tems for Molecular Biology, pages 178-186. AAAI Press, 1999.
ISBN 1-57735-083-9.

F. Maggi, S. Zanero, and V. Tozzo. Seeing the invisible - forensic
uses of anomaly detection and machine learning. ACM Operating

Systems Review, April 2008.

Federico Maggi and Stefano Zanero. On the use of different statis-
tical tests for alert correlation. In Christopher Kruegel, Richard
Lippmann, and Andrew Clark, editors, RAID, volume 4637 of
Lecture Notes in Computer Science, pages 167-177. Springer, 2007.
ISBN 978-3-540-74319-4.

Federico Maggi, Matteo Matteucci, and Stefano Zanero. De-
tecting intrusions through system call sequence and argument
analysis (preprint). IEEE Transactions on Dependable and Secure
Computing, 99(1), 2009a. ISSN 1545-5971. doi: http://doi.
ieeecomputersociety.org/10.1109/TDSC.2008.69.

Federico Maggi, Matteo Matteucci, and Stefano Zanero. Reducing
False Positives In Anomaly Detectors Through Fuzzy Alert Ag-
gregation. Information Fusion, 2009b.

Federico Maggi, William Robertson, Christopher Kruegel, and Gio-
vanni Vigna. Protecting a moving target: Addressing web applica-
tion concept drift. In Engin Kirda and Davide Balzarotti, editors,
RAID, Lecture Notes in Computer Science. Springer, 2009c.

219

BisLioGRAPHY

220

M. V. Mahoney. Network traffic anomaly detection based on packet
bytes. In Proceedings of the 19th Annual ACM Symposium on Applied
Computing, 2003.

M. V. Mahoney and P. K. Chan. An analysis of the 1999 DARPA /
Lincoln laboratory evaluation data for network anomaly detection.
In Proceedings of the 6th International Symp. on Recent Advances in
Intrusion Detection (RAID 2003), pages 220-237, Pittsburgh, PA,
USA, Sept. 2003a.

Matthew V. Mahoney and Philip K. Chan. Learning rules for
anomaly detection of hostile network traffic. In Proceedings of
the 3rd IEEE International Conference on Data Mining, page 601,
2003b. ISBN 0-7695-1978-4.

M.V. Mahoney and PK. Chan. Detecting novel attacks by identi-
fying anomalous network packet headers. Technical Report CS-
2001-2, Florida Institute of Technology, 2001.

John McHugh. Testing Intrusion Detection Systems: A Critique
of the 1998 and 1999 DARPA Intrusion Detection System Eval-
uations as Performed By Lincoln Laboratory. ACM Transac-
tions on Information and System Security, 3(4):262-294, Novem-
ber 2000. ISSN 1094-9224. doi: http://doi.acm.org/10.1145/
382912.382923.

N. Merhav, M. Gutman, and J. Ziv. On the estimation of the order
of a Markov chain and universal data compression. IEEE Trans.

Inform. Theory, 35:1014-1019, Sep 1989.

Metasploit. Mafia: Metasploit anti-forensics investigation arsenal.
available online at http: //uww.metasploit.org/research/projects/
antiforensics/, 2009.

C. C. Michael and Anup Ghosh. Simple, state-based approaches to
program-based anomaly detection. ACM Transactions on Informa-
tion and System Security, 5(3):203-237, 2002. ISSN 1094-9224.

David L. Mills. Network time protocol (version 3). Technical report,
University of Delaware, 1992.

Miniwatts Marketing Grp. World Internet Usage Statistics. http:
//uwu. internetworldstats. com/stats. htm, January 2009.

http://www.metasploit.org/research/projects/antiforensics/
http://www.metasploit.org/research/projects/antiforensics/
http://www.internetworldstats.com/stats.htm
http://www.internetworldstats.com/stats.htm

Bibliography

Kevin Mitnick. Tbe art of deception. Wiley, 2002.

George M. Mohay, Alison Anderson, Byron Collie, Rodney D.
McKemmish, and Olivier de Vel. Computer and Intrusion Foren-
sics. Artech House, Inc., Norwood, MA, USA, 2003. ISBN
1580533698.

Benjamin Morin, Ludovic Mé, Hervé Debar, and Mireille Ducassé.
M2d2: A formal data model for IDS alert correlation. In Wespi
et al. [2002], pages 115-127. ISBN 978-3-540-00020-4.

D. Mutz, F. Valeur, C. Kruegel, and G. Vigna. Anomalous Sys-
tem Call Detection. ACM Transactions on Information and System
Security, 9(1):61-93, February 2006.

Darren Mutz, William Robertson, Giovanni Vigna, and Richard A.
Kemmerer. Exploiting execution context for the detection of
anomalous system calls. In Proceedings of the International Sympo-
sium on Recent Advances in Intrusion Detection (RAID 2007), Gold
Coast, Queensland, AU, September 2007. Springer.

National Vulnerability Database. Exploit for CVE-2007-

1719. available online at http://nvd.nist.gov/nvd.cfm?cvename=
CVE-2007-1719, 2007a.

National Vulnerability Database. Exploit for CVE-2007-

3641. available online at http://nvd.nist.gov/nvd.cfmn?cvenamne=
CVE-2007-3641, 2007b.

J. Newsome and D. Song. Dynamic taint analysis for automatic de-
tection, analysis, and signature generation of exploits on commod-
ity software. In Network and Distributed System Security Symposium
(NDSS). Citeseer, 2005.

