
POSTER: Fast, Automatic iPhone Shoulder Surfing

Federico Maggi
Alberto Volpatto

Politecnico di Milano
volpatto, fmaggi
@elet.polimi.it

Simone Gasparini
INRIA Grenoble

Rhone-Alpes
simone.gasparini

@inrialpes.fr

Giacomo Boracchi
Stefano Zanero

Politecnico di Milano
boracchi, zanero
@elet.polimi.it

ABSTRACT
Touchscreen devices increase the risk of shoulder surfing to such
an extent that attackers could steal sensitive information by simply
following the victim and observe his or her portable device. We
underline this concern by proposing an automatic shoulder surfing
attack against modern touchscreen keyboards that display magnified
keys in predictable positions. We demonstrate this attack against the
Apple iPhone—although it can work with other layouts and different
devices—and show that it recognizes up to 97.07% (91.03% on
average) of the keystrokes, with only 1.15% of errors, at 37 to
51 keystrokes per minute: About eight times faster than a human
analyzing a recorded video.

Our attack, described thoroughly in [2], accurately recovers the
sequence of keystrokes input by the user. The attack described
in [1], which targeted desktop scenarios and thus worked with very
restrictive settings, is similar in spirit to ours. However, as it assumes
that camera and target keyboard are both in fixed, perpendicular
position, it cannot suite mobile settings, characterized by moving
target and skewed, rotated viewpoints. Our attack, instead, requires
no particular settings and even allows for natural movements of both
target device and shoulder surfer’s camera. In addition, our attack
yields accurate output without any grammar or syntax checks, so
that it can detect large context-free text or non-dictionary words.

In summary:

• We are the first studying the practical risks brought forth by
mainstream touchscreen keyboards.

• We design a practical attack that detects keystrokes on modern
touchscreen keyboards: The attacker requires not to stand exactly
behind the victim nor to observe the screen perpendicularly.

• Our attack is robust to occlusions (e.g., typing fingers), thanks to
our efficient filtering technique that validates detected keys and
reconstructs keystroke sequences accurately.

1 Threat Model & Requirements
The attacker can point a camera toward the target touchscreen while
the victim enters a text. No visibility of typed text is required.

Requirement 1: The virtual keyboard must display a partially vis-
ible magnified key upon each keystroke, or at least in one frame
after each keystroke. The attack works even when fingers partially
cover the magnified keys, as it typically happens while typing. Key
magnification is often enabled by default in popular touchscreen
phones and sometimes cannot be cannot be deactivated (except in
some older versions of Android OS).

Requirement 2: The attacker must know:
• Screen template: Screenshot of the device’s virtual keyboard.

• Key template: Appearance of each magnified key.

• Magnified layout: Coordinates of the magnified key centers.
This requirement is easily met by building an offline database of
magnified keyboard layouts (e.g., by taking screenshots) of any
target device.

2 Automatic Shoulder Surfing Attack
Our system processes a stream of images frame by frame as depicted
in Figure 1.

Phase 1 Screen Detection and Rectification
Input Current frame.
Task Detect the touchscreen image by leveraging a

template of the target screen. When a match is
found in the current frame, rectify and crop the
screen area.

Output A rectified, cropped and scaled image of the
device screen in the current frame. This is close
to the image that a fixed camera had acquired
when the device is at a fixed distance, with its
screen parallel to the camera.

Phase 2 Magnified Keys Detection
Input Rectified image of the target screen.
Task Isolate magnified-key candidates, i.e., high-

contrast areas of the rectified image that are
different from the template and previous frames.

Output A segmented image (i.e., a map of the image
areas) identifying the magnified-key candidates
(blobs). Typically, there is more than one blob
per frame.

Phase 3 Keystroke Sequence Recognition
Input A set of magnified-key candidates.
Task Filter out wrong candidates, by matching them

with the corresponding template of the magni-
fied key, thus identifying the best-matching key.

