
Investigating Web Defacement Campaigns at Large
Federico Maggi, Marco Balduzzi, Ryan Flores, Lion Gu, Vincenzo Ciancaglini

Forward-Looking Threat Research Team - Trend Micro, Inc.

ABSTRACT
Website defacement is the practice of altering the web pages of a
website after its compromise. The altered pages, called deface pages,
can negatively affect the reputation and business of the victim site.
Previous research has focused primarily on detection, rather than
exploring the defacement phenomenon in depth. While investigat-
ing several defacements, we observed that the artifacts left by the
defacers allow an expert analyst to investigate the actors’ modus
operandi and social structure, and expand from the single deface
page to a group of related defacements (i.e., a campaign). However,
manually performing such analysis on millions of incidents is te-
dious, and poses scalability challenges. From these observations, we
propose an automated approach that efficiently builds intelligence
information out of raw deface pages. Our approach streamlines the
analysts job by automatically recognizing defacement campaigns,
and assigning meaningful textual labels to them. Applied to a com-
prehensive dataset of 13 million defacement records, from Jan. 1998
to Sep. 2016, our approach allowed us to conduct the first large-scale
measurement on web defacement campaigns. In addition, our ap-
proach is meant to be adopted operationally by analysts to identify
live campaigns in the real world.

We go beyond confirming anecdotal evidence. We analyze the
social structure of modern defacers, which includes lone individuals
as well as actors that cooperate with each others, or with teams,
which evolve over time and dominate the scene. We conclude by
drawing a parallel between the time line of World-shaping events
and defacement campaigns, representing the evolution of the inter-
ests and orientation of modern defacers.
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1 INTRODUCTION
Website defacement, or simply defacement, is the practice of visibly
altering one or more web pages of a website upon compromising
it. The intent of the actor, so-called defacer in this context, is to
arbitrarily change or replace the original content of victim website
to advertise the success of her compromise. The resulting page,
called deface page, may contain information on the motive behind
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the attack, team affiliation of the defacer(s), or nicknames of the
supporting actors. Over the years, defacers have abandoned their
interested in defacing for the mere purpose of advertising the com-
promise, pursuing defacement more as a mean to broadcast strong
messages “to the World”—by compromising popular websites.

Despite several actors are still driven by the desire of promot-
ing their own reputation, an increasing number of defacers strive
instead to promote their ideologies, religious orientation, political
views, or other forms of activism, often closely following real-world
events (e.g., war, elections, crisis, terrorist attacks). We refer to this
phenomenon as dark propaganda, to highlight that legitimate re-
sources are abused for pushing the actors’ viewpoints. For example,
in 2013–2014 “Team System Dz” defaced over 2,800 websites, and
planted pro-ISIL/ISIS1 content to protest against the US military
action in the Syrian civil war2. In one of these incidents, the ac-
tors replaced the homepage of the British Rugby League club team
(Keighley Cougars) with disturbing, war-related pictures, along
with the message “I love you ISIS”. In Jan 2014, when the NSA was
found exploiting Angry Bird for mass-surveillance purposes3, a
group of defacers modified the homepage of Rovio’s Angry Birds,
and placed the NSA logo modified with the text “Spying Birds”.

The inappropriate or offensive content placed by the defacers
affect the reputation and continuity of the legitimate businesses
behind the targeted websites, making these campaigns not as in-
nocuous as they appear. In response to this, past research has pro-
posed monitoring solutions to detect whenever defacement content
is planted on a website [3, 5, 4, 2]. Although these systems are
operationally useful, they do not provide the analysts with in-depth
knowledge to help them understand and follow the web-defacement
phenomenon from an investigation standpoint. For example, the de-
tection method [2] uses the most accurate yet very opaquemachine-
learning technique—convolutional neural networks trained via deep
learning. Thus, despite yielding excellent detection rates, the out-
come is not very helpful to the analyst who needs to track the actors
behind these attacks, or reconstruct a campaign of defacements.

We observe a lack of methodologies to analyze, understand, and
track web defacements at large. Previous work along this research
line relied on metadata alone (e.g., reason for the attack, vulnerabil-
ity used, nickname of the attacker). Such metadata is spontaneously
provided by the attacker and thus should not be considered trust-
worthy. The only researches that have inspected the content of
the planted page are either outdated ([10] is from 2004, and the
defacement phenomenon have evolved since then) or limited to
manual inspection of a handful of pages [8]. We conclude that there
is a need for a comprehensive and large-scale analysis approach,
especially given the availability of datasets spanning over 19 years,
which so far have been used only for detection purposes.