Jr. Nick L. Petroni, AAron Walters, Timothy Fraser, and
William A. Arbaugh. Fatkit: A framework for the extrac-
tion and analysis of digital forensic data from volatile sys-
tem memory. Digital Investigation, 3(4):197-210, decem-
ber 2006. URL http://uuu.sciencedirect.com/science/article/
B7CW4-4MD9G8V-1/2/7de54623f0@dc5elec1306bfc96686085.

Peng Ning, Yun Cui, Douglas S. Reeves, and Dingbang Xu. Tech-
niques and tools for analyzing intrusion alerts. ACM Trans. Inf.

221

http://nvd.nist.gov/nvd.cfm?cvename=CVE-2007-1719
http://nvd.nist.gov/nvd.cfm?cvename=CVE-2007-1719
http://nvd.nist.gov/nvd.cfm?cvename=CVE-2007-3641
http://nvd.nist.gov/nvd.cfm?cvename=CVE-2007-3641
http://www.sciencedirect.com/science/article/B7CW4-4MD9G8V-1/2/7de54623f0dc5e1ec1306bfc96686085
http://www.sciencedirect.com/science/article/B7CW4-4MD9G8V-1/2/7de54623f0dc5e1ec1306bfc96686085

BisLioGRAPHY

222

Syst. Secur., 7(2):274-318, 2004. ISSN 1094-9224. doi: http:
//doi.acm.org/10.1145/996943.996947.

Ofer Shezaf and Jeremiah Grossman and Robert Auger. Web Hack-
ing Incidents Database. http://uuu.xiom. con/uhid-about, January
2009.

Dirk Ourston, Sara Matzner, William Stump, and Bryan Hopkins.
Applications of Hidden Markov Models to detecting multi-stage
network attacks. In Proceedings of the 36th Annual Hawaiian Inter-
national Conference on System Sciences, page 334, 2003.

Wiebe R. Pestman. Mathematical Statistics: An Introduction. Walter
de Gruyter, 1998.

S. Piper, M. Davis, G. Manes, and S. Shenoi. Detecting Hidden
Data in Ext2/Ext3 File Systems, volume 194 of IFIP International
Federation for Information Processing, chapter 20, pages 245-256.
Springer, Boston, 2006.

Pluf and Ripe. Advanced antiforensics self. available online at http:
//wwu.phrack.org/issues.html?issue=63&id=11&mode=txt, 2005.

Mark Pollitt. Computer forensics: an approach to evidence in cy-
berspace. In Proceedings of the National Information Systems Secu-
rity Conference, volume II, pages 487-491, Baltimore, Maryland,
1995.

Phillip A. Porras, Martin W. Fong, and Alfonso Valdes. A mission-
impact-based approach to infosec alarm correlation. In Wespi et al.

[2002], page 35. ISBN 978-3-540-00020-4.

Georgios Portokalidis and Herbert Bos. Sweetbait: Zero-hour worm
detection and containment using low- and high-interaction hon-
eypots. Comput. Netw., 51(5):1256-1274, 2007. ISSN 1389-
1286. doi: http://dx.doi.org/10.1016/j.comnet.2006.09.005.

Georgios Portokalidis, Asia Slowinska, and Herbert Bos. Argos:
an emulator for fingerprinting zero-day attacks. In Proc. ACM
SIGOPS EUROSYS’2006, Leuven, Belgium, April 2006.

Bruce Potter. The Shmoo Group Capture the CTF project. http:
//cctf.shmoo.com, 2006.

http://www.xiom.com/whid-about
http://www.phrack.org/issues.html?issue=63&id=11&mode=txt
http://www.phrack.org/issues.html?issue=63&id=11&mode=txt
http://cctf.shmoo.com
http://cctf.shmoo.com

Bibliography

Nicholas Puketza, Mandy Chung, Ronald A. Olsson, and Biswanath
Mukherjee. A software platform for testing intrusion detection
systems. IEEE Software, 14(5):43-51, 1997. ISSN 0740-7459.
doi: http://dx.doi.org/10.1109/52.605930.

Nicholas J. Puketza, Kui Zhang, Mandy Chung, Biswanath
Mukherjee, and Ronald A. Olsson. A methodology for testing
intrusion detection systems. IEEE Transactions on Software En-
gineering, 22(10):719-729, 1996. ISSN 0098-5589. doi: http:
//dx.doi.org/10.1109/32.544350.

Xinzhou Qin and Wenke Lee. Statistical causality analysis of infosec
alert data. In RAID, pages 73-93, 2003.

L. R. Rabiner. A tutorial on hidden Markov models and selected
applications in speech recognition. In Proceedings of the IEEE, vol-
ume 77, pages 257-286, 1989.

M. Ramadas. Detecting anomalous network traffic with self-
organizing maps. In Recent Advances in Intrusion Detection 6th In-
ternational Symposium, RAID 2003, Pittsburgh, PA, USA, September
8-10, 2003, Proceedings, Mar 2003.

Marcus J. Ranum. The six dumbest ideas in computer
security. http://uww.ranum.com/security/computer_security/
editorials/dumb/, Sept. 2005.

S. Ring and E. Cole. Volatile Memory Computer Forensics to De-
tect Kernel Level Compromise. In Proceedings of the 6th Inter-
national Conference on Information And Communications Security

(ICICS 2004), Malaga, Spain, October 2004. Springer.

