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Abstract—Spying on a person is a subtle, yet easy and reliable
method to obtain sensitive information. Even if the victim is well
protected from digital attacks, spying may be a viable option.
In addition, the pervasiveness of mobile devices increases an
attacker’s opportunities to observe the victims while they are
accessing or entering sensitive information. This risk is exacerbated
by the remarkable user-friendliness of modern, mobile graphical
interfaces, which, for example, display visual feedback to improve
the user experience and make common tasks, e.g., typing, more
natural. Unfortunately, this turns into the well-known trade-off
between usability and security.

In this work, we focus on how usability of modern mobile
interfaces may affect the users’ privacy. In particular, we describe
a practical eavesdropping attack, able to recognize the sequence
of keystrokes from a low-resolution video, recorded while the
victim is typing on a touchscreen. Our attack exploits the fact
that modern virtual keyboards, as opposed to mechanical ones,
often display magnified, virtual keys in predictable positions. To
demonstrate the feasibility of this attack we implemented it against
2010’s most popular smart-phone, i.e., the iPhone. Our approach
works under realistic conditions, because it tracks and rectifies the
target screen according to the victim’s natural movements, before
performing the keystroke recognition. On real-world settings, our
attack can automatically recognize up to 97.07% (91.03% on
average) of the keystrokes, with a 1.15% error rate and a speed
between 37 and 51 keystrokes per minute. This work confirms
that touchscreen keyboards that magnify keys make automatic
eavesdropping attacks easier than in classic mobile keyboards.

I. INTRODUCTION

A recent survey [1] on a sample of 2,252 individuals reports
that, in 2010, 72% of the Americans uses a mobile phone
to send or receive text messages, 38% accesses the Internet
on mobile devices, and 30% chat on the go. Modern mobile
devices rely on touchscreen technology, which has evolved from
its humble beginnings (in 1970 [2]) into a $5 billion market
product, now growing at a tremendous rate (around 159% [3]):
417 million mobile devices were sold worldwide in the third
quarter of 2010 [4], touchscreen smart-phones (i.e., iPhone and
Android) are driving the sales. This success also stems from the
continuous efforts in human-computer interaction research and
industry, which devised intuitive, highly-usable interfaces, with
full-fledged, on-screen keyboards and much more.

Unfortunately, since more and more people rely on mobile
devices to work on the go, there is an increasing risk of
inadvertently moving sensitive information outside the security

Note: This work was submitted for review to the PC of the IEEE Symposium
on Security and Privacy in November 2010. A newer and improved version of
this work is currently under review.

perimeter of the workplaces. For instance, since people often
connect to public wireless networks (e.g., at cafes, airports),
attackers may break into mobile devices by exploiting vulner-
abilities exposed via the wireless interface. Highly-motivated
attackers may simply spy on the victim, probably obtaining
more information than from a break-in. For example, researchers
have shown that automatic input eavesdropping is feasible and
large portions of text can be extracted from a video of a user
typing on a regular keyboard [5]. Fortunately, violating a user’s
privacy in such a way needs quite unrealistic assumptions (e.g., a
fixed cam pointed toward the keyboard), and works well against
desktop-sized keyboards only (with large, mechanical keys that
move vertically). On one hand, it is indeed very difficult to
adapt this type of attacks to spy on traditional mobile phones
(with small, tactile keys, safely hidden under the user’s fingers),
especially in dynamic and noisy conditions. On the other hand,
modern touchscreen graphical interfaces provide visual hints to
overcome their complete lack of tactile feedback, thus increasing
the user experience in error-prone tasks such as typing on virtual
keyboards. For example, the Apple iPhone’s keyboard magnifies
each pressed key above the user’s finger.

The main motivation of this work is that usability enhance-
ments may pose sensitive information at risk, by simply making
it visible not only to the users, but also to shoulder surfers.
These risks are clearly exacerbated by the immense popularity
of (mobile) touchscreen devices, which are often adopted in
publicly accessible areas, also to enter sensitive information
(e.g., a debit-card PIN at an ATM). These issues have risen
the vendors’ concerns and some countermeasures have been
proposed (e.g., a patented privacy-preserving tilting screen [6]
with shallow viewing angle, dynamically adjusted according
to the user’s sight, spy-resistant touchscreen keyboards [7], or
gaze-based passwords), which, unfortunately are not definitive
nor suitable for mainstream mobile devices.

For the above motivations, we investigated thoroughly the
feasibility of automating shoulder surfing attacks. Specifically,
our goal was to show that by exploiting only the visual feedback
provided by modern, touchscreen keyboards, keystrokes can be
easily detected. To this end, we designed a completely auto-
matic, black-box system that recognizes keystroke sequences
in a fraction of the time needed to perform the same, tedious
task by manually analyzing a video recoded while the victim
is typing. Differently from the approach that inspired us [5],
which is very difficult to adapt for mobile scenarios, our system



is very easy to implement, requires no unrealistic assumptions,
and works in “natural” conditions.

Our attack relies on computer vision and image processing
techniques and is divided into three sequential phases. Phase 1
analyzes the input video searching for a (possibly) tilted, dis-
torted, or rotated image of the screen. When a screen is detected
its image is tracked along the subsequent frames, following
the natural movement of the user or of the spying camera.
Then, a geometrical transformation is estimated to rectify the
image of the screen thus eliminating distortions such as rotations
or perspective deformations. The resulting image is almost
equivalent to an image taken as if the camera were placed on
a tripod, just in front of the target screen. Phase 2 subtracts
the background (i.e., an image of the virtual keyboard with
no keys pressed) from each frame, to highlight the variations.
These variations are either fingers, removed with appropriate
image filtering techniques, or the visual feedback we want to
capture. In Phase 3, the recognition phase, the center of each
highlighted area is computed, and matched to the keyboard
layout to determine the general area of the pressed key. Then,
the templates of the letters neighboring the target region are
exploited to find the best-matching areas, thus recognizing the
keystrokes (if any).

To the best of our knowledge, we are the first to study the
concrete risks brought forth by mobile touchscreen keyboards
and provide a practical attack that works against mainstream
devices. Even though we demonstrate our attack on a specific
device (i.e., the iPhone) and layout (i.e., QWERTY), its gener-
ality depends upon very simple requirements and thus can be
extended with minor modifications.

In our evaluation, the system we implemented recognizes up
to 97.07% (91.03% on average) of the keystrokes typed, with
a 1.15% error rate, at a speed between 37 and 51 keystrokes
per minute, generally faster than tedious manual analysis. This
proves that our method can successfully recover keystroke
sequences by simply relying on the feedback displayed. If even
more precision is needed, syntax or grammar corrections tools
can be easily attached as a post-processing step, but this would
not represent a novel contribution.

The contributions of this paper are summarized as follows:

• in Section II we discuss the privacy issues brought forth
by user-friendly mobile devices. In our opinion, this is a
real-world example of the well-known trade off between
usability and security [8];

• in Section III we propose a technique for accurately recog-
nizing keystrokes from a video taken while a user is typing
on a mobile touchscreen device;

• in Section IV we detail the criteria we designed to precisely
select the keys based on the output produced by leveraging
computer vision and imaging algorithms.

• in Section V we discuss the results of three experiments
that show that our attack is feasible and, in realistic
conditions, we achieve remarkably high precision.

We conclude by discussing the limitations of our approach,
which are measurable and precisely described.

II. EAVESDROPPING TOUCHSCREEN KEYBOARDS

Eavesdropping is the (commonly unethical) practice of se-
cretly listening to a communication, with the goal of stealing
sensitive information. In some situations, eavesdropping may be
performed simply by observation (e.g., of a computer screen).
The most notable, low-tech example is known as shoulder
surfing, i.e., the practice of looking over a victim’s shoulder
while (s)he is visualizing or typing the target information.
Shoulder surfing is simple and effective, in particular to steal
someone’s PINs (e.g., at ATMs) or passwords (e.g., at a public
cafe which offers Internet access). However, when the target
information is ample, e.g., long e-mails or chat conversations,
real-time shoulder surfing becomes quite tedious if not un-
feasible. In fact, the attacker would need to observe the user
for extended periods of time, and possibly leverage recording
mechanisms (e.g., photographs or video-taping) to overcome the
limitations of short-term human memory, and then analyze these
materials offline to obtain the target information — which, in
the meanwhile, may have lost its value already.