1Islamic State of Iraq and the Levant (ISIL) / and Syria (ISIS)
2https://kevin.borgolte.me/notes/team-system-dz-isis-isil-defacement-campaign/
3http://www.bbc.com/news/technology-25949341
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To fill this gap, we take a data-driven approach that supports the
analyst at exploring and visualizing the data, eliciting the relevant
web-defacement campaigns. To this end, we identify a set of core
characteristics that “translate” the unstructured content planted by
the defacers (i.e. web page and linked resources) into useful fea-
tures. Using such features to represent a (large) dataset, we feed a
data-analysis and machine-learning pipeline that leverages scalable
clustering techniques to automatically group related defacement
records into campaigns. We then label these campaigns in a con-
venient and human-friendly representation that the analyst can
easily use for classic data-exploration tasks (e.g., graphing, plotting,
drilling, pivoting).

Not only the outcome of our approach leads to the detection of
relevant campaigns, but sheds light on the actors’ modus operandi,
social structure and organization, and allows flexible tracking and
investigation of defacements. Operationally, analysts can use the
results to provide early warning (e.g., sites that are more prone to
be defaced), understand how this happens (given the knowledge
of upcoming geo-political events such as elections), and ex-post
investigation.
Overall, the contributions of our work are:

• We conduct a measurement on a comprehensive dataset of
13 million defacement records (Jan 1998 to Sep 2016);

• We introduce a novel approach that builds intelligence infor-
mation to identify defacement campaigns, out of raw deface
pages;

• We show how our approach empowers the analyst in under-
standing modern defacements, including the social structure
of the actors, their modus operandi and motive;

• Through real-world cases, we show how defacement is lever-
aged for dark propaganda purposes, for example in support
of specific religious or political ideologies.

2 DEFACEMENT DATASET
This paper is based on a dataset comprising a unique collection of
defacement records from 5 major reporting sites, as summarized in
Table 1. These reporting sites provide feeds of defacement records,
aggregated from various sources such as sharing initiatives, CERTs,
or victims. Often, the defacers themselves voluntarily submit their
defacements, to advertise and “show off” their mischief. The defac-
ers are generally interested in submitting correct data, to the extent
that certain web-exploitation kits include automatic submission
routines that notify the reporting sites automatically upon success-
ful execution of the payload4. Despite the maintainers of popular
sites such as Zone-H strive to manually validate each submitted de-
facement, no strong assurance that the data is free from (deliberate
or incidental) errors.

As Table 2 shows, each defacement record consists of metadata
(e.g., timestamp of the deface event, target URL) and raw content
(e.g., the planted HTML or multi-media content). Moreover, to
enable our analysis, we derive additional attributes such as the
category of the defaced site (e.g., News, Media), the TLD, and so on.

Zone-H is the largest and richest archive, because of its popularity
and because it receives cross-submitted contributions. Therefore,

4https://gist.github.com/dreadpiratesr/798b21f2aa88bc651803

Figure 1: Records per year from Jan 1998 to Sep 2016.

we decided to purchase a copy of the dataset as of Sep 2016, along
with a full snapshot of the deface pages captured at the time the
defacement was reported5. We complement this dataset by crawling
the other reporting sites listed in Table 1.

As shown in Figure 1, our collection spans over almost 19 years,
from Jan 1998 to Sep 2016. During this time frame, the number of
reported incidents per year grew from few thousands to more than
one million, showing the increasing importance of the phenomenon
explored in this paper.

2.1 Metadata vs. Content
Given the heterogeneous and possibly unknown origins of this
data, these feeds are to be used cautiously, especially in operational
environments, because the risk of false or misleading information
is quite high. Indeed, as highlighted in Table 2, there are various de-
grees of trustworthiness for each data attribute. Although through-
out this paper we may use metadata attributes to draw statistics or
trends, the core of our analysis is based exclusively on the actual
content planted by the attacker on the deface pages (e.g., HTML
text, images, URLs, other linked resources, both internal and ex-
ternal), which is the most reliable data. We refer to a set of deface
pages setup by a group of actors—with a given goal in mind—to as
campaign. In the next section we will present the concepts needed
to better define a campaign. Except for the timestamp, which the at-
tacker “cannot” forge6, we ignore all low-trustworthiness metadata,
like the defacer’s declared nickname, target webserver, exploited
vulnerability, reason for hacking, and so on. This is one of the core
differences between our approach and previous work [8].

5The entire dataset takes about 1GB for metadata (in CSV) and slightly less than 1TB
for the deface pages.
6Note that the attacker might still wait (a long time) before submitting a defacement
incident, but this would be against her interest. Moreover, we are not really trusting
the accuracy of the timestamp, nor we are using it as a feature.