Ivan Ristic. mod_security: Open Source Web Application Firewall.
http://www.modsecurity.org/, June 2008.

Robert Hansen. XSS (Cross Site Scripting) Cheat Sheet. http:
//ha.ckers.org/xss.html, June 2009.

William Robertson. webanomaly - Web Application Anomaly De-
tection. http://webanomaly.googlecode.com, 2009.

William Robertson, Federico Maggi, Christopher Kruegel, and Gio-

vanni Vigna. Effective anomaly detection with scarce training

223

http://www.ranum.com/security/computer_security/editorials/dumb/
http://www.ranum.com/security/computer_security/editorials/dumb/
http://ha.ckers.org/xss.html
http://ha.ckers.org/xss.html
http://webanomaly.googlecode.com

BisLioGRAPHY

224

data. In Annual Network & Distributed System Security Symposium,
2009.

Martin Roesch. Snort - lightweight intrusion detection for networks.
In Proceedings of USENLX LISA 99, 1999.

Martin Roesch. Snort - Lightweight Intrusion Detection for Net-
works (website). http://wuu.snort.org, 2009.

Hettich S. and Bay S. D. KDD Cup '99 Dataset. http://kdd.ics.
uci.edu/, 1999.

Benjamin Sangster, http://uww. itoc.usma.edu/research/dataset/

index.htm1, April 2009.

Benjamin Sangster, T. J. O’Connor, Thomas Cook, Robert Fanelli,
Erik Dean, William J. Adams, Chris Morrell, and Gregory Conti.
Toward instrumenting network warfare competitions to generate
labeled datasets. In USENLX Security’s Workshop. USENIX, Au-
gust 2009.

Bradley Schatz. Bodysnatcher: Towards reliable volatile mem-
ory acquisition by software. In Proceedings of the 7th An-
nual Digital Forensic Research Workshop (DFRWS °07), vol-
ume 4 of Digital Investigation, pages 126-134, September
2007. URL http://uuu.sciencedirect.com/science/article/
B7CW4-4PB6CJID-3/2/0881292b9131eca32cB2ec2f5599bb8A7.

J.C. Schlimmer and R.H. Granger. Beyond incremental processing:
Tracking concept drift. In Proceedings of the Fifth National Confer-
ence on Artificial Intelligence, volume 1, pages 502-507, 1986.

Secunia. Secunia’s 2008 annual report. Available online at http:
//secunia.com/gfx/Secunia28@8Report.pdf, 2008.

R. Sekar, M. Bendre, D. Dhurjati, and P. Bollineni. A fast
automaton-based method for detecting anomalous program be-
haviors. In Proceedings of the IEEE Symposium on Security and Pri-
vacy (§EFP 2001), pages 144-155, Oakland, CA, USA, May 2001.
IEEE Computer Society. ISBN 0-7695-1046-9.

R. Sekar, A. Gupta, J. Frullo, T. Shanbhag, A. Tiwari, H. Yang,
and S. Zhou. Specification-based anomaly detection: a new ap-
proach for detecting network intrusions. In CCS '02: Proceedings

http://www.snort.org
http://kdd.ics.uci.edu/
http://kdd.ics.uci.edu/
http://www.itoc.usma.edu/research/dataset/index.html
http://www.itoc.usma.edu/research/dataset/index.html
http://www.sciencedirect.com/science/article/B7CW4-4P06CJD-3/2/081292b9131eca32c02ec2f5599bb807
http://www.sciencedirect.com/science/article/B7CW4-4P06CJD-3/2/081292b9131eca32c02ec2f5599bb807
http://secunia.com/gfx/Secunia2008Report.pdf
http://secunia.com/gfx/Secunia2008Report.pdf

Bibliography

of the 9th ACM Conference on Computer and communications security,
pages 265-274, New York, NY, USA, 2002. ACM Press. ISBN
1-58113-612-9.

Monirul I. Sharif, Kapil Singh, Jonathon T. Giffin, and Wenke Lee.
Understanding precision in host based intrusion detection. In
RAID, pages 21-41, 2007.

Edward Hance Shortliffe. Computer-based medical consultations:
MYCIN. Elsevier, 1976.

Adam Singer. Social media, web 2.0 and internet stats.
Available online at http://thefuturebuzz.com/2889/01/12/
social-media-web-26-internet-numbers-stats/, Jan 2009.

Sumeet Singh, Cristian Estan, George Varghese, and Stefan Sav-
age. Automated worm fingerprinting. In OSDI’04: Proceedings
of the 6th conference on Symposium on Opearting Systems Design &
Implementation, pages 4-4, Berkeley, CA, USA, 2004. USENIX

Association.

Anil Somayaji and Stephanie Forrest. Automated response using
system-call delays. In Proceedings of the 9th USENIX Security
Symp., Denver, CO, Aug. 2000.

Panu J. Somervuo. Online algorithm for the self-organizing map
of symbol strings. Neural Netw., 17(8-9):1231-1239, 2004. ISSN
0893-6080. doi: http://dx.doi.org/10.1016/j.neunet.2004.08.004.

Y. Song, SJ Stolfo, and AD Keromytis. Spectrogram: A Mixture-
of-Markov-Chains Model for Anomaly Detection in Web Traffic.
In Proc of the 16th Annual Network and Distributed System Security
Symposium (NDSS), 2009.

Sourcefire. Snort Rules. http://uuu.snort.org/snort-rules, 2009.