Eavesdropping can also be performed through several types
of malware, such as trojan horses that record what a user is
typing, and subsequently send this data to the attacker. This can
be easily perpetrated remotely by leveraging the huge malware
arsenal available today [9]. In these cases attackers are not
required to be in the same physical environment of the victim.

In what follows, we explain how the remarkable and improved
usability of mobile touchscreen keyboards with the aforesaid
feedback mechanisms comes at the cost of making direct
eavesdropping stealthier, easier and time-efficient. In fact, to
make a system more usable for end users (who are not supposed
to be security experts), some security requirements are relaxed.

A. Usability and privacy in mobile devices

A crucial factor that favored the spreading of mobile touch-
screen devices was certainly the improved interfaces, in par-
ticular the ones that give some form of feedback to the users
while they type. For example, some BlackBerry’s touchscreen
keyboards vibrate each time a key is pressed, giving tactile
feedback to the user. But the most notable example is the iPhone
and Android keyboard. As exemplified in Figure 1, both devices
“assist” the user with an effective visual feedback.

As explained in the remainder of this section, previous
research demonstrated that, even in absence of such visual
feedback, it is possible to keep track of the victim’s fingers
and reconstruct large portions of texts from a video. However,
according to our preliminary study described in the following
section, it is very difficult even for a human to perform the
same task on mobile non-touchscreen keyboards, which do not
expose such details as their small keys are safely covered by
the victim’s fingers.

B. Preliminary study: Spying on classic mobile keyboards

The goal of this qualitative study is to support the intuition
that classic mobile keyboards are inherently less “privacy-
leaking” than touchscreen ones, because shoulder surfing is
harder to perform, even with the aid of a video camera. To
do this, we recorded a video depicting a BlackBerry keyboard
while a hypothetical victim is typing on it (1) a long English



Figure 1: Different mobile QWERTY keyboards. Classic,
BlackBerry-like devices feature tactile or mechanical keyboards
with small keys, while iPhone-like devices feature touchscreen,
feedback-rich keyboards.

TIME LENGTH ATTEMPT 1 ATTEMPT 2 ATTEMPT 3

0’23” 35 100%, 7’00” 12%, 30’00” 0%, -
4’22” 444 0%, - 0%, - 1.35%, -

Table I: Attempts to manually recognize a context-free and a
brief text typed on a BlackBerry keyboard. Hit rate and error
rate are reported along with the time required for recognition.
The time for typing each text and its length are reported too.
The sign “-” indicates that the volunteer gave up for excessive
fatigue.

text with no linguistic context1, and (2) a brief text, i.e., “Hello
world, how are you today? I am very fine, and you?” (41 letters
plus spaces and symbols, total 12 words).

Then we asked six volunteers to analyze the videos offline,
giving them “unlimited” time and the possibility of stopping,
slowing-down and restarting the videos as needed. Only one
volunteer was able to recognize, initially, some bits of the brief
text. Most of the keystrokes were not actually visible, and
thus the volunteer resorted to the rich linguistic context (e.g.,
“Hello w...” is likely to be “Hello world” ) as the only chance to
reconstruct also the whole text (yet this took 7 minutes, for just
23 seconds of video). Besides this exception, as summarized
in Table I, even with the help of a recorded video, a shoulder
surfer would be able to recognize only small portions (or none)
of brief texts. None of the volunteers was practically able to
reconstruct the longer, context-free text.

C. Related work

Previous research focused on eavesdropping personal com-
puter’s mechanical keyboards, and since our goal is to automat-
ically recognize what a victim is typing using a video as the only
information source, the closest work in previous literature is [5].
It proposes a sophisticated attack with unprecedented precision,
which searches the hands’ contour and spots occlusions of the
key-caps to identify keystrokes. An advanced grammar analyzer
then corrects the quite large amount of detection errors. Despite
its accuracy, such attack assumes that camera and keyboard are
aligned in a fixed relative position. While the latter assumption
is realistic (at least for the non-mobile world), the former is
not, especially because the authors mention that the webcam —
previously exploited to take the video — has to be aimed at the
keyboard, a really uncommon setup.

1the same context-free text utilized in our experimental evaluation, described
in Section V

Our attack makes no assumptions on the relative positions
of the target device and the camera; it even allows for victim
movements (not sudden ones, but most natural ones). Addition-
ally, the recording can be done with a handheld, low-end camera.
Clearly, as discussed thoroughly in Section VI, our attack needs
the mobile device to be visible to some extent, i.e., the screen
may be partially occluded by hands or other objects but yet there
is a minimum amount of the screen that can be recognized.
Additionally, as the attack precision is superior, we do not
strictly require post-processing to clean the output. Therefore
we can detect with high accuracy also keystrokes that do not
belong in a dictionary or have no context. Also, it must be noted
that, instead of exploiting large keys, which move vertically, our
attack exploits the visual feedback provided by virtual keyboards
(an insightful example is shown in Figure 1).

D. Shoulder surfing mitigation mechanisms

To prevent information leakage from mobile touchscreen de-
vices, two strategies have been proposed. The first one consists
in reducing the viewing angle of the screen, thus limiting the
chances for an attacker to see what a victim is typing. The
second strategy consists in designing the touchscreen interfaces
in such a way that users are forced to input sensitive information
in a secure way.

A notable example of the first type of strategy is a technology
recently patented by HTC [6]. The principle is very simple: a
wide viewing angle allows shoulder surfers to easily read what
a user is seeing. Thus, the patent proposes screens with a very
shallow viewing angle (i.e., 30 degrees vs. 130 degrees, which is
the human eye’s viewing angle). A similar idea is implemented
in the so called “privacy screen filters”2. As a consequence,
users would need to re-adjust the screen position continuously
as they move to keep it aligned to their sight. HTC proposes to
solve this issue by orienting the screen dynamically, according
to the position of the user’s eyes estimated from gyroscopes and
front-facing cameras. Although this mechanism is not yet on the
general market, it may limit the chances for a shoulder surfer
to take a usable video of a user while typing.

The method described in [7] falls in the second type of
protection strategies. The authors propose a methodology for
designing secure touchscreen interfaces. In particular, they focus
on virtual keyboards and, more specifically, those used to enter
sensitive information such as PINs on public terminals (e.g.,
automated teller machines), which typically contain a limited
character set (e.g., numbers or letters only). For this reason, it
is feasible for a human to map their credentials onto a different,
temporary, mnemonic alphabet (e.g., colors or simple shapes).
This mapping is dynamically chosen by users before each au-
thentication session. Then, credentials are entered using the new,
temporary alphabet. This approach mitigates casual shoulder
surfers, but the authors explicitly mention that no protection is
guaranteed against attackers armed with video cameras, who can
record, rewind, and review the entire interaction. Therefore, the
general approach we propose cannot be effectively mitigated by
this type of techniques, unless the interaction involves feedback
that is hard to track.

2e.g., http://www.case-mate.com/Privacy-Screens/Case-Mate-iPhone-3G-
Full-Face-Privacy-Screen.asp



A different example of the second type of mitigation strategy
is described in [10], which consists in tracking the user’s pupil
movements and map them onto a grid layout to implement
a gaze-based keyboard. It must be noticed, however, that the
proposed threat model is quite unrealistic, because it assumes
that a motivated attacker would not be able to hide a micro-
camera on public terminals, while the high success of card
skimming [11] shows that devices that typically comprise a
micro-camera and a skimmer are routinely hidden into ATMs.
In addition, these countermeasures are not suitable for mobile
devices conditions, because the quality of the eye-tracking
decrease in mobile scenarios.

Given the state of the art of the research in computer vision
applied to gesture recognition and provided that no definitive
protection solutions exist, we conclude that the extent to which
usability of mobile touchscreen keyboards affects the users’
privacy needs to be assessed thoroughly. To this end, in what
follows we demonstrate that a malicious attacker can effi-
ciently violate a user’s privacy by automatically eavesdropping
keystroke sequences by exploiting the visual feedback displayed
by modern, mobile touchscreen devices.