Source Site URL #Records

Zone-H www.zone-h.org 12,303,240
Hack-CN www.hack-cn.com 386,705

Mirror Zone www.mirror.zone.org 195,398
Hack Mirror www.hack-mirror.com 68,980
MyDeface www.mydeface.com 37,843

Total 12,992,166
Table 1: # of Records per Reporting Site
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Type Attribute Example Description Trustworthiness Explanation

Metadata
(∼1GB)

Timestamp 1998-01-02T15:14:12+00:00 Time of reported defacement incident Medium-high The attacker will get poor visibility by forging this datum

Nickname Team CodeZero Pseudonym of the attacker or submitter Low-medium The attacker has no interest in but can forge this datum

URL http://janet-jackson.com/ URL of the planted deface page High The attacker has no interest in forging this datum and
can be verified by the submission site

Webserver Nginx Name and brand of the webserver running
at the time of defacement

Low The attacker or submitter can forge it at no cost

Reason Political reasons Motive of the defacement Low The attacker or submitter can forge it at no cost

Hack mode SQL-Injection Vulnerability used to enable the upload of
the defacement content

Low The attacker or submitter can forge it at no cost

Raw content
(∼1TB)

Main page HTML or TXT file File storing the source code of the main
defaced content (at the given URL)

High The planted content is the subject of the defacement

Embedded resources Various formats Images or other web resources linked by
the defaced page and hosted within the
same compromised web server

High Collected as part of the main page by the submission site

External resources Various formats External resources used in the main page Medium-high Can change over time or become unavailable

Table 2: Metadata and raw content available in our dataset, along with a description of the trustworthiness of each attribute.

2.2 Overall Statistics and Trends
We hereby provide an overview of the key statistics and trends that
we observed in our dataset, before running our automated analysis.

2.2.1 Topics Over the Years. To observe the evolution of the
messages left by the defacers, we use an off-the-shelf machine-
learning technique called topic modeling, which is widely used in
news classification to determine the subject of a written story (e.g.,
politics, technology, finance).

For the scope of this section, a topic-modeling algorithm can “fit”
a large corpus of documents (i.e., our deface pages) to an arbitrarily
small set of high-level concepts. We use the latent-semantic analysis
technique [1], which assumes that words that are close in meaning
will also occur in similar documents.

Year Most relevant topics

1998 question, student, security, number, place
1999 cowboy, team, security, think
2000 baby, tabloid, people, provided
2001 lord, prime, provided, saved, better
2002 worry, sind, lame, care, encryption
2003 backup, gift, team, came, take
2004 best, group, micro, look, total

2005 normal, pope, time, familia, contact
2006 terror, saved, intruder, energy, user
2007 badger, since, high, turk, turkey
2008 crew, speech, warning, saved, team
2009 knowledge, acker, team, album, country
2010 posted, member, protocol, kernel, security
2011 contact, security, village, holding, highlander
2012 saved, contact, team, underground
2013 team, forgive, security
2014 eagle, crew, electronic
2015 clash, king, terrorism, visit, alligator
2016 marocain, turk, steel, anonymous, team

Table 3: Most relevant topics each year.

In practice, after extracting the text from each of the planted
web pages, we remove stop words7, words containing non-ASCII
letters, and any occurrence of team or defacer nicknames (obtained
from the metadata), because they do not contribute to defining the
overall message. We then feed the topic-modeling algorithm with
the entire collection of pages.

Focusing for simplicity on the English language, we notice from
Table 3 that early defacements (e.g., 1998–2004) are primarily fo-
cused on exposing the scarce security of the target web site (e.g.,
‘security’, ‘backup’, ‘lame’), which made the defacement possible.
From 2005 on we notice an interesting shift, with terms such as
‘pope’, ‘terror’, ‘country’, ‘marocain’, ‘turk’. Although we cannot
draw any strong conclusion yet, we understand that modern de-
facers are all but disconnected from real-world events, and seem
to use defacement to express their thoughts. The most striking
examples are the papal conclave of 2005, the Turkish general elec-
tion in 2007, the Moroccan general election in 2016, and the coup
d’état attempted in Turkey in 2016. In Section 5.3 we show how our
analysis approach allows to easily draw these parallels.

In addition to highlighting the scarce level of security, another
common theme throughout the years is the sense of “belonging” of
the defacers to a team, as expressed by words like ‘team’, ‘crew’ or
‘group’. In Section 6.1 we show how our analysis approach allows to
easily explore the social structure of the defacers, which resembles
that of gangs, characterized by strong, longstanding relationships.

2.2.2 Targets Over the Years. Excluding generic top-level do-
mains (gTLDs)8, the top TLDs are .com.br (4%), .de (3.5%), .co.uk
(3.2%), .nl (2.5%), .it (2.3%), and .ru (2.2%). Interestingly, looking at
the yearly breakdown (Table 14 in the Appendices), in 2002–2009
German websites (.de) were the main target, while recently (2010–
2016) defacers seem to find most targets in Brazilian (.com.br) and
Russian (.ru) web sites. Note that, the choice of the target could be
guided by the type of message (e.g., attacking a national or .gov
website to protest against the government), or simply by chance
(e.g., small websites are more vulnerable). Indeed, most of the tar-
gets are popular web applications (WordPress, Joomla, and Drupal),

7From the comprehensive list at https://github.com/igorbrigadir/stopwords
8 .com, .org, .net, .edu, .gov, .mil
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frequently targeted by automated exploitation scripts whenever
a new vulnerability is found. Unsurprisingly, the most targeted
platforms are Linux (72%), with Windows 2003 (12.3%) and 2000
(3%) being the second and third most popular OSs. Despite this
breakdown is derived from a low-trustworthiness attribute, these
values are aligned with server-OS usage statistics [9].