A. Stolcke and S. Omohundro. Hidden Markov Model Induction
by Bayesian Model Merging. Advances in Neural Information Pro-
cessing Systems, pages 11-11, 1993a.

A. Stolcke and S. Omohundro. Inducing Probabilistic Grammars by
Bayesian Model Merging. Lecture Notes in Computer Science, pages
106-106, 1994a.

225

http://thefuturebuzz.com/2009/01/12/social-media-web-20-internet-numbers-stats/
http://thefuturebuzz.com/2009/01/12/social-media-web-20-internet-numbers-stats/
http://www.snort.org/snort-rules

BisLioGRAPHY

226

Andreas Stolcke and Stephen Omohundro. Hidden Markov Model
induction by bayesian model merging. In Advances in Neural Infor-
mation Processing Systems, volume 5, pages 11-18. Morgan Kauf-
mann, 1993b.

Andreas Stolcke and Stephen M. Omohundro. Inducing probabilis-
tic grammars by bayesian model merging. In Proceedings of the 2nd
International Colloguium on Grammatical Inference and Applications,
pages 106-118, London, UK, 1994b. Springer-Verlag. ISBN 3-
540-58473-0.

Andreas Stolcke and Stephen M. Omohundro. Best-first Model
Merging for Hidden Markov Model Induction. Technical Report
TR-94-003, ICSI, Berkeley, CA, USA, 1994c.

Brett Stone-Gross, Marco Cova, Lorenzo Cavallaro, Bob Gilber
t, Mar tin Szydlowski andRichard Kemmerer, and Christo-
pher Kruegel andGiovanni Vigna. Your botnet is my botnet: Anal-
ysis of a botnet takeover. In CCS 2009, Chicago, November 2009.
ACM.

Alon Swartz. The exploittree repository. http: //uwu. securityforest.
com/wiki/index.php/Category:ExploitTree, 2009.

G. Tandon and P. Chan. Learning rules from system call arguments
and sequences for anomaly detection. In ICDM Workshop on Data
Mining for Computer Security (DMSEC), pages 20-29, 2003.

Steven J. Templeton and Karl Levitt. A requires/provides model for
computer attacks. In NSPW 00: Proceedings of the 2000 workshop
on New security paradigms, pages 31-38, New York, NY, USA,
2000. ACM Press. ISBN 1-58113-260-3. doi: http://doi.acm.
org/10.1145/366173.366187.

The SANS Institute. The twenty most critical internet security vul-
nerabilities. http://uuu.sans.org/top28/, Nov. 2005.

Walter N. Thurman and Mark E. Fisher. Chickens, eggs, and causal-
ity, or which came first? Am. J. of Agricultural Economics, 1998.

Dean Turner, Marc Fossi, Eric Johnson, Trevor Mark, Joseph Black-
bird, Stephen Entwise, Mo King Low, David McKinney, and
Candid Wueest. Symantec Global Internet Security Threat Report

http://www.securityforest.com/wiki/index.php/Category:ExploitTree
http://www.securityforest.com/wiki/index.php/Category:ExploitTree
http://www.sans.org/top20/

Bibliography

—Trends for 2008. Technical Report XIV, Symantec Corporation,
April 2009.

Alfonso Valdes and Keith Skinner. Probabilistic Alert Correlation.
In Proceedings of the International Symposium on Recent Advances
in Intrusion Detection (RAID 2001), pages 54-68, London, UK,
2001. Springer-Verlag. ISBN 3-540-42702-3.

F. Valeur, G. Vigna, C. Kruegel, and R.A. Kemmerer. A compre-
hensive approach to intrusion detection alert correlation. IEEE
Transactions on Dependable and Secure Computing, 1(3):146-169,
2004. ISSN 1545-5971. doi: http://dx.doi.org/10.1109/TDSC.
2004.21.

WN Venables and B.D. Ripley. Modern Applied Statistics with S.
Springer, 2002.

Giovanni Vigna and Richard A. Kemmerer. NetSTAT: A Network-
based Intrusion Detection System. Journal of Computer Security, 7
(1):37-71,1999. ISSN 0926-227X.

Giovanni Vigna, William Robertson, and Davide Balzarotti. Test-
ing Network-based Intrusion Detection Systems Using Mutant
Exploits. In Proceedings of the ACM Conference on Computer and
Communications Security (CCS 2005), Washington DC, USA, Oc-
tober 2004. ACM.

Jouni Viinikka, Hervé Debar, Ludovic M¢, and Renaud Séguier.
Time series modeling for ids alert management. In ASLACCS
'06: Proceedings of the 2006 ACM Symp. on Information, computer
and communications security, pages 102-113, New York, NY, USA,
2006. ACM Press. ISBN 1-59593-272-0.

David Wagner and Drew Dean. Intrusion detection via static anal-
ysis. In Proceedings of the IEEE Symposium on Security and Privacy
(§&P 2001), pages 156-168, Oakland, CA, USA, 2001. IEEE
Computer Society. doi: 10.1109/SECPRI.2001.924296.

Ke Wang and Salvatore J. Stolfo. Anomalous payload-based network
intrusion detection. In Proceedings of the International Symposium
on Recent Advances in Intrusion Detection (RAID 2004). Springer-
Verlag, September 2004.

227

BisLioGRAPHY

228

Ke Wang, Gabriela Cretu, and Salvatore]. Stolfo. Anomalous
Payload-based Worm Detection and Signature Generation. In
Proceedings of the International Symposium on Recent Advances in
Intrusion Detection (RAID 2005), Seattle, WA, USA, September
2005. Springer-Verlag.