Output The symbol, if any, of the best-matching key.
We implemented a working prototype of both Phase 1 (with OpenCV)
and Phase 2–3. We recorded a video demonstration of the inter-
mediate outputs of these phases and published it at http://www.
youtube.com/playlist?list=PL81F91E404B928833.

3 Evaluation
We spied on six “victims” with a low-resolution camera (i.e., 640
by 480 pixels @ 25fps), each while typing:
• Context-free text: 63 English words, such that attackers cannot

simply guess the words (http://sqze.it/qMNwy).
• Context-rich text: 65 words from the lyrics of Dream Theater’s

“Regression” song.
• Brief text: Used to evaluate specific features and limitations:

http://www.youtube.com/playlist?list=PL81F91E404B928833
http://www.youtube.com/playlist?list=PL81F91E404B928833
http://sqze.it/qMNwy

(a) Envisioned attack settings. (b) Input of Phase 1. (c) Input of Phase 2. (d) Input of Phase 3. (e) Output (i.e., the ‘R’ key).

Figure 1: Intermediate outputs captured in a sample attack (a). Phase 1: We detect the device screen in each input frame (b), crop and rectify it, obtaining (c).
Phase 2: We select the magnified-key candidates within the foreground (i.e., image areas shown in (d)). Phase 3: According to the coordinates of the magnified
keyboard layout (e), we compare each candidate to its template to identify the typed key. The template of ‘R’ exhibits high similarity with one of the candidates,
as show by the local maximum in Figure 2 around frame 985.

 0

 0.2

 0.4

 0.6

 0.8

 1

 970 980 990 1000 1010 1020 1030 1040 1050

Ψ
(t)

t

ΓΨ

Ψ(t) Filtered Ψ(t) Ψ(t) ≤ ΓΨ

u

r p
i s

e

Figure 2: Keystroke sequence recognition: Key magnifications typically last
longer than one frame, and there are frames that contains no magnified keys,
thus it is insufficient to identify the best-matching key at each time step. We
first low pass the key similarity measure of each best matching key and then
search for local maxima. Frames yielding low similarity are discarded. The
horizontal bars above each local maximum indicate the minimum distance
between two local maxima, which can be considered as the minimum number
of frames the key magnification lasts (e.g., five frames). This choice only
influences the maximum typing speed handled by our system: Even when
victims type slower than one stroke per five frames, we recognize magnified
keys correctly. However, one stroke per five frames is a very high typing
speed at 25fps.

“Pellentesque habitant morbi tristique senectus et netus et male-
suada fames ac turpis egestas”.

We had to perform recording because we needed repeatable and
comparable experiments, although our attack works perfectly on-
line, on streams of images. Unless differently stated, we kept the
handheld camera at an angle such that our system can recognize the
screen.

3.1 Experiment 1: Precision and Speed
We performed 3 sessions on context-free text and 3 on context-
rich text, each with a different victim. In particular, we asked the
victims to type naturally, as they would do in their daily activities.
Each typing session was processed by our system and by a different
attacker for each victim. Without any a priori knowledge, each
attacker had to recognize the keystrokes by stopping, rewinding or
slowing-down the recorded stream as needed.

As shown in Figure 3b, regardless of the text’s context, manual
recognition is notably slower than our system. For example, our sys-
tem can recognize, on average, up to 0.803 keystrokes per second,
about one third of the maximum typing speed, and 0.864 in the best
case, about half of the average typing speed. Only twice (over 18
trials) the attackers were able to beat such speeds. As expected, hu-
man sight can recognize symbols with slightly higher precision than
our system. This is more evident in the context-rich text experiment,
where our system is outperformed by about 8 percentage points. On

 0

 0.2

 0.4

 0.6

 0.8

 1

Automatic Manual 1 Manual 2 Manual 3

H
it

or
 e

rr
or

 ra
te

 [0
,1

]

10.2% bound

Hit rate: context-free text
Error rate: context-free text

context-rich text
context-rich text

(a) Hit and error rate.