2.2.3 Malicious Content. As Figure 2 shows, there is an increas-
ing trend in the adoption of malicious client-side content (e.g.,
JavaScript) in deface pages. To draw this trend, we processed our
dataset with Trend Micro’s Site Safety Center9, which can detect
a wide variety of web threats, including obfuscated and complex
payloads.

Given the historical nature of our dataset, and that deface pages
are ephemeral, we can only speculate on the reasons behind this
trend. The attackers may have used an already-malicious page, or
might have been targeted with such malicious payload, or maybe
they wanted to monetize their deface page by selling so-called
“installation services” to third parties. Investigating the reasons
behind this practice is beyond the scope of this paper.

2.3 Key Observations
We conclude the section with two key observations that we use as
foundations for building our system and measurements.

2.3.1 Teams and Campaigns. According to the psychological
analysis conducted in 2001 by Woo et al. [10], web defacers coop-
erate in teams. Especially if driven by strong ideologies, defacers
are not lone wolves, but their modus operandi resemble that of
well-organized cyber gangs acting in a coordinated fashion.

After manually inspecting several thousands of deface pages,
we confirm that modern defacers tend to be affiliated in teams and
by no means act as “script kiddies”. In addition, we found out that
they organize their defacements into campaigns, which involve
multiple target sites and can be repeated over time. Each group may
conduct multiple campaigns, and one campaign may be supported
by multiple (partnered) groups.

Practically, we found out that the names of the teams as well as
their members appear in the content of deface pages. We take these
observations into account, such that our system can automatically
map the relationships between campaigns, teams, and actors.

2.3.2 Deface Campaign Templates. Because of how these teams
operate, the resulting deface pages often present notable character-
istics. In practice, when a team prepares and runs a campaign, it

9https://global.sitesafety.trendmicro.com/

Figure 2: Adoption of malicious content in deface pages.

Figure 3: Two deface pages based a common template.

tends to re-use a common template that each member can personal-
ize based on the target or other factors. For example, the two pages
shown in Figure 3 look similar to the human eye, because they
both have a black background, turquoise text, orange header, and 4
embedded videos10. Moreover, although not (always) visible to the
human eye, these two pages use the same character encoding (west-
ern). Upon manual inspection, we conclude that the actor Freedom
Cry (on the right-hand side) adopted a template, supposedly created
by the Anonymous R4BIA TEAM group (on the left-hand side), and
applied slight personalization.

Although the ‘how’ and ‘why’ are out of the scope of this work,
we cannot exclude that novice actors spontaneously copy and re-
use a deface pages taken from existing defacements, maybe to show
their will to be part of, or to glorify, a team.

Regardless of why, how, and to what extent a page is person-
alized, our key observation is that deface pages within the same
campaign are very similar to each other, if not identical. This is
a strong attribution indicator, which allows the analyst to group
them together and understand the relationships between teams
and actors. This indicator is the foundation of our approach for
automated campaign detection and tracking.

From hereinafter, we use the term campaign template (or, simply,
template) to indicate the content (e.g., bits of text, color scheme,
language, character encoding) that is common to most of the pages
within a campaign, which in turn can be leveraged to recognize
and identify each campaign.

However, performing this attribution manually is tedious and
extremely time consuming.

3 AUTOMATED ANALYSIS APPROACH
The previous section suggested that defacers are organized and act
in a way that leaves visible traces of their modus operandi in their
defacements. In this section we describe how we leverage such
traces in order to analyze millions of deface pages automatically to
find groups of similar ones, where the term “similar” indicates that
they belong to the same campaign.

Despite finding commonalities between web pages is a generic
and well-researched problem, deface pages from the same campaign
may still differ substantially. Therefore, the concept of “page simi-
larity” is more brittle than in classic information-retrieval settings.
Overview. Our approach is summarized in Figure 4.

The first phase, called Deface Page Analysis, extracts the raw
content from the deface pages, both dynamically (in a browser) and
statically (from the files on disk). From this content (e.g., rendered
10One is shown, 3 are at the bottom of the page
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Figure 4: Our approach first extracts the raw content from the deface pages, both dynamically (in a browser) and statically.
Then,weuse clustering to detect campaigns as groups of “similar” pages. Last, we label each cluster and visualize the campaigns
across several dimensions. The core parts highlighted in bold are described in this section, while the details are in Section 4.

HTML, images, and other media files), we extract a set of features—
the foundation for the remainder of our analysis.

In the Campaign Detection phase, we detect campaigns as groups
of “similar” deface pages, using an unsupervised machine-learning
pipeline. More specifically, we use data clustering as the core of our
analysis system, where each deface page is an object represented
as a tuple of numerical and categorical features. Similar pages will
have similar features, and thus will end up being clustered together.
Although one might be tempted to rely on a supervised machine-
learning approach (i.e., classification), the lack of ground truth is
a show stopper. As a matter of fact, if any reliable ground truth
existed, our work would not be needed in the first place.