Ke Wang, Janak J. Parekh, and Salvatore J. Stolfo. Anagram: A con-
tent anomaly detector resistant to mimicry attack. In Proceedings
of the International Symposium on Recent Advances in Intrusion De-
tection (RAID 2006), Hamburg, GR, September 2006. Springer-
Verlag.

Zhenyuan Wang and George J. Klir. Fuzzy Measure Theory.
Kluwer Academic Publishers, Norwell, MA, USA, 1993. ISBN
0306442604.

Robert Watson. Openbsm. http: //uuu. openbsn. org, 2006.

Robert N. M. Watson and Whayne Salamon. The FreeBSD audit
system. In UKUUG LISA Conference, Durham, UK, Mar. 2006.

Andreas Wespi, Giovanni Vigna, and Luca Deri, editors. Recent
Advances in Intrusion Detection, 5th International Symposium, RAID
2002 Zurich, Switzerland, October 16—18, 2002 Proceedings, volume
2516 of Lecture Notes in Computer Science, 2002. Springer. ISBN
978-3-540-00020-4.

R.Xuand D. Wunsch. Survey of clustering algorithms. IEEE Trans-
actions on Neural Networks, 16(3):645-678, 2005.

K. Yamanishi, J.-I. Takeuchi, G. J. Williams, and P. Milne. Online
unsupervised outlier detection using finite mixtures with discount-
ing learning algorithms. Knowledge Discovery and Data Mining, 8
(3):275-300, 2004.

Dit-Yan Yeung and Yuxin Ding. Host-based intrusion detection us-
ing dynamic and static behavioral models. Pattern Recognition, 36:

229-243, Jan. 2003.

Robert Hobbes” Zakon. Hobbes’ internet timeline v8.2. Available
online at http://wwu.zakon.org/robert/internet/timeline/, Nov

2006.

http://www.openbsm.org
http://www.zakon.org/robert/internet/timeline/

Bibliography

S. Zanero. Improving self organizing map performance for network
intrusion detection. In SDM 2005 Workshop on “Clustering High
Dimensional Data and its Applications”, 2005a.

Stefano Zanero. Behavioral intrusion detection. In Cevdet Aykanat,
Tugrul Dayar, and Ibrahim Korpeoglu, editors, 79¢5 Int’] Symp. on
Computer and Information Sciences - ISCIS 2004, volume 3280 of
Lecture Notes in Computer Science, pages 657666, Kemer-Antalya,
Turkey, Oct. 2004. Springer. ISBN 3-540-23526-4.

Stefano Zanero. Analyzing tcp traffic patterns using self organiz-
ing maps. In Fabio Roli and Sergio Vitulano, editors, Proceed-
ings 13th International Conference on Image Analysis and Processing
- ICIAP 2005, volume 3617 of Lecture Notes in Computer Science,
pages 83-90, Cagliari, Italy, Sept. 2005b. Springer. ISBN 3-540-
28869-4.

Stefano Zanero and Sergio M. Savaresi. Unsupervised learning tech-
niques for an intrusion detection system. In Proceedings of the 2004
ACM Symposium on Applied Computing, pages 412-419. ACM
Press, 2004. ISBN 1-58113-812-1.

229

Index

0-day, 7

anonymization, 52
ANSI, 67,92
AR, 201
ARMAX, 50
ASCII, 28, 30

backdoors, 117, 121

BIC, 87

BMU, 105, 110, 113

botnets, 123

bsdtar, 63, 64,94, 96,110,118,
122

BSM, 27, 56, 68

CDF, 89

CDX, 59
Chebyshev, 126, 158
CPU, 26, 35, 98
CTF, 53

DARPA, 96

DB, 15, 16

DN, 32

DOM, 45, 127

DR, 39, 96-98, 106, 121, 122,
194,199

ELF 117,122

231

execve, 56

fdformat, 54

FN, 20

FNR, 102

FP, 21, 22, 28, 30, 33, 34, 37,
40, 41, 50, 70, 71,
74,75,156,157,179

FPR, 96, 106, 121, 123

FreeBSD, 63, 64, 117,121

FSA, 41, 102, 109, 113, 120,
121

FTP, 14, 55, 74

GC(I, 202, 205, 206
GCT, 48, 50, 201, 204, 214

HIDS, 198, 207

HMM, 69, 75, 80, 87, 88, 127,
141, 144, 160

HTML, 127, 156, 168, 170,
174

HTTP, 10, 14, 15, 27, 30, 32,
42, 43, 45, 47, 60,
65,66,98,125,127,
130, 133, 149, 153,
156, 157, 159, 160,
162, 163, 165-167,
173, 174, 176, 177,
179

INDEX

232

ICD, 141, 143

IDEVAL, 50, 54, 63, 64, 68,
70, 71, 74, 77, 84,
87-89, 93, 98, 192,
198, 204, 211-214

IDMEEF, 92, 189, 192, 193

IDS, 14, 19, 21-23, 26, 27,
29, 39, 52, 53, 56,
59,98,106-111, 118,
120, 123, 156, 183,
184, 189, 192-195,
201, 204, 207, 213