III. EXPLOITING HIGHLY-USABLE TOUCHSCREENS

In this section we describe a practical attack against touch-
screen interfaces. Before describing the algorithm, its threat
model and assumptions are detailed.

Threat model and attack requirements

In our threat model the attacker is allowed only to record a
video, at any viewing angle, of the target device while the victim
types on it. No remote nor local access to the device is required.
The reconstruction of the text is based solely on the feedback
displayed on the screen, and no visibility of the typed text is
assumed. For example, the victim may type text on a “password”
input field, where the letters are replaced with asterisks or dots.
Our attack requires no high-end cameras, tripods, nor any other
special equipment. For example, an hypothetical attacker may
just stand behind the victim (e.g., waiting at a bus station) and
point a camera (possibly, a very small one embedded in a smart-
phone) towards the victim’s device.

Our attack is extremely general, depending exclusively on the
following simple and realistic requirements:

Requirement 1: the target virtual keyboard must display
feedback whenever a key is pressed. From now on, we
refer to such feedback as the magnified key. Magnified keys
must be partially visible (at least in one frame after each
keystroke). The attack works even if fingers partially cover
the magnified keys, as this typically happens while typing.
iPhone and Android devices, the two most popular mobile
touchscreen phones, both display magnified keys.

Requirement 2: the attacker must know the model of the
target device, in order to compute the following static
information a priori:
• screen template, a screenshot or a photograph of the

target device and application used by the victim, in-
cluding the most significant parts of the target screen
(i.e., the virtual keyboard);

• key template, the appearance (i.e., sizes and font family
or symbol set) of each magnified key;

• magnified layout, a set containing the coordinates of
the central pixels of the magnified keys. In what
follows it is represented by ML = {c1, · · · ,cL}; note
that these central pixels can be easily mapped onto
a regular grid. For example, in the US English key-
board (Figure 2d), the magnified layout contains the
coordinates of L = 26 magnified keys, and c1 is the
coordinate of the central pixel of the magnified key
letter ‘Q’, while c2 corresponds to ‘W’.

For example, an attacker who wants to eavesdrop the input
from iPhone devices just needs to buy (or borrow) an
iPhone, install the target application(s) (e.g., Mail, Twitter)
and take a screenshot (or a cropped photograph with a
camera on a tripod, and the iPhone screen parallel to the
camera’s sensor). In many cases, one may conveniently
search significant screenshots via the Web. The attacker
then can easily build the grid of the magnified layout
by merely measuring the distance in pixels between each
magnified key’s barycenter. The key templates can be
automatically generated with a scriptable typesetting tool.

Our proof-of-concept implementation (detailed in Section IV
and thoroughly evaluated as described in Section V) has been
tested (using a low-end handheld camera) against the Apple
iPhone, yet, in principle, it can be adapted to capture keystrokes
from different devices, provided that they adopt a similar visual
feedback mechanism.

System overview
The screen template and the key templates are both static data,

i.e., computed offline only once. The actual input of our system
is a video of the victim typing on a touchscreen keyboard. This
is processed frame by frame as follows:

Phase 1: each frame is analyzed to detect the device
screen, by using a feature-based template-matching method
against the screen template. When the template success-
fully matches the device in the current frame, the screen
area of the device is selected and rectified. A successful
match is used to improve matches in the next frame(s).

Output: a rectified image of the current frame containing
only the device screen. This image is similar to the image
that a camera set on a tripod would acquire when the
device is at a fixed distance, with the screen parallel to
the camera’s sensor.

Phase 2: the magnified-key candidates are identified as
high-contrast areas of the rectified image that are different
from the template and the previous frames. The core
technique used in this phase is background subtraction.

Output: a segmented image (i.e., a map of the image areas)
identifying the magnified-key candidates. Typically, there
is more than one magnified key candidate per frame.

Phase 3: each magnified-key candidate is validated by di-
rect comparison with the corresponding template of the
magnified key, thus identifying the best-matching key.

Output: the recognized, typed symbol.
This workflow can be described by means of its intermediate
outputs. As exemplified in Figure 2, the acquired frame in (a)



(a) Input of Phase 1. (b) Input of Phase 2. (c) Input of Phase 3. (d) Output (i.e., the ‘R’ key).

Figure 2: Intermediate outputs on a sample capture. Phase 1: the device screen is detected in each frame It (a), cropped and
rectified, yielding Zt (b). Phase 2: the magnified-key candidates are selected within the foreground, i.e., the image areas shown in
(c). Phase 3: according to the coordinates of the magnified layout ML (d), each candidate is compared to its template to identify
the typed key. The template of ‘R’ is selected as it shows the best match.

is rectified obtaining the frame in (b), which shows several
differences with respect to the screen template and the previous
frames. In particular, such differences are not limited to the
‘R’ magnified key only, and three magnified-key candidates are
identified by Phase 2, as shown in (c). The validation of Phase 3
consist in comparing each candidate with the corresponding
template. The best match is given by the candidate magnified-
key containing the ‘R’, because an area that is very similar to
its corresponding template is identified in the frame. Thus the
typed symbol is successfully recognized. Note that, some frames
can be “empty”, i.e., with no keystrokes. Our algorithm handles
this case as detailed in Section III-C, IV-C.

Notation From hereinafter we consider grayscale images. An
image I is a matrix of real values in [0,1], and I(x,y) indicates
the intensity of its pixel at coordinate (x,y). Images are often
frames of a video sequence: in these cases, we use the subindex
t to indicate the frame at time t.

We indicate with It and Zt the acquired frame and the
corresponding rectified screen at time t, respectively. Image
rectification encloses image resizing and scaling, and yields Zt
that has the same size of the screen template, and minimum and
maximum value set to 0 and 1.To ease the notation, we use a
vector to indicate the 2D pixel coordinates x = (x,y) and, where
not specified, we assume that x belongs to the domain of Zt .

A. Phase 1: Screen detection and rectification

This phase is divided into two sub-tasks executed in cascade:
screen detection, that searches for any occurrence of the screen
in the input video, and image rectification, which estimates the
perspective deformation of the detected screen and rectifies its
image. Both methods rely on feature extraction and matching:
an image feature is a small image patch centered on a pe-
culiar point of the image, usually where the image presents
a discontinuity, e.g., a corner or an edge. Given two images
and their features, the features can be matched in order to find
image correspondences, i.e., two features representing the same
object in the scene. In our work we use the so-called SURF
features [12], which are invariant to rotation, scaling and skew
transformations.

For the sake of clarity, we first explain the rectification task
and then the detection algorithm.

Image rectification: Since the spying camera is looking at
the device from a skewed position, the resulting image of
the screen is perspectively distorted: typically, the rectangular
shape of the screen is imaged as a trapezoid. This effect can
be corrected by generating a (synthetic) rectified image that
preserves the screen’s geometry. In general, the distorted image
of a planar surface is related to its rectified version by a linear
transformation H called homography [13]. The homography
maps corresponding points of the two images according to the
following equation: x

y
1

∼ H

x′

y′

1

 , (1)

where (x′,y′) and (x,y) are the image coordinates of the points
of the acquired images before and after rectification, respec-
tively. 3×3 matrix H represents the homography relating the two
images: it is a full rank matrix (hence the relation is invertible)
and it is defined up to scale, i.e., it has 9 elements but only
8 of them are independent [14], and they can be estimated
from the distorted and rectified images using a minimum of
4 corresponding points on the two images. This is implemented
via Direct Linear Transformation as detailed in Section IV-A.

In our case, since there are many invariant parts on the screen,
e.g., the keyboard and other graphical elements, we use the
screen template as a reference rectified image, and we exploit
the common parts to find corresponding points and estimate,
at any time t, the matrix Ht . Therefore, at any time step t, the
rectified image Zt can be obtained by applying the estimated
Ht to each pixel belonging to the device screen in the distorted
image It :

Zt(x,y) = It(x′,y′), (2)

where (x,y) and (x′,y′) are related by (1). The rectified image
Zt contains only the device screen, and has the same size of the
screen template (thanks to image interpolation). Finally, Zt is
scaled to guarantee that the darkest area correspond to 0 and
the lightest to 1; in such a way Zt can be easily compared with
the screen template.