Last, in the Labeling & Visualization phase, we label each cluster
based on its content, and visualize the detected campaigns across
several dimensions (e.g., time, actors, targets).

In the remainder of this section we describe the core parts of our
approach, deferring the implementation details to Section 4

3.1 Feature Extraction
Engineering the set of features is central to any clustering problem.

Based on our experience from manually analyzing thousands
of deface pages, we design the features listed in Table 4 in order
to capture the following aspects: visual (e.g., color, images, video,
audio), structural (e.g., HTML tags), lexicon (e.g., distribution of
character classes), social (e.g., use of social network handlers), and
so on.

We extract these features both statically (with pattern-matching
on the source files of the deface pages) and dynamically (from the
DOM obtained through a headless browser).

Although these features are, technically, extracted on attacker-
supplied data (i.e., the deface page itself), the fact that we extract
several aspects and the fact that we are not trusting the metadata,
makes our approach more resilient to feature evasion than the
existing approaches purely based on metadata.

3.1.1 Visual Features. As shown in Figure 3, the appearance
of a page immediately characterizes a campaign. This has been
confirmed by previous work: [2] demonstrates that a deep-learning

algorithm finds that small portions of the screenshot are strong
features that can automatically tell defaced vs. clean pages apart.

We extend this concept and include the perceptual hash of the
page screenshot, the 5 most common web-safe colors, and the num-
ber of images (i.e., <img> tags) found in the page. Indeed, as Figure 5
shows, web defacers have always been using images.

Moreover, Figure 5 suggests that modern defacers include em-
bedded audio files that play a song whenever the deface page is
rendered. Songs are typically related to strong symbols or ideolo-
gies, which the defacers want to promote. These audio files are
included via external URLs (e.g., pointing to YouTube, SoundCloud,
or other streaming services) using JavaScript or the <embed> tag.

We use two features: the first is numerical and counts the occur-
rences of “sound URLs”; the second is categorical and captures the
type of “sound URLs” – i.e. <service>_srv (service is YouTube,
SoundCloud, and so on) and <ext>_file (ext is MP3, M4A, WAV,
and so on).

Figure 5: Use ofmulti-media and image files in deface pages.

Figure 6: Use of email and Twitter handlers in deface pages.
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3.1.2 Structural Features. The same visual aspect can be ob-
tained through several different combinations of HTML tags. There-
fore, we use a set of features that count the occurrences of each tag,
focusing on the most relevant tags found in deface pages: style,
meta, embed, and object,script, iframe, and a.

3.1.3 Geographical Features. This group of features captures the
ethnicity of the page author. Character encoding is a good indicator
of the region (real or mimicked) where the author creates the deface
content. For example, ISO-8859-1 is popular among computer users
in Western Europe, ISO-8859-6 in Arabic-speaking regions, and so
on. We do not trust the encoding declared with the <meta> tag,
if any, because some defacers deliberately use an encoding that
differs from the declared one, probably inma an attempt to confuse
automatic analyzers. Instead, we use the popular chardet library,
the same used by modern web browsers such as Mozilla.

Moreover, we detect the language the text is written in. Although
language detection has become a common task and many reliable
tools exist, the co-presence of multiple languages in the same deface
page can confuse such tools. Moreover, the (typically long) list
of nicknames creates long sentences of existing and non-existing
words in mixed languages, making language detection prone to
errors. For this reason, although we have a language-guessing step
in our pipeline, we use this feature for descriptive purposes, not for
clustering nor to take any decision.

3.1.4 Domains Features. The inclusion of external resources
characterizes how a page is built (e.g., using libraries or pointing to
external URLs vs. self-contained page with embedded resources).
We capture this aspect with two features: the ratio of external
domains is the fraction of URLs included in the page that point to
domains that are different from the defaced one; the second feature
describes the “syntax” of such external domains i.e. the fraction of
ASCII letters in each domain name. We keep the average of this
latter value for each page.

3.1.5 Social Features. Defacers tend to follow the evolution of
Internet technologies and adopt mainstream communication and
social networking tools (including Internet Relay Chats in the past).
As Figure 6 shows, the number of Twitter @handlers and email
addresses over time present two opposing trends, with email slowly
leaving room to Twitter.

3.1.6 Page Title Features. The title is key element of a web page,
and so is for deface pages: The actors use a title that delivers the
core of their message, such that to ensure that search engines and
automated scrapers capture it, ensuring good visibility. We indeed
noticed—by manually analyzing thousands of deface pages—that
defacers seem to put a reasonable amount of effort to fit their high-
level message in the title, and sometimes the team member names.

This group of features captures an approximated representa-
tion of the lexical aspects of the title, encoded as the ratio of each
main character family (ASCII letters, punctuation, white spaces and
digits), normalized to the title length.