1P, 29, 193

IRC, 65

Jaccard, 143, 144
JavaScript, 129,132,170, 180
JSON, 127

KS, 211, 212

LERAD, 32, 37
LibAnomaly, 37-39, 45, 67,
71, 93,126

malware, iv, 17, 24, 28, 60,
123, 217

Masibty, 129-131

mcweject, 63, 64, 109

MDL, 87

ML, 211, 212

NIDS, 198, 207
NTP, 193

overfitting, 38, 54, 93,103, 123,
133

PC, 41
PDF, 209, 211, 212
phishing, 17

PHP, 165
PID, 56

ROC, 153,155,174,176,177

shellcode, 63, 96,110,117, 118,
122

Silverlight, 180

SOM, 104, 105, 108-110, 112,
113,121

SQL, 132,173

SSAADE, 70

SSH, 14, 66

SVN, 165

SyscallAnomaly, 63, 67, 68, 70—
72,74-77, 81,93

syscalls, 71, 87, 94, 98

TCP, 29, 32, 33, 194
tcpdump, 35

telnetd, 54, 55

TN, 19

TP, 19, 98

TTL, 30

undertraining, 134, 145, 151,
155

URL, 1, 169

userland, 62, 109, 115, 118,
122

userspace, 98

VPN, 14

webanomaly, 27, 45,126, 133,
158, 170, 173, 174,
176

XML, 93, 127
XSS, 132

List of Acronyms

AIC Akaike Information Criterionooua... 191
ARMAX Auto Regressive Moving Average eXogenous. 46
AR Auto Regressive...........ooiiiiiiiiiiiiiiii i 46
ARR Alert ReductionRate ...t 184
ANSI American National Standard Institute 63
ASCII American Standard for Information Interxchange 27
BIC Bayesian Information Criterion......................... 81
BMU Best Matching Unit................oooiiiiiiaee. 94
BSM Basic Security Module 25
CDF Cumulative Density Function.......................... 84
CDX Cyber Defense eXerciseovvvniiiiinnnnen.. 54
CPU Central Processing Unit........c..cooviiuiiiiiinaan... 25
CTF Capture The Flag, 49
DARPA Defense Advanced Research Projects Agency......... 90
DB DataBase........ooiiiiniiiii i 14
DNS Domain Name Systemooveiiiiiiiiiienan... 29
DOM Document Object Modelcooo... 43

233

ListT oF ACRONYMS

234

DoS Denial of Servicecoooiiiiiiiiiiiiiii 5
DR Detection Rate ... 19
ELF Executable Linux Format..................... 109
FN False Negative ... 19
FNR False Negative Rate............... ..., 96
FPR False Positive Rate ...t 19
FP False Positive........ouiuiii i 20
FSA Finite State Automaton..........coouveueuneneeninnen... 37
FTP File Transfer Protocolcocoviiiiiiiiiiiion.., 14
GCI Granger Causality Index.......................o. .. 46
GCT Granger Causality Test ..., 46
HIDS Host-based Intrusion Detection System 25
HMM Hidden MarkovModel ...t 37
HTML HyperText Markup Language...................... 119
HTTP HyperText Transfer Protocol....................o.t, 6
ICD Idealized Character Distributionc..... 118
IDEVAL Intrusion Detection eVALuation................... 29
IDMEF Intrusion Detection Message Exchange Format 18
IDS Intrusion Detection System................cooiiiin.... 7
ID Intrusion Detectionc.coiuiiiiiiiiiiiiiiinena... 8
IETF Internet Engineering Task Force 18
ISP Internet Service Provider................cocociiiiiiion.. 7
IP Internet Protocol........ ..., 28
IRC Internet Relay Chatt 61

JSON JavaScript Object Notationcooiuin.a... 119

KS Kolmogorov-Smirnoffl 199
LERAD Learning Rules for Anomaly Detection.............. 31
MDL Minimum Description Length 81
ML Maximum Likelihood...................ooiiiiiiat. 198
NIDS Network-based Intrusion Detection System 25
NTP Network Time Protocol...............oooooiiiiia... 182
PC Program Counter............cooiiiiiiiiiiiiiinn.. 39
PDF Probability Density Function 197
PHP PHP Hypertext Preprocessor 155
PID Process IDentifier.........coovuvuiiiniiiinnnena... 39

ROC Receiving Operating Characteristic

SOM Self Organizing Map........cooviiiiniiiininneen.. 29
SQL Structured Query Language.................cocoiinat. 6
S?A2DE Syscall Sequence Arguments Anomaly Detection Engine
63
SSH Secure SHellooiiiii i 14
SVN SubVersioNoouiiiiii i 155
TCP Trasmission Control Protocol 26
TN True Negativeo.vvueininiii i, 19
TP True Positive.........ooooiiiiiii i 18
TTL TimeToLiveoovuiiniiniiiii i 29

ULISSE Unsupervised Learning IDS with 2-Stages Engine ... 31
URL Uniform Resource Locator.................oooiiiia.. 1

235

ListT oF ACRONYMS

VPN Virtual Private Network oooii i 14
XML eXtensible Markup Language 87
XSS Cross-Site Scriptingc.ovuvnininiiiinininineenann.. 13

236

List of Figures

1.1

2.1
2.2
2.3
2.4

2.5
2.6

3.1
3.2
3.3

3.4

3.5

3.6
3.7

3.8
3.9

Ilustration taken from [Holz, 2005] and (©2005 IEEE.