Screen Detection: This is a challenging task because the
degree of (perspective) distortion and the position of the screen
in the frame can vary as the camera moves. Therefore, the whole



frame must be searched for the screen image. Also, the screen
can be (dynamically) occluded by fingers or other objects a
priori unknown.

For these reasons, we use a feature-based template match-
ing algorithm [15]. The SURF features of the template are
matched with the features of the current frame, in order to
find corresponding points and detect the region of the image
where the screen appears. In order to have a reliable detection,
false correspondences must be ruled out: indeed some features
may be mismatched if the corresponding patch is similar but
belonging to different objects in the scene. Therefore, we exploit
the additional constraint provided by the homography relating
the template and the current frame: all the correspondences are
used to estimate the homography Ht in a RANSAC [16] process,
which allows to discriminate inliers and outliers, i.e., good and
false corresponding points: if the number of inliers is sufficiently
larger than the number of outliers, then the screen is considered
detected and the estimated homography is used to rectify the
image of the screen. Otherwise, no screen is detected and the
frame is discarded.

This approach is faster than a pixel-wise comparison of the
two images and it can be easily extended to any other device
just by using the proper template image.

B. Phase 2: Magnified Keys Detection

Magnified keys are dynamic elements of the rectified frame
sequence, thus, they can be effectively detected with background
subtraction techniques [17], often adopted, for instance, to
identify intruders in videos taken from surveillance cameras.

1) Background Subtraction: An estimate of the background
model that describes the depicted scene in stationary conditions
is needed. Each frame is compared with said background model
to identify possible dynamic objects, i.e., the scene’s foreground.
More formally, the background model is composed of the
background image B0(x), typically estimated as the pixel-wise
average of a training sequence that contains no foreground
elements, and by Σ0(x), an estimate of the pixel-wise standard
deviation of the training sequence. For the sake of clarity, we
assume here that a short sequence of frames depicting the device
before the victim starts typing is available, and can be used as a
training sequence to estimate B0 and Σ0, while in Section IV-A
we detail how our implementation estimates them when no
training sequence is available.

Let Zt be the rectified frame at time t, containing the screen
area. According to one of the most straightforward background-
subtraction technique [17], Ft , the foreground at time t, is

Ft(x) =

{
1, if |Zt(x)− Bt−1(x)|> kΣt−1(x)
0, otherwise

, (3)

where k > 0 is a tuning parameter, Bt−1 and Σt−1 are the
estimates, at t − 1, of the background image and its standard
deviation, respectively. These are recursively computed as fol-
lows:

Bt(x) =

{
Bt−1(x), ifFt(x) 6= 0
αFt−1(x)+(1−α)Bt−1(x), otherwise

, (4)

and

Σt(x) =

{
Σt−1(x), ifFt(x) 6=0√

α(Ft(x)−Bt(x))2+(1−α)Σ2
t−1(x), otherwise

, (5)

where α ∈ [0,1] is an update parameter. The update relies on
the assumption that each pixel in the background image is
distributed according to a Gaussian, whose mean and standard
deviation are updated at time t when the pixel does not belong
to the foreground.

2) Magnified keys identification: Foreground Ft discloses
parts of Zt that have changed with respect to the background
Bt : such changes can be due to occlusions (most probably
typing fingers), light changes, rectification errors, and magnified
keys. In order to disambiguate magnified keys, we exploit the
following priors:
• key magnification lasts for few frames, and typically less

than other occlusions. Thus, the short-term foreground St
has been introduced to highlight image parts that have
recently changed:

xSt(x) =

{
1, if |Ft(x)− [Ft(x)]n|> 0
0, otherwise

(6)

with [Ft(x)]n = 1
n ∑

n
i=1 Ft−i(x), and n ∈ N corresponds to

the minimum number of frames a magnification lasts.
• Magnified keys (black characters over a white key area)

are characterized by higher contrast than other occlusions
and the background. These provide a high response when
Zt is processed by high-pass filters: therefore we compute
the gradient Gt and the Laplacian Lt magnitudes by means
of convolutional filters:

Gt(x) = [(Zt ~gx)(x)]2 +[(Zt ~gy)(x)]2 , (7)

and

Lt(x) =
[(
Zt ~g2

x
)
(x)
]2
+
[(
Zt ~g2

y
)
(x)
]2
, (8)

where gx and gy denote the first-order derivative filters,
g2

x and g2
y the second-order ones, and ~ the discrete

convolution.
The average of short-term foreground and high-frequency in-
formation is Mt(x), and provides a heuristic measure to indicate
of how likely the foreground contains a magnified key in each
pixel:

Mt(x) =

{
1
3

(
Gt (x)

max Gt (x) + St(x)+ Lt (x)
max Lt (x)

)
, ifFt(x) 6= 0

0, otherwise.
(9)

Note that, Mt(x)∈ [0,1], as the terms in (9) are in the range [0,1].
Also note that, Gt(x) and Lt(x) in (7) and (8) are taken into
account only in the foreground pixels (i.e., where Ft(x) 6= 0).

3) Segmentation: Values of Mt can be considered as gener-
ated by two classes: (1) the magnified keys, which yields high
values, and (2) other foreground elements (e.g., fingers, other
occlusions, screen displacements due to rectification errors)
which indeed results in low values. Thresholding is then a viable
solution to distinguish magnified keys: the threshold Γ > 0 can



be determined by the Otsu method [18], which is widely-used
in image binarization. The thresholded image

Kt =

{
1, if Mt(x)> Γ

0, otherwise
(10)

is non-zero in regions containing a possible magnified key,
according to the measure Mt . The binary image Kt is then
segmented, using conventional morphological image processing
techniques [19], to identify its connected components (blobs).
Each blob is indeed a set of pixels coordinates and Figure 2 (c)
shows the image values in these blob’s areas. In what follows,
the set of blobs is denoted by Bt .

C. Phase 3: Validation via template matching

The third phase identifies the magnified key that has been
pressed, if any: such key is selected by analyzing the blobs
in Bt . Each blob must be validated because Phase 1-2 may
introduce errors or spurious objects (e.g., a finger’s contour) that
do not correspond to a magnified key. Validation is performed
exploiting the magnified layout, ML, and the key templates, both
defined in Requirement 2.

Each blob b ∈ Bt , yields one or more magnified-key candi-
dates, which belong to the magnified layout ML. Section IV-C2
describes simple yet effective criteria to select magnified key
candidates for each blob. Let Ct ⊂ ML be the set of the
magnified-key candidates identified by all the blobs in Bt . The
best-matching key, at time step t, is denoted by c?t and is
looked up Ct by maximizing the key similarity. As detailed
in Section IV-C4, the key similarity measures the degree of
matching between key templates and Regions of Interest (ROI),
i.e., squared crops of Zt . Figure 3(a) and (c) give an insightful
example of a template and a ROI, respectively.

D. Keystroke Sequence Recognition

The phases 1-3 determine c?t , the best-matching key i.e., the
magnified key that has been most likely pressed in frame t. Nev-
ertheless, keystroke sequence recognition is not straightforward
as key magnifications typically last longer than one frame, and
there are frames that do not contain magnified keys. These issues
are addressed by analyzing how the key similarity of c?t varies
with t. Section IV-C details a simple yet effective mechanism
to carry out such analysis.

IV. SYSTEM DETAILS

In this section we focus on the details of the system
overviewed in Section III, and in particular on the key-
recognition criteria. Phase 1 has been entirely implemented in
C++ with the OpenCV library [20] (the same used in [5]), while
Phase 2-3 have been implemented in MATLAB, using the image
processing toolbox functions, and then compiled in C++ for
integration with Phase 1.

A. Phase 1: Screen detection and rectification

The state-of-the-art algorithms required by this phase are
already implemented in the OpenCV library. More precisely:
• the SURF features are extracted by the cvExtractSURF

function set.