3.2 Clustering
Since our dataset contains millions of records, each represented by
tens of features, the choice of the clustering algorithm is constrained

by the available memory and time. Therefore, any clustering algo-
rithm that needs to materialize the entire distance matrix—or that
needs to perform pairwise comparisons across all the combinations
of elements—is not a suitable choice. The state of the art for memory
efficient, scalable clustering is BIRCH (balanced iterative reducing
and clustering using hierarchies) [11]. Without going into the de-
tails, instead of calculating and storing the distance between points
according to the entire feature space, BIRCH keeps 3 statistics for
each cluster (the number of elements in the cluster, the sum and the
square sum). These values are efficient to compute, and are suffi-
cient to calculate the distance between two clusters, their centroids,
and diameters. Moreover, BIRCHmaintains a B+-tree-like structure,
which allows to quickly find the closest cluster for each new data
point (i.e., deface page feature vector), and updates the tree as new
points come in. BIRCH requires one main parameter, the threshold,
which is used to decide whether a new sample should be merged
into an existing cluster, or it should start a new one. The branching
factor of the tree, which can be tuned, only influences the speed
and memory requirements, without drastically affecting the final
result.

Optionally, BIRCH clusters can be further post-processed with
any other clustering method. However, we manually validated the
results with BIRCH alone, and the clusters produced were correct,
containing tightly clustered data points, and overall matching the
output of manually clustered data.

Despite libraries and computation services help streamlining
machine-learning tasks nowadays, we still have to deal with the
peculiarities of the application domain, which are described in the
reminder of this section.

3.2.1 Categorical Features. Since BIRCH requires all features
to be real valued (or, at least, numerical), we reduce the number
of categorical features to the bare minimum, with each categorical
feature taking a small number of category values. This allows to
map each categorical type onto M-sized binary features (valued
zero or one, accordingly), whereM is the cardinality of the categor-
ical features. This procedure, known as one-hot encoding, has the
downside of increasing the number of features by a factor M , for
each categorical feature.

According to Table 4, we one-hot encoded the type of first sound
URL (21 categories), and character encoding. We do not use the
language for clustering.

To keep the problem feasible, we reduced the cardinality of
the encoding feature to 10 macro-categories. In fact, there exist
40 character encodings, which would mean 40 additional binary
features. To this end, we grouped the character encodings by region
of use, obtaining 10 values for this feature11 in no particular order.

3.2.2 Feature Selection and Weighting. Table 4 shows a selection
of the features that we originally designed. Indeed, we eliminated
features with near-to-zero variance, because they would have no
discriminant power in the clustering process. In our case, we elimi-
nated the counts of the <resource> and <link> HTML tags.

During our validation (described in Section 6), we noticed that
the perceptual hash was too discriminant, causing clusters to break

11European, Cyrillic, Greek, Turkish, Hebrew, Arabic, Chinese, Thai, Korean, and
Japanese

6

Session 11: Malware and Web ASIACCS’18, June 4–8, 2018, Incheon, Republic of Korea

448



Group Feature Name Type and range Description

Visual No. of Images integer [0,∞] Number of <img> tags
Perceptual Hash binary (64 bits) Calculated on the north-centered 1600x900 screenshot crop
Average Color 3 floats (RGB) Average of the 5 most common colors in the screenshot
No. of Sound URLs integer [0,∞] Number of URLs pointing to sound-hosting services or files
Type of first Sound URL categorical File and service type of the first (usually the only) sound URL

Structural No. of each <tag> 7 integers [0,∞] Number of style, embed, script, meta, object, iframe, and a tags

Geographical Encoding categorical Detected text encoding
Language categorical Detected language (for labeling only)

Domains External domains real [0,∞] Ratio of links pointing to cross-origin domains
Letters in external domains real [0,∞] Avg. ASCII letters in the external domains string

Social No. of online handlers int [0,∞] Twitter @handlers, #hashtags, e-mail addresses

Title Letters, digits, punctuation,
white-spaces in title

4 real [0,∞] Ratio of the listed character classes in the page title

Table 4: Clustering features that we extract from each deface page.

too often for minimal visual variations. Indeed, the perceptual hash
can be very sensitive to object replacement (e.g., the defacer changes
the background image, while the campaign is the same). For this
reason, we applied feature weighting, assigning 30% weight to the
perceptual hash feature, and 70% to the remaining features. We
set this weighting empirically, as described in Section 5.1, starting
from 50–50% and gradually shifting the weight towards the other
features.

3.2.3 Distance Metric. At this point, we have obtained a feature
vector with 6 high-level features (visual, structural, geographical,
domains, social, title), comprising 22 real-valued features and 95
binary-valued features, that is, 64 (perceptual hash) + 10 (encoding)
+ 21 (type of first sound URL). For real-valued features, the Euclidean
distance (L2-norm) is the natural choice, whereas binary-valued
features are typically compared by means of the Hamming distance,
which is very time efficient.12

3.3 Labeling & Visualization
To provide the analyst with an explainable and humanly-readable
view of the clustered deface pages, we represent each cluster as a
succinct report that includes the time span (oldest and newest deface
page), thumbnail of the screenshots grouped by perceptual hash,
and, most importantly, a list of patterns that create a meaningful
label of that cluster.