Authorized license limited to Politecnico di Milano. . . . 4
Generic and comprehensive deployment scenario for IDSs. 14
Abstract /O modelofan IDS. 18
The ROCspace. 20
Abstract I/O model of an IDS with an alert correlation

SYStEML 21
A data flow example with both unary and binary relations. 38

telnetd: distribution of the number of other system calls
among two execve system calls (i.e., distance between

tWO CONSECULIVE BXECVE). . v v v v v v v e e e e e e e e e 51
Probabilistic tree example. L. 76
Example of Markovmodel. 83

Measured sequence probability (log) vs. sequence length,
comparing the original calculation and the second vari-

antofscaling. 86
'The high-level structure of our prototype. 87
Comparison of the effect on detection of different prob-

ability scaling functions. L. L. 91
Sample estimated Gaussian intervals for string length. . . 95

Two different estimations of the edge frequency distri-
bution. Namely, Beta(178.445, 157.866) with thresh-
0lds [0.477199, 0.583649] (left) and Beta(10.3529,181.647)

with thresholds [0.0266882, 0.0899057] (right). 97
Distance computation example. L 99
An illustration of the in-memory execution technique. . . 110

238

List of Figures

4.1
4.2
4.3

4.4

4.5
4.6
4.7

4.8
4.9

4.10

411

4.12

Overview of web application model construction.

The logical structure of Masibty.
Web client resource path invocation distributions from
a selection of real-world web applications.
Overall procedure. Profiles, both undertrained and well-
trained, are collected from a set of web applications. These
profiles are processed offline to generate the global knowl-
edge base C and index C!. C can then be queried to find
similar global profiles.
Partitioning of the training set () for various k.
Procedure for building global knowledge base indices. . .
Clustering of C, (a-b), and C?, (c-d). Each leaf (a pro-
file) is labeled with the parameter name and samples val-
ues observed during training. As & increases, profiles are
clustered more accurately. L. L.
Plot of profile mapping robustness for varying k..
Global profile ROC curves for varying . In the presence
of severe undertraining (K < Kguble), the system is not
able to recognize most attacks and also reports several
false positives. However, as & increases, detection accu-
racy improves, and approaches that of the well-trained
CaS€ (K = Kgable): « « « = =+ o o e e e e e
Relative frequency of the standard deviation of the num-
ber of forms (a) and input fields (c). Also, the distribu-
tion of the expected time between changes of forms (b)
and input fields (d) are plotted. A non-negligible por-
tion of the websites exhibits changes in the responses.
No differences have been noticed between home pages
and manually-selected pages.
Lines of codes in the repositories of PhpBB, WordPress,
and Movable Type, over time. Counts include only the
code that manipulates HTTP responses, requests and
SESSIONS. « v v v v v e e e e e e e e e e e e e
A representation of the interaction between the client
and the web application server, monitored by a learning-
based anomaly detector. After request g; is processed,
the corresponding response resp; is intercepted and link
L; and forms F; are parsed to update the request mod-
els. 'This knowledge is exploited as a change detection
criterion for the subsequent request gj41.

138

141
143

154

239

List oF FiGURES

240

4.13 Detection and false positive rates measured on) and

5.1

52

5.3

5.4

5.5

5.6

5.7

5.8

59

Qarife, with HT'TP response modeling enabled in (b). . . 166

Simplified version of the correlation approach proposed

in[Valeuretal., 2004]. 173

Comparison of crisp (a) and fuzzy (b) time-windows.
In both graphs, one alert is fired at ¢ = 0 and another
alert occurs at t = 0.6. Using a crisp time-window
and instantaneous alerts (a), the distance measurement
is not robust to neither delays nor erroneous settings of
the time-window size. Using fuzzy-shaped functions (b)
provides more robustness and allows to capture the con-
cept of “closeness”, as implemented with the T-norm de-
picted in (b). Distances in time are normalized in [0,1]
(wrt. theorigin). L oL 175

Comparing two possible models of uncertainty on times-

tamps of single alerts. 177

Non-zero long alert: uncertainty on measured times-
tampsaremodeled. oL L. 179

A sample plot of Belcp (a) (with |a.score—Tynomaiy|, FPR €
[0, 1]) compared to a linear scaling function, i.e. Bely;y, (a)

(dashedline) 181
Hypothetical plots of (a) the global DR, DR+, vs. ARR
and (b) the global FPR, FPRy/,vs. ARR. 185

Plot of the DRy (a) and FPRy/ (b) vs. ARR. “Crisp”
refers to the use of the crisp time-distance aggregation;
“Fuzzy” and “Fuzzy (belief)” indicates the simple fuzzy
time-distance aggregation and the use of the attack_-
belief for alert discarding, respectively. 188

p-value (a) and GCI (b) vs. ! (in minutes) for the first
GCT experiment (w = 60.0 seconds): “NetP(k) ~

line). 192

p-value (a) and GCI (b) vs. ! (in minutes) for the first
Granger causality test experiment (w = 1800.0 seconds):
“NetP(k) ~ HostP(k)” (dashed line), “HostP(k) ~
NetP(k)” (solid line). 193

List of Figures

5.10 p-value (a) and GCI (b) vs. ! (in minutes) for the first
Granger causality test experiment (w = 3600.0 seconds):
“NetP(k) ~ HostP(k)” (dashed line), “Host P(k) ~~

NetP(k)” (solidline). 195
5.11 'The optimal time lag p = [given by the AIC criterion
strongly varies over time. 196

5.12 How delays between network and host alerts are calculated. 197
5.13 Histograms vs. estimated density (red dashes) and Q-Q_

plots, for both foand fp. ... 198
5.14 Histograms vs. estimated density (red dashes) for both
foand fp IDEVAL1998) 199