• The homography estimation is performed using the func-
tion cvHomography, which implements the classical Di-
rect Linear Transformation approach [21], embedded in a
RANSAC [16] framework to improve robustness.

• The function cvWarpPerspective applies the homography
Ht to the source image and generate the rectified image.

B. Phase 2: Magnified key detection

The background subtraction described in Section III-B re-
quires a short video sequence (about 2 seconds) capturing the
device when the victim is not typing, to estimate B0 and Σ0.
In practical applications this assumption is not always met.
Therefore, we tested our system in these challenging cases and
showed that B0 and Σ0 can be successfully estimated from the
screen template taken offline. Thus, B0 is initialized with the
screen template, and Σ0(x) ∼ σ ∀x, where σ is the standard
deviation of the image noise that is estimated from Z1 (the
first rectified frame) using the technique proposed in [22].
Although these estimates are quite a naı̈ve approximation, the
update process of (4) and (5) guarantees satisfactory recognition
performance (as shown in Section V).

For magnified key identification, Sobel filters [19] were used
in our implementation for (7) and (8).

C. Phase 3: Validation via template matching

As described in Section III-C, the input of this phase is the
set of blobs Bt at time t, while the output is the best matching
key symbol c?t , and its associated key-similarity measure Φt(c?t ).

To make the whole validation more robust we need to
compensate possible errors of Phase 2 (typically, blobs dis-
placed with respect to the magnified key), Thus, as stated in
Section III-C, each blob yields a neighborhood of candidates.
This, unfortunately, has the side effect of slowing down the
computation. To alleviate this, the best-matching key is looked
up within those candidates that have a percentage of black and
white pixels similar to their templates.

1) Key templates and Region Of Interest: For each key
c ∈ ML, we define the full key template, T f (c), the cropped
key template, T r(c), and the key Region of Interest, ROI(c), as
exemplified in Figure 3.

The key templates are the a-priori models of each magnified
key. Our system automatically generates them offline with a
scriptable typesetting tool (e.g., Adobe Illustrator or LATEX) to

(a) Full key template
T f (c4)

(b) Cropped key tem-
plate T r(c4)

(c) Region of Interest
ROI(c4)

Figure 3: The full key template, (a), used for computing dbw,
defined in (13), and the cropped key template, (b) used for
computing ncc, defined in (15), both performed with respect to
the ROI, (c), for a given key that, in this example, corresponds
to ‘R’.



render each symbol according as it appears in ideal conditions
on the device. In our implementation, both full and cropped key
templates are squared images: for the iPhone, T f (c) includes
the full white background of the magnified key, while T r(c)
is cropped to 2/3 of the area of T f (c) (see Figure 3a-b). As
highlighted in Figure 3c, the ROI(c) is the area of the rectified
frame where the magnification of the key corresponding to c
is expected. More formally, ROI(c) ⊂ Zt ,∀t is an image area
centered in c, of the same size of its full template T f (c).

2) Key neighborhoods: For each blob bi ∈ Bt the barycenter
ḃi is computed and the closest key, ci, of the magnified layout,
ML, is computed as

ci = argminc∈ML d(c, ḃi), (11)

where d(c, ḃ) = ‖c− ḃ‖ is the Euclidean distance. Then, for
each ci, we define its neighborhood N (ci) as the set composed
by ci and the coordinates of adjacent keys. Specifically, in our
implementation N (ci) = {cl

i ,ci,cr
i} is used, where labels ‘l’

and ‘r’ indicate the magnified keys at the left and the right
of ci, respectively. The neighborhood of ‘E’ is exemplified in
Figure 4. Note that, cl ,cr do not exist for certain keys. More
precisely, ‘Q’, ‘A’, ‘Z’ have no corresponding left neighbor,
while ‘P’, ‘L’, ‘M’ have no right neighbor. Thus N (c),∀c
contains either 2 or 3 elements.

Then we define the set of candidate keys as

Ct =

|Bt |⋃
i=1

N (ci), (12)

where ci is defined as in (11). Experimentally, we observed that
key validation yields better results when the neighbors of each
magnified key are considered.

3) Black and white percentage of pixels: The key similarity
Φt(c) is a computationally expensive measure, as it involves
several pixel-by-pixel comparisons. For this reason, it is eval-
uated only when ROI(c) is likely to contain the corresponding
magnified key (as opposed to, e.g., a finger, occlusion, or

Figure 4: At frame Zt , for each blob b1,b2 the candidate keys
c1,c2 are found as the keys that are closer to each blob’s centroid
ḃ1, ḃ2. The corresponding neighborhood are {cl

1,c1,cr
1}, and

{cl
2,c2,cr

2}, respectively.

spurious blob). For example, in Figure 4, some candidate keys
(e.g., cl

2,c
r
2) can be safely discarded as they are not resemble any

possible magnified key. A simple yet effective criteria to discard
these blobs is to compare, for each c ∈ Ct , the percentage of
black and white pixels in ROI(c) and in the corresponding full
template, T f (c). When they are similar enough, we put c in a
set of selected candidates, C ?

t ⊆ Ct , otherwise we discard c.
More precisely, given an image region A (e.g., a ROI or a

full key template), we define the function bw(A) = (Ab,Aw),
where Ab and Aw are the percentage of black and white pixels,
respectively. The black-white distance is then calculated as

dbw(c) = d
(
bw(ROI(c))−bw(T f (c))

)
/
√

2, (13)

where
√

2 guarantees that dbw ∈ [0,1],∀c. This distance is fast
to compute and is leveraged to build the subset C ?

t as

C ?
t = {c ∈ Ct | dbw(c)≤ Γbw} (14)

that indeed contains only those keys which full template matches
the corresponding ROI, with respect to bw. The threshold Γbw
is determined as described in Section IV-E.

Note that, in our implementation, dbw considers as black
pixels with intensity lower than 0.3, and white those with
intensity above 0.5. These thresholds have been experimentally
defined, because in the iPhone keyboard pixels not belonging to
magnified keys (that must to be ruled out) typically have values
in [0.3,0.5].

4) Key similarity maximization: The key similarity of the
magnified-key candidate c∈ C ?

t is proportional to the maximum
value of the normalized cross-correlation, ncc, between the
cropped key template T r(c) and the ROI(c):

Φt(c) :=
max(ncc(T r(c),ROI(c)))

1+dc
, (15)

where dc is the distance between the candidate c and the
barycenter of the corresponding blob bi that yielded c ∈
N (ci), and 1+dc is always non-zero. Recall that, maximizing
ncc(T r(c),ROI(c)) means considering different displacements
of T r(c) to determine the best match with ROI(c). In our system,
ncc is calculated using the fast algorithm in [23].

The best-matching key at time t is then identified as

c?t := argmaxc∈C ?
t

Φt(c) , (16)

and the corresponding key-similarity measure is

Ψ(t) := Φt(c?t ) . (17)

Summarizing, c?t identifies the magnified key selected as the
most likely to appear in frame Zt , while Ψ(t) represents the
measure of the similarity between the template, T r(c?t ), and the
corresponding region of interest ROI(c?t ).

D. Keystroke Sequence Recognition

In order to recognize the keystroke sequence, it is insufficient
to identify the best-matching key at each time step. In fact, key
magnifications typically last longer than one frame, and there
are frames that contains no magnified keys. These issues are
addressed by analyzing Ψ(t) when t varies (an example of Ψ

is plotted in Figure 5a). We stress that key magnification is
typically smooth, thus the measure Ψ(t) reaches its maximum
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(a) Ψ(t) and letters at coordinates c?t .
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Figure 5: (a): Ψ(t), the key similarity measure of the best matching key, c?t . (b): low-passed Ψ(t), threshold ΓΨ and local maxima
extracted. Frames providing values of Ψ(t) below ΓΨ are discarded. The brackets above each local maximum indicate the minimum
distance between two local-maxima, which can be considered as the minimum number of frames the key magnification lasts. The
selected keys, given by (16) are also displayed. Note that selected magnified keys last longer than one frame, and that the zero
values in Ψ(t) correspond to frames where phase 2 does not detect any blob.

and then decreases every time a key magnifies. Therefore, the
first issue is successfully solved by considering only the best-
matching keys corresponding to local maxima of Ψ(t).