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

Automatic Manual 1 Manual 2 Manual 3

Sp
ee

d
(s

ym
bo

ls
 p

er
 se

co
nd

)

Decoding speed: context-free text
context-rich text

(b) Recognition speed (keystrokes per second).

Figure 3: Comparison of average precision (a) and speed (b) of our auto-
matic detector versus human attackers. Precision (i.e., hit and error rates)
remain within shallow bounds, whereas the speed of manual recognition is
significantly low with respect to our automated attack.

the other hand, even with no spell correction, on context-free text for
example, our system is just 3 percentage points less accurate than
the attacker with the highest average precision. Hence, our system
is at least effective as offline inspection of a video, although remark-
ably faster and, more importantly, tireless. Indeed, all the volunteers
described this session as an extremely tedious task, certainly not
doable for extended periods of time.

These results are more interesting if we take the typing speed
into account. For example, one of the victims typed at slow speed
and, as expected, humans were able to recognize keystrokes very
efficiently. In case of faster typing, manual analysis is more error
prone, whereas our system is not influenced by typing speed. Recall
that we set a minimum distance of 5 frames between adjacent key-
strokes, although this choice only influences the maximum typing

MEASURES IDEAL REAL-WORLD (AVG.) DIFFERENCE

PRECISION %
Hits % 95.12 91.03 4.09

Errors % 1.01 3.16 -2.15

Table 1: Ideal conditions vs. real-world conditions.

speed handled by our system. Therefore, even when victims type
slower than such speed, magnified keys are recognized correctly.
It is worth noticing that one stroke every 5 frames is a very high
typing speed at 25fps.

The state-of-the-art system [1], even under more relaxed hypothe-
ses, works at 0.101 keystrokes per second on average, with a max-
imum precision of 82%, only achievable in context-sensitive text.
Our attack needs no linguistic context to recognize 97.77% of the
keystrokes at 0.803 keystrokes per second.

3.2 Experiment 2: Ideal Versus Real World
In the previous experiment we assessed the feasibility of the attack
in natural conditions: The camera was handheld and the victim was
allowed to move naturally. The goal of this second experiment is
instead to evaluate Phase 1 and 2–3, separately, thus allowing us
to measure the maximum achievable performance of Phase 2–3 in
ideal conditions. We positioned the recording camera on a tripod
and fixed the touchscreen on a table, with its screen perfectly aligned
and parallel to the camera’s sensor. Then, we run our system with
Phase 1 disabled on the video depicting the victim while typing the
context-free text. Hit and error rates are summarized in Table 1.

As one may expect, under ideal conditions Phase 2–3 alone reach
remarkable hit rate and error rate: Magnified keys are never occluded
(e.g., the victim’s finger is always below each magnified key), a less
common case in real-world settings (e.g., because of the camera’s
skewed viewing angle). However, in Section 3.1 we showed that, in
real-world settings, Phase 1–3 together can reach up to 97.07% hit
rate.

3.3 Experiment 3: Resilience to Disturbances
Our goal was to stress the robustness of Phase 1. To this end, we
performed a series of brief typing sessions and included several
significant disturbances. In practice, we asked a victim to type the
brief text under the following conditions: (1) we attached a piece of
gray tape diagonally on the screen to emulate a permanent occlusion,
(2) we asked the victim to jiggle the device while typing, (3) we
jiggled the camera during recording, and (4) both the camera and
the target device were jiggling during recording.

Table 2 shows that Phase 1 was able to rectify parts of the video
and thus recognize the screen at some point of the video. In the
best case we were able to recognize 96% of the symbols with 4%
errors. In the worst case, we are able to detect 44.44% of the key-
strokes, although the errors caused by the difficulty of dealing with
objects that cover the screen permanently are quite high. However,
users seldom hold touchscreen devices with permanent occlusions,
especially while typing on the go. Our system can thus handle sud-
den movements of either camera or device, whereas Phase 1 fails
when both camera and device move excessively, causing intra-frame,
motion-blurring side effects that affect feature extraction.