241

List of Tables

2.1

2.2

2.3

2.4

2.5

3.1

3.2
3.3
3.4

3.5

Duality between misuse- and anomaly-based intrusion
detection techniques. Note that, an anomaly-based IDS
can detect “Any” threat, under the assumption that an
attack always generates a deviation in the modeled activity. 23

Taxonomy of the selected state of the art approaches for
network-based anomaly detection. 30

Taxonomy of the selected state of the art approaches for
host-based anomaly detection. Our contributions are
highlighted. 34
Taxonomy of the selected state of the art approaches for
web-based anomaly detection. Our contributions are high-
lighted., 42
Taxonomy of the selected state of the art approaches for

alert correlation. Our contributions are highlighted. Our

contributions are highlighted. 45

Comparison of SyscallAnomaly (results taken from [Kruegel

et al., 2003a]) and S?A2DE in terms of number FPs

on the IDEVAL dataset. For S2A2DE , the amount of
system calls flagged as anomalous is reported between
brackets. L L L 66

A true positive and a FPoneject. 67
True positive on fdformat while opening a localization file. 68
Behavior of SyscallAnomaly with and without the Struc-

tural Inference Model 70
Percentage of open syscalls and number of executions (per
program) in the IDEVAL dataset. 72

242

List of Tables

3.6

3.7

3.8
3.9
3.10

3.11

3.12

3.13

3.14

3.15

3.16

3.17

4.1

4.2

5.1

Execution times with and without the heuristic (and in

parenthesis, values obtained by performance tweaks) . . . 73
Association of models to system call arguments in our
PrOtOtype i 79
Cluster validation process. 80
fdformat: attack and consequences 89
DRs and FPRs on two test programs, with (Y) and with-

out (N) Markovmodels. 90
Training and detection throughput X. On the same dataset,

the average processing time with S2A?DE disabled is
around 0.08741084, thus, in the worst case, S?A?DE in-
troduces a 0.1476% overhead (estimated). 101
Parameters used to train the IDSs. Values includes the
number of traces used, the amount of paths encountered
and the number of paths percycle. 101
Comparison of the FPR of S’A’DE vs. FSA-DF vs.
Hybrid IDS. Values include the number of traces used.
Accurate description of the impact of each individual
model is in Section3.3.2.1 104
Parameters used to train the IDSs. Values includes the
number of traces used, the amount of paths encountered
and the number of paths percycle. 104
Comparison of the FPR of S?’A2DE vs. SOM-S?A2DE
. Values include the number of tracesused. 104
Detection performance measured in “seconds per system
call”. 'The average speed is measured in system calls per

second (last column). 105
Experimental results with a regular shellcode and with
our userland exec implementation. 110

Client access distribution on a real-world web applica-

tion (based on 500,000 requests per day). 127
Reduction in the false positive rate due to HT'TP re-
sponse modeling for various types of changes. 167

Estimated parameters (and their estimation standard er-

ror) for the Gamma PDFs on IDEVAL 1998 and 1999. . 201

243

Colophon

This document was typeset using the XgTEX typesetting
system created by the Non-Roman Script Initiative and the
memoir class created by Peter Wilson. The body text is set
10pt with Adobe Caslon Pro. Other fonts include Envy Code
R, Optima Regular and. Most of the drawings are typeset using
the TikZ/PGF packages by Till Tantau.

	Introduction
	Todays' Security Threats
	The Role of Intrusion Detection

	Original Contributions
	Host-based Anomaly Detection
	Web-based Anomaly Detection
	Alert Correlation

	Document Structure

	Detecting Malicious Activity
	Intrusion Detection
	Evaluation
	Alert Correlation
	Taxonomic Dimensions

	Relevant Anomaly Detection Techniques
	Network-based techniques
	Host-based techniques
	Web-based techniques

	Relevant Alert Correlation Techniques
	Evaluation Issues and Challenges
	Regularities in audit data of IDEVAL
	The base-rate fallacy

	Concluding Remarks

	Host-based Anomaly Detection
	Preliminaries
	Malicious System Calls Detection
	Analysis of SyscallAnomaly
	Improving SyscallAnomaly
	Capturing process behavior
	Prototype implementation
	Experimental Results

	Mixing Deterministic and Stochastic Models
	Enhanced Detection Models
	Experimental Results

	Forensics Use of Anomaly Detection Techniques
	Problem statement
	Experimental Results

	Concluding Remarks

	Anomaly Detection of Web-based Attacks
	Preliminaries
	Anomaly Detectors of Web-based Attacks
	A Comprehensive Detection System to Mitigate Web-based Attacks
	Evaluation Data

	Training With Scarce Data
	Non-uniformly distributed training data
	Exploiting global knowledge
	Experimental Results

	Addressing Changes in Web Applications
	Web Application Concept drift
	Addressing concept drift
	Experimental Results

	Concluding Remarks

	Network and Host Alert Correlation
	Fuzzy Models and Measures for Alert Fusion
	Time-based alert correlation

	Mitigating Evaluation Issues
	A common alert representation
	Proposed Evaluation Metrics
	Experimental Results

	Using Non-parametric Statistical Tests
	The Granger Causality Test
	Modeling alerts as stochastic processes

	Concluding Remarks

	Conclusions
	Bibliography
	Index
	List of Acronyms
	List of Figures
	List of Tables