The second issue, frames without magnified keys, is solved by
exploiting the fact that such frames exhibit lower values of Ψ(t).
Thus, these can be discarded by introducing a threshold on Ψ(t).
Such threshold ΓΨ is computed as described in Section IV-E,
and, experimentally, corresponds to a typical value of Ψ(t) when
there is no key magnification.

In order to reduce fluctuations of the key similarity measure,
we preliminarily process Ψ(t) with a low-pass filter (e.g., an
averaging filter), and we impose a minimum distance of 5
frames between adjacent local maxima. Figure 5b illustrates the
local-maxima extraction, threshold ΓΨ, the minimum distance
between the local maxima, and the corresponding keystrokes
recognized. Note that, at 25fps a typing rate of one stroke
every five frames is a high typing speed; we underline that
this choice only influences the maximum typing speed handled
by our system. Therefore, even when victims type slower than
one stroke every five frames, magnified keys are recognized
correctly.

E. Parameters estimation

Both thresholds Γbw and ΓΨ are determined by the following
statistical analysis. Few videos of different users mimicking
text typing without actually pressing any key are acquired.
Then, Γbw and ΓΨ are set to 1 and 0, respectively, and each
acquired video is processed by our system to record dbw(·)
and Ψ(·) into two sequences, Yd and YΨ. These sequences thus
contain the values assumed by dbw and Ψ(·) when there are
no keys magnified on the screen. We consider them as random
variables whose distribution is unknown. Hence, according to
Chebyshev’s inequality, the thresholds are Γbw = µ̂d +νσ̂d and
ΓΨ = µ̂Ψ +ησ̂Ψ, where ν,η ∈R are tuning parameters, while µ̂
and σ̂ indicate the sample mean and sample standard deviation,
respectively. Preliminary experiments on iPhone devices revealed

that ν = 0 and η = 3 yield best results, therefore we use such
values in our evaluation.

V. EVALUATION

The most important goal of this evaluation is to show that
our system implements an automatic, faster alternative to te-
dious manual inspection of a video while achieving comparable
accuracy in real-world settings. The second goal is to measure
the maximum recognition capabilities achievable under ideal
conditions, to better understand the possible errors that it may
exhibit when these are not met. The third goal is to evaluate
the robustness of our system to extreme working conditions, to
assess its limitations (detailed in Section VI).

Evaluation procedure, data and criteria

As summarized in Figure 6, our evaluations follow three
logical steps. The Typing step is performed by volunteers
(referred to as “victims”) and takes the ground truth text as
input. The Recording step is performed with a low-resolution
camera (i.e., 640 by 480 pixels @ 25fps) and produces a video
depicting the iPhone screen while the victim types in the input
text. Unless differently stated, we kept the handheld camera at
an angle such that our system can recognize the screen. This
simply means that Requirement 1 must hold. On the other hand,
fingers are allowed to cover the keyboard as part of the regular
typing actions. As detailed in the remainder of this section, the
Recognition step is performed by manual volunteers (referred
to as “attackers”) and also, automatically, with our system. In
both cases, the sequence of letters recognized is output.

In the remainder of this section we define precisely the evalu-
ation criteria and the ground truth text used as input.

Symbols: We evaluated our implementation on a peculiar
use case (i.e., the iPhone), which displays no feedback for the
spacebar (as explained in Section VI); however, we opted for
this device because of its vast popularity. For such reason,
the output text is the concatenation of words. Therefore, from



“loremipsum” Typing Recording Recognition “rempsum”I
“oremepsum”

V
“orempsum”

D

Figure 6: Our evaluations follow three logical steps. The target text, e.g., “loremipsum”, is typed in by the victim, who may
introduce errors, thus obtaining, for example, “oremepsum”. Given the visible (according to Requirement 1) magnified keys (e.g.,
“orempsum”), our system is run and D is output, e.g., “rempsum”.

hereinafter, when referring to “letters” (or “symbols”) we imply
excluding spaces. More precisely:
• I , is the sequence of symbols typed in, which might differ

from the symbols of original text, because victims in our
tests often introduce mistakes or skip words.

• V ⊆ I , is the sequence of visible magnified keys. Fingers
may cover magnified keys entirely and for many frames,
hence our system might miss it.

• D , is the sequence of symbols recognized by either our
system or an attacker.

Notation For convenience, we indicate with “u” the intersec-
tion between keystroke sequences. For example, ‘spaghetti’u
‘pdagjetti’ = ‘pagetti’.

Hits: Given the aforesaid measures, we are interested in two
types of hit rates.
• actual rates are calculated with respect to V and thus

express the real hit rate of our system, because take into
account only the letters that the system could possibly
recognize (because Requirement 1 holds). The hits are

H := D uV , hence the hit rate is h := |H ||V | .
• perceived rates are calculated with respect to I and thus

express the “recall” of our system as perceived by con-
sidering it as a black box. Using the same formalism
described above, the perceived hits are H̃ := D u I , hence

the perceived hit rate is h̃ := |H̃ ||I | .

Notation For convenience, with “¬” we indicate the sequence
of symbols not marked as hits with respect to another sequence.
More precisely, A¬H is a sequence that contains all the sym-
bols in A that are not in hits, with respect to H . Note that, given
the way H is defined, this cannot be expressed with a simple
subtraction operation. For example, given H = ‘spaghetti’ u
‘pdagjetti’ = ‘pagetti’, ‘pdagjetti’¬H = ‘pdagjetti’ = ‘dj’.

Errors: Given the aforesaid measures, we are also interested
in calculating the errors, E := D¬H , and the error rate, ε :=
|E |
|D| .

Note that, the error rate is independent from the visibility of
the typed symbols, and quantifies the meaningless symbols in D .
For instance, in a video of a user mimicking text typing without
actually pressing any key, ε would express whether spurious
blobs are mis-detected as keystrokes.

Speed: We are interested in three speed measures:
• typing speed st := |I |

T , in symbols per second (sps), where
T is the elapsed typing time.

• recognition speed sr := |D|
Tr

, in symbols per second (sps),
where Tr is the execution time of Phase 1-3.

• processing speed sp is simply the maximum frame-rate (in
fps) achieved by Phase 1-3.

Ground truth input: Throughout our experiments, we utilized
three types of inputs:
• context-free text3 with poor context (63 English words, 444

symbols plus spaces). This ensures that manual attackers
in our experiments cannot simply reconstruct a word by
simply guessing based on the linguistic context.

• Context-rich text4, the first 65 words of the lyrics of Dream
Theater’s “Regression” song, which is rich of context (total
278 symbols plus spaces).

• Brief text, used to evaluate specific features and limita-
tions:. “Pellentesque habitant morbi tristique senectus et
netus et malesuada fames ac turpis egestas” (80 letters plus
spaces and symbols, total 13 words).

A. Experiment 1: Precision and speed comparison

To demonstrate that our attack works in practice we recorded
3 videos with context-free text and 3 videos with context-rich
text, each featuring a different victim. In particular, we asked
two iPhone owners to type naturally, as they would do in their
daily activities. The third victim is not used to type on an iPhone,
but is used to work with mobile touchscreen devices.

Each video was processed by our system and, to compare
its performance, we also assigned one different attacker to each
victim. Without any prior knowledge on the ground truth, each
attacker was asked to manually reconstruct the keystrokes by
stopping, rewinding or slowing-down the video as needed, in
order to recognize as many symbols as possible.

The average performance are summarized in Figure 7, and
detailed in Table II (context-free text) and Table IV (context-
rich text). Each table cell shows, for each victim and attacker
combination, |H | and |E |, the corresponding hit and error
rates h, h̃, ε, and the recognition speed, sr, (in sps). The sp
columns refer to the automatic attacker only. The “AVERAGE”
columns report the average (plotted in Figure 7) of the punctual
values obtained on each victim/attacker. As shown in Figure 7,
regardless of the text’s context, manual recognition is notably
slower than our system. For example, our system can recognize,
on average, up to 0.803 sps, about one third of the maximum
typing speed, and 0.864 in the best case, about one half of the
average typing speed. Only two attackers were able to surpass
such speeds.