DISTURBANCE PHASE 1 PHASE 2–3
Hits % Errors %

(1) Permanent occlusion difficult 44.44 33.33
(2) Shake device feasible 67.74 8.70
(3) Shake camera feasible 96.00 4.00
(4) Shake device + camera unfeasible 0.00 -

Table 2: Detection results under different working conditions.

4 Countermeasures
The usability of modern touchscreen keyboards is exploitable to such
an extent that we were able to implement an efficient and precise
automatic shoulder surfing attack. The definitive countermeasure
consists in disabling key magnification, disallowed in iPhone as
well as in newer versions of Android and BlackBerry OSs. Users of
older Android versions can switch this feature on and off, yet they
typically leave it enabled. The reason is because on mechanical
keyboards the user’s focus is on the text that appears on the display,
whereas on virtual keyboards even very small shifts in the position
of the fingers can cause typing errors, reduced by key magnification.

Mechanical keyboards are less privacy leaking with about the
same degree of usability of magnifying touchscreen ones. For in-
stance, we recorded a typing sessions on a BlackBerry1, using a long
English text with no linguistic context (context-free text described in
Section 3). Six volunteers who analyzed the video reported that most
of the keystrokes were not actually visible on the BlackBerry. Also,
even with “unlimited” time and the possibility of stopping, slowing
down and restarting the videos as needed, only one volunteer re-
constructed a negligible (1.35%) portion of the text. The remainder
two volunteers gave up for excessive fatigue. From this experiment
we argue that spying on non-touchscreen mobile keyboards is hard.
First, the compactness of the keyboard forces the victim to small
and almost unperceivable fingers movements. Second, keys are very
small and, typically, a user covers multiple keys at once while typing
making it impossible even for a human to distinguish among them.
On touchscreen keyboards instead, shoulder surfers were able to
recognize between 95% and 100% of keystrokes, with at most 2.6%
of errors, as discussed in Section 3.1.

5 Portability and Limitations
Our system’s main limitation revolves around the fact that keystrokes
are recognizable as long as visual feedback such as magnified keys
is displayed. Therefore, if some keys are not magnified our current
implementation would not detect them. Similarly, special characters
and numbers on some devices, including the iPhone, are selected
on different magnified layouts. Analogous observations apply to
alternative layouts (e.g., landscape). Dealing with these peculiarities
on our system would require minor modifications. Specifically, in-
stead of using only one screen template (e.g., portrait-alphabetical),
Phase 1 would cycle through several alternative layouts (e.g., portrait
alphabetical, portrait numerical, landscape numerical) and choose
the best-matching one before. Similarly, Phase 2 would need addi-
tional key templates.

6 Conclusions
Keyboards that employ key-magnification feedback are unsuitable
for high-privacy applications and, given that the most popular touch-
screen devices display such feedback, the risk brought forth by our
system is remarkable.

7 References
[1] BALZAROTTI, D., COVA, M., AND VIGNA, G. ClearShot:

Eavesdropping on Keyboard Input from Video. In Proc. of the
IEEE Symposium on Security and Privacy (Oakland, CA, May
2008).

[2] MAGGI, F., VOLPATTO, A., GASPARINI, S., BORACCHI, G.,
AND ZANERO, S. Don’t touch a word! a practical input
eavesdropping attack against mobile touchscreen devices. Tech.
Rep. TR-2010-59, Politecnico di Milano, 2010.

1We recorded this session: http://www.youtube.com/watch?v=
JxrqYA56A48

http://www.youtube.com/watch?v=JxrqYA56A48
http://www.youtube.com/watch?v=JxrqYA56A48

	Threat Model & Requirements
	Automatic Shoulder Surfing Attack
	Evaluation
	Experiment 1: Precision and Speed
	Experiment 2: Ideal Versus Real World
	Experiment 3: Resilience to Disturbances

	Countermeasures
	Portability and Limitations
	Conclusions
	References