To this end, we rely on a set of regular expressions that we
built semi-automatically by inspecting thousands of deface pages
and clusters. Through these regular expressions, we can reliably
extract the name of the deface actor, team, and the set of terms
used by the attackers to name their campaign. For example, we
built patterns that capture all the variations of sentences such as
“hacked by TEAM / ACTOR NAME” or “#CAMPAIGN NAME” or “ACTOR
NAME defacer” (including l33t speech normalization, removal of
unnecessary punctuation, and so on). Although far from perfection,
having these strings extracted semi-automatically from each cluster
12The pairwise Hamming distance between perceptual hashes is a real value in [0, 1],
where 0 indicates that two images are essentially identical and 1 indicates that two
images are far from being visually similar.

allows to assign a meaningful name to an otherwise unidentified
set of similar pages, which speeds up considerably the manual
validation process.

Last, we annotate each cluster with the list of categorized tar-
gets (e.g., news site, government site), which we obtain from the
aforementioned Trend Micro’s Site Safety Center.

Armed with these additional attributes, the analyst can easily
explore, drill-in, and pivot the data, as showcased in Section 6. For
example, we can flexibly group the clusters by labels, period, target
(TLD, category), and so on.

Note (on Campaigns). We acknowledge that the concept of cam-
paign is fuzzy, and comes with some limitations that the reader must
be aware of. Clusters are meant to find very similar—with respect
to the defined features—yet not identical, deface pages. Campaigns
are meant as a higher-level grouping of clusters, based on patterns
provided by the analyst. In our experience, grouping solely on such
patterns does not eliminate the burden of inspecting the large num-
ber of similar-yet-no-identical pages. Similarly, clustering alone
does not provide semantic labels for the analyst to understand, at
a glance, the content of a cluster without inspecting it. For this
reasons, the definition of campaign encompasses both aspects.

4 IMPLEMENTATION DETAILS
In this section we describe the essential implementation details that
are needed to reproduce our data-processing pipeline.

4.1 Static & Dynamic Page Analysis
We extract the features both statically (i.e., from the page’s raw
HTML and the page’s source file), and dynamically from the DOM
that we obtain by rendering the page in a full-fledged headless
browser. Technically, the recent Chrome’s “headless browser mode”
resulted in the fastest and most robust choice.

For a given feature, when these two static and dynamic values are
different, we keep the greatest of the two; we assume that a greater
value unveils more content (e.g., obfuscated content is revealed
during rendering and in the dynamic analysis only).
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Despite the defacers are interested in creating functional pages
that can be rendered by a browser, the main challenge is that ex-
ternal resources could become unavailable at the time of analysis
(e.g., 404). To overcome this limitation, we set a rendering timeout
of 10 seconds before storing a (partial, but valuable) screenshot and
DOM representation.

4.2 De-duplication and Re-duplication
Often, defacers resort to re-using the very same page, resulting to
near if not exact duplicate records. We take advantage of this fact to
increase the throughput the analysis system is capable of. Indeed,
from a clustering viewpoint, two identical pages are treated as one,
single page. Therefore, before any expensive computation—from
Feature Extraction onward—we calculate a hash of the main file of
the deface page (e.g., “index.html”) and use it as a de-duplication
key. After clustering on the de-duplicated data, we re-duplicate
the data in each cluster using the same key, thus obtaining the
“expanded” clusters with the full set of original records. We opted
for the conservative and most precise choice of SHA over SSDEEP.

4.3 Normalization
We experimented with a time-dependent data scaling—using yearly
min-max bounds—rescaling each feature on a per-year basis, but
we obtained very poor results. To understand this outcome, let’s
consider the self-explanatory example of Twitter. Before 2006, when
Twitter was founded, the value of this feature was essentially zero—
apart for defacers using the “@name” syntax to highlight keywords.
Hadwe used a time-dependent scaling, a value of “1 Twitter handler”
in 2006 would certainly be the highest value found around that time,
whereas the same value in 2016 would be abysmal. As a result, low
values would be penalized in recent times, and inflated in the old
times, resulting in an overall flattened feature space. In terms of
clustering, looking at this example feature only, a page from 2006
having only 1 Twitter handler would be clustered together with
a page from 2016 having a dozen Twitter handlers, because the
two values (1 and 12) would have a similar normalized (low) value.
After this analysis, we decided not to perform time-dependent
scaling, and simply resort to dataset-wide normalization, using
an L2-norm function, which is a widely accepted practice in the
machine-learning community.

We do not scale binary-valued features, because the Hamming
distance do not require any scaling by design.

The BIRCH clustering algorithm is implemented in Scikit-learn [7],
the de-facto choice for Python-based machine learning, which is
well integrated with Pandas and NumPy [6] for data manipulation.