As expected, with manual inspection an attacker can rec-
ognize symbols with slightly higher precision than our sys-
tem. This is more evident in the context-rich text experiment
(Table IV), where our system is outperformed by about 8 per-
centage points. Without any a-posteriori correction, for context-
free text for example, our system is just 3 percentage points

3publicly available at http://sqze.it/qMNwy
4publicly available at http://sqze.it/SGTu-
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Figure 7: Comparison of average precision (a) and speed (b) of our automatic detector vs. human attackers. While precision
(i.e., hit and error rates) remain within shallow bounds, the speed of manual recognition is significantly low with respect to our
automated attack.

below the best average attacker in our experiments. Hence, our
system is comparable with manual inspection, and as a plus, is
faster and, more importantly, tireless. Indeed, all the volunteers
described this session as an extremely tedious task, certainly not
doable for extended periods of time.

The analysis of these results must be “scaled” by taking
into account the typing speed. For example, Victim 3 types at
slow speed and, as expected, humans were able to recognize
keystrokes very efficiently. In case of faster users, manual
analysis is more tedious and prone to error, whereas our system
is not influenced by these factors (as long as magnified keys are
partially visible).

To the best of our knowledge, no state-of-the-art comparison
baseline exists for automated eavesdropping on mobile, touch-
screen keyboards. However, it is noteworthy that the state-of-
the-art system [5], which has the considerable advantage to work
on large, desktop-sized keyboards, can recognize at a speed of
only 0.101 symbols per second, with a maximum precision of
82%.

B. Experiment 2: Recognition in ideal vs. real-world conditions

In the previous experiment we assessed the feasibility of
the attack in natural conditions: the camera was handheld and
the victim was allowed to move naturally. The goal of this
second experiment is instead to evaluate Phase 1, and Phase 2-3,
separately, thus allowing us to measure the maximum achievable
performance of Phase 2-3 in ideal (unrealistic) conditions.

We recorded one victim while typing the context-free text in
ideal conditions (i.e., with a camera on a tripod and the device
fixed on a table, with its screen perfectly aligned and parallel to
the camera’s sensor), and run our system with Phase 1 disabled.
Values of hit and error rates are summarized in Table III. As
one may expect, under ideal conditions Phase 2-3 alone reach
remarkable hit rate and error rate. In particular, we notice that
the perceived hit rate, h̃, exhibits a higher improvement, 8.25%,
since in these ideal conditions magnified keys are not occluded
(e.g., the victim’s finger is always below each magnified key),
a less common case in real-world settings (e.g., because of the

camera’s skewed viewing angle) As a consequence, in ideal
settings |I | ' |V |, whereas in real-world settings |I | > |V |.
However, in Section V-A we showed that, in real-world settings,
Phase 1-3 together can reach up to 97.07% hit rate (91.03% on
average).

C. Experiment 3: Resilience to excessive aberrations

The goal of this third experiment is to stress the robustness
of Phase 1. To this end, we performed a series of brief typing
sessions and included several significant aberrations. In practice,
we asked a volunteer to type the brief text B.2 under the
following conditions:

1) we attached a piece of gray tape on the screen to emulate
a permanent occlusion,

2) we asked the victim to shake the device while typing,
3) the camera was shaken while recording, and
4) we asked the victim to shake the device while typing, and

the camera was shaken while recording.

As shown in Table V, Phase 1 was able to rectify parts of
the video and thus recognize the screen at some point of the
video. In the best case we were able to recognize 96% of the
symbols with as low as 4% errors. In the worst case, we are
still able to detect part of the text, 44.44%, although the errors
caused by the difficulty of dealing with objects that cover the
screen permanently are quite high. However, users seldom hold
touchscreen devices with permanent occlusions, especially while
typing. As shown in Figure 8, our system can handle sudden
movements of either camera or device, while Phase 1 fails when
both camera and device move excessively, causing intra-frame,
motion-blurring side effects that are computationally expensive
to remove and affects the features extraction task described in
Section III-A. However, some offline manual intervention at
the beginning of Phase 1 would help to extract the significant
features that would help to bootstrap the rectification, even under
challenging conditions, yet these techniques fall outside the
purpose of this paper.



Context-free experiment VICTIM 1 VICTIM 2 VICTIM 3

Typing time 4’19” 3’54” 5’54”
Symbols typed, |I | 440 442 445

Typing speed, st 1.698 1.888 1.257
Frames processed 5200 4686 7098

Processing speed, sp 9.6498 10.3450 9.6697

ATTACKERS
AVERAGE |H | |E | sr

h%, h̃% ε% sr h%, h̃% ε%

Automatic 355 20 0.673 356 11 0.729 430 5 0.61991.03, 85.95 3.16 0.674 87.01, 80.68 5.33 89.00, 80.54 2.99 97.07, 96.63 1.15

Manual 1 401 7 0.374 360 2 0.287 443 0 0.32196.09, 90.71 0.75 0.327 98.28, 91.14 1.71 90.00, 81.44 0.55 100.00, 99.55 0.00

Manual 2 288 15 0.974 372 2 0.208 442 1 0.46987.78, 82.88 1.90 0.550 70.58, 65.16 4.95 93.00, 84.16 0.53 99.77, 99.33 0.22

Manual 3 383 1 0.292 378 5 0.304 423 11 0.32394.61, 98.01 1.39 0.306 93.87, 87.04 0.26 94.49, 84.94 1.32 95.48, 95.06 2.60

Table II: Context-free text (444 letters). Average hit rate, h% (and h̃%), error rate, ε%, and recognition speed, sr (symbols per
second) of our automatic recognizer vs. manual recognition. The text typed is the same yet each victim mistyped some letters
and skipped some words randomly. Each text was reviewed by a different attacker (total 9). Note: below each value of |H |, the
corresponding h% and h̃% are displayed; below each value of |E |, the corresponding ε% is displayed.

VI. LIMITATIONS

Our system’s main limitation revolves around the fact that
keystrokes are recognizable as long as visual feedback, such
as magnified keys, is displayed. Therefore, if some keys are
not magnified our current implementation would not be able to
detect them. One example is the iPhone’s spacebar key, which
is not magnified but it simply changes color from light to dark
when pressed. To deal with this problem, we tried to develop
an ad-hoc solution leveraging the aforesaid color change. How-
ever, preliminary validation revealed that this technique fails
frequently because fingers often cover entirely the spacebar,
thus generating many errors. For this reason, this feature was
not included in the experimental evaluation as it will be further
investigated in future work.

Similarly, punctuation symbols on the iPhone keyboard are
selected on a different magnified layout, which is chosen by
pressing a non-magnifying key. To deal with this problem, our
system would need to support multiple templates, although this
may increase the computational cost. In Phase 3, for example,
the number of magnified-key candidates would increase propor-
tionally with the number of different magnified layouts, because
the validation step would need to lookup the best-matching key
by cycling through several alternative layouts. Consequently, the
system would rely on multiple key templates and multiple screen
templates. Thus also Phase 2 is affected.

As minor limitation, we do not take into account automatic
corrections performed by the device’s typing system. Fortu-

MEASURES IDEAL REAL-WORLD (AVG.) DIFFERENCE

PRECISION %

h% 95.12 91.03 4.09
h̃% 94.20 85.95 8.25
ε% 1.01 3.16 -2.15

Table III: Ideal conditions vs. real-world conditions.

(a) Both camera and device sudden movements.

(b) Device movements only.

Figure 8: Phase 1 is affected by sudden movements. In (a), a
quick relative movement generates a high blur level that pre-
vents the detection of the screen, which is instead successfully
detected when only the device moves (b).

nately, since many automatic spell checkers and correctors
are available for free in public domain, this poses no actual
limitations to our attack. In fact, as shown in previous work [5],
if the raw output of a system like ours contains many errors,
it is very easy to correct them automatically. Nonetheless, we
have shown that our system is quite accurate as no significant
errors are introduced other than those committed by the victim.
Thus, we believe that a simple automatic spell corrector would
suffice.

Last, since the system we propose is basically an automated
shoulder surfing attack, its applicability might be reduced by
screen-protection methods as those described in Section II-D



Context-rich experiment VICTIM 1 VICTIM 2 VICTIM 3

Typing time 2’47” 2’10” 2’23”
Symbols typed, |I | 270 250 277

Typing speed, st 1.616 1.923 1.937
Frames processed 3341 2607 2877

Processing speed, sp 10.8883 10.6351 10.8174

ATTACKERS
AVERAGE |H | |E | sr

h%, h̃% ε% sr h%, h̃% ε%

Automatic 220 40 0.708 218 10 0.838 246 8 0.86489.11, 85.83 7.64 0.803 86,27, 81.48 15.38 87.55, 87.20 4.38 93.53, 88.80 3.15

Manual 1 243 2 0.348 242 6 0.314 263 0 0.20997.11, 93.92 1.07 0.290 95.29, 90.00 0.82 97.18, 96.80 2.41 98.87, 94.95 0.00

Manual 2 231 8 0.802 232 1 0.485 255 5 0.47193.20, 90.14 1.90 0.586 90.58, 85.55 3.35 93.17, 92.80 0.43 95.86, 92.06 1.92

Manual 3 249 3 0.389 242 2 0.265 262 4 0.18597.77, 94.53 1.18 0.280 97.64, 92.22 1.20 97.19, 96.80 0.82 98.49, 94.58 1.53

Table IV: Context-rich text (278 letters). Average hit rate, h (and h̃), error rate, ε, and recognition speed, sr (symbols per second)
of our automatic recognizer vs. manual recognition. The text typed is the same yet each victim mistyped some letters and skipped
some words randomly. Each text was reviewed by a different attacker (total 9). Note: below each value of |H |, the corresponding
h% and h̃% are displayed; below each value of |E |, the corresponding ε is displayed.

simply because it would be more challenging to take a video, not
specifically because of a limitation of our recognition approach.

VII. CONCLUSIONS

To the best of our knowledge, we were the first to thor-
oughly demonstrate the feasibility of automatically recognizing
keystrokes on a touchscreen by exploiting the graphical interface
usability.

We have shown that our system can recognize keystroke
sequences nearly as accurately as a human attacker, yet sig-
nificantly faster, and in a fully automated way, without the need
of a postprocessing phase. In addition, our system works under
more realistic hypotheses than previous work [5], and works
under realistic conditions for mobile devices. Our experimental
validation confirms that our attack is feasible and work in real-
world scenarios, with a few well-defined limitations.

We conclude that modern touchscreen keyboards that magnify
the pressed keys to help the user while typing make shoulder
surfing easier and more efficient than in tactile or mechani-
cal, small-factor keyboard. Therefore, such interfaces must be
deemed unsuitable for scenarios that demand high privacy.

REFERENCES

[1] A. Smith, “Mobile access 2010,” Available online, Pew Research Center’s
Internet & American Life Project, Tech. Rep., July 2010, http://www.
pewinternet.org/Reports/2010/Mobile-Access-2010.aspx.

ABERRATION PHASE 1 PHASE 2-3

h% ε%

1) Permanent occlusion difficult 44.44 33.33
2) Shake device feasible 67.74 8.70
3) Shake camera feasible 96.00 4.00
4) Shake device + camera unfeasible 0.00 -

Table V: Detection results under different working conditions.

[2] G. S. Hurst and J. E. Parks, “Electrical sensor of plane coordinates,”
Available online, The University of Kentucky Research Foundation,
Patent 3662105, May 1970, http://www.google.com/patents/about?id=
UUovAAAAEBAJ.

[3] comScore, Inc, “Touchscreen mobile phone adoption grows at
blistering pace in u.s. during past year,” Available online, November
2009, http://www.comscore.com/Press Events/Press Releases/2009/11/
Touchscreen Mobile Phone Adoption Grows at Blistering Pace in U.
S. During Past Year.

[4] R. Cozza, C. Milanesi, A. Gupta, H. J. D. L. Vergne, A. Zimmermann,
C. Lu, A. Sato, and T. H. Nguyen, “Competitive landscape: Mobile
devices, worldwide, 3q10,” Excerpt available online, Gartner, Inc., Tech.
Rep., November 2010, http://www.gartner.com/it/page.jsp?id=1466313.

[5] D. Balzarotti, M. Cova, and G. Vigna, “ClearShot: Eavesdropping on
Keyboard Input from Video,” in Proceedings of the IEEE Symposium on
Security and Privacy, Oakland, CA, May 2008.

[6] Y.-M. Tsuei, “Method and apparatus for preventing on-screen keys from
being accidentally touched using the same,” US Patent 12427767, HTC
Corporation, April 2009. [Online]. Available: http://www.google.com/
patents?id=VU TAAAAEBAJ

[7] D. S. Tan, P. Keyani, and M. Czerwinski, “Spy-resistant keyboard: more
secure password entry on public touch screen displays,” in OZCHI
’05: Proceedings of the 17th Australia conference on Computer-Human
Interaction. Narrabundah, Australia: CHISIG of Australia, 2005, pp.
1–10.

[8] R. Anderson and T. Moore, “Information security: where computer sci-
ence, economics and psychology meet,” Philosophical Transactions of The
Royal Society, no. 367, pp. 2717–2727, 2009.

[9] U. Bayer, I. Habibi, D. Balzarotti, E. Kirda, and C. Kruegel, “A view
on current malware behaviors,” in Proc. of the 2nd USENIX conference
on Large-scale exploits and emergent threats (LEET ’09). USENIX
Association, 2009.

[10] M. Kumar, T. Garfinkel, D. Boneh, and T. Winograd, “Reducing shoulder-
surfing by using gaze-based password entry,” in SOUPS ’07: Proc. of the
3rd Symposium On Usable Privacy and Security. New York, NY, USA:
ACM, 2007, pp. 13–19.

[11] D. Russell, “2009 - skimming review,” Jan 2010.
[Online]. Available: http://www.atmsecurity.com/monthly-digest/
atm-security-monthly-digest/2009-skimming-review.html

[12] H. Bay, A. Ess, T. Tuytelaars, and L. Van Gool, “Speeded-up robust
features (surf),” Comput. Vis. Image Underst., vol. 110, no. 3, pp. 346–359,
2008.

[13] J. G. Semple and G. T. Kneebone, Algebraic Projective Geometry. Oxford
Classic Texts, 1998.

[14] R. I. Hartley and A. Zisserman, Multiple View Geometry in Computer
Vision, 2nd ed. Cambridge University Press, ISBN: 0521540518, 2004.



[15] R. Brunelli, Template Matching Techniques in Computer Vision: Theory
and Practice. Wiley, May 2009.

[16] M. A. Fischler and R. C. Bolles, “Random sample consensus: a paradigm
for model fitting with applications to image analysis and automated
cartography,” Communication of ACM, vol. 24, no. 6, pp. 381–395, 1981.

[17] M. Piccardi, “Background subtraction techniques: a review,” in Systems,
Man and Cybernetics, 2004 IEEE International Conference on, vol. 4,
2004, pp. 3099 – 3104 vol.4.

[18] N. Otsu, “A threshold selection method from gray-level histograms,” IEEE
Transactions on Systems, Man and Cybernetics, vol. 9, no. 1, pp. 62 –66,
jan. 1979.

[19] R. C. Gonzalez and R. E. Woods, Digital Image Processing (3rd Ed.).
Prentice-Hall, Inc., 2006.

[20] G. Bradski, “The OpenCV Library,” Dr. Dobb’s Journal of Software Tools,
vol. 25, no. 11, pp. 122–125, November 2000.

[21] Y. Abdel-Aziz and H. Karara, “Direct linear transformation from compara-
tor coordinates into object space coordinates in close-range photogramme-
try,” in Proceedings of the Symposium on Close-Range Photogrammetry,
1971, pp. 1–18.

[22] D. L. Donoho and I. M. Johnstone, “Ideal spatial adaptation by wavelet
shrinkage,” Biometrika, vol. 81, no. 3, pp. 425–455, 1994.

[23] J. Lewis, “Fast normalized cross-correlation,” in Vision Interface, vol. 10,
1995, pp. 120–123.