5 VALIDATION
Validating large-scale clustering results is hard. Without a ground
truth, the only option would be to use so-called internal validation
metrics, which are computed over the feature space, and character-
ize, for example, how “close” the elements within a clusters are to
each other vs. how far the elements of two separate clusters are.
These metrics do not predicate on the actual quality of a clustering,
but simply give an indication on the features’ discriminant power.
For instance, a perfectly good clustering in practice might have

decent internal metrics, and vice versa. Moreover, these metrics do
not scale, because they are computed over the pairwise distance.

To overcome these obstacles, we adopt a threefold approach.
First, we manually create a small ground truth, comprising 10 de-

face campaigns, which we expect our system to cluster accordingly.
This allows us (1) to calculate so-called external metrics, which
indicate how much a clustering “agrees” with the ground truth,
and (2) to find the best clustering parameters. Secondly, we run
our system on a large portion (1%) of our dataset, and manually
inspect the obtained clusters without any pre-built ground truth.
Last, we run our system on the entire dataset, isolate the largest
campaigns that are discovered, project them onto a time line, and
search for confirmatory evidence (e.g., online stories) to corroborate
such findings.

5.1 Initial Validation and Tuning
During our manual analysis of thousands of deface pages, we
learned about 10 well-known campaigns13, comprising of 4,827
pages overall.

On this dataset, we run our system on all the combinations of
feature groups (from Table 4), with a 0.1 to 0.9 BIRCH threshold. For
each iteration, we calculate both internal and external metrics. We
use the silhouette score (internal), which is close to 1.0when clusters
are compact and sharply separated clusters. Having a ground truth,
we calculated the V-measure, which is the harmonic mean between
homogeneity and completeness. The homogeneity is 1.0 if all the
clusters contain only deface pages that are members of a single true
campaign, whereas the completeness is 1.0 if all the deface pages of
a given true campaign are member of the same cluster. Therefore, a
V-measure score equal to 1.0 means perfect match between ground
truth and obtained clusters.

We obtain the best results with a BIRCH threshold equal to 0.5,
resulting in a silhouette score equal to 0.822 and V-measure equal
to 0.856 (0.907 homogeneity and 0.810 completeness). Therefore,
we set this threshold for the remaining experiments.

We examined the cause of few mis-clustered pages, and we
learned that such pages did not have a full screenshot available
(which affect the visual features), because some of the external re-
sources were not available anymore. After eliminating such pages
from the ground truth and input dataset, we obtained a clustering
that matched the ground truth perfectly.

As a final validation, we ran DBSCAN on the centroids of the
10 clusters obtained by BIRCH, which were confirmed. Given time
and memory efficiency of BIRCH, we decided to use BIRCH alone.

5.2 Large-Scale Validation
We validated our system on a larger—but still manually explorable—
dataset (1 month worth of records). We chose a time range (Jan
2015) where we knew from external sources that there were active
campaigns, without actually knowing where, in our dataset, those
campaigns were located.

Our system produced 2,722 clusters, of which we inspected 10%
(totaling 1,702 deface pages). For this, we followed a semi-automated
approach with the aid of the Labeling & Visualization phase in

13We named them: Syria.1, Syria.2, Bader Operation, Muslim Liberation Army, End
the Occupation, Operation France, Charlie.1 and Charlie.2
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Figure 7: Timeline of major real-world events reflected in the cyber space as defacement attacks.

Figure 4: The screenshots of the web pages, keywords, and the
fuzzy hash (SSDEEP) of the text of the web pages, helped speeding
up the validation process—although of course not a substitute for a
complete ground truth.

Through this process, we confirmed the identified campaigns,
which included: opdesaparecidos (Jan 10–25) with targets in Mex-
ico andArgentina, opthailand (Jan 05), and nasaanang (Jan 29–31)
with targets in the Philippines, including government-related sites.

We did not encounter any spurious cluster (i.e., with unrelated
defacements). However, we found 27 “split” clusters, despite their
content looked very similar. This expected result is due to the
conservative approach that favors fine-grained, yet very compact
clusters as opposed to spurious ones. Recall that, such clusters could
be automatically merged during the Labeling & Visualization phase.

5.3 Real-World Validation
We performed clustering on our whole dataset. Then, starting from
20 major events occurred in the World, we searched for such evi-
dence in our results. As Figure 7 shows, we found out key matches
that confirm the belief that actors use the cyber space as a parallel
“territory” for their propaganda.

Right after the 9/11, pro-Al-Qaeda cyber actors planted support-
ing web pages celebrating the outcome of the terrorist attacks,
whereas other cyber actors were against the event. We observe a
similar pro/against situation after the Charlie Hebdo shooting in
Jan 2015.

In Feb 2002, the riots in the Indian state of Gujarat were closely
followed by cyber actors, who protested against the violence by
planting deface pages in compromised Indian sites, asking to stop
such riots. We observe a similar reaction during the long and dev-
astating battle of Aleppo, for which we had to redact part of the
screenshot in Figure 7 because of the disturbing images.

In the case of the execution of Saddam Hussein (Dec 2006) and
death of Osama Bin Laden (May 2011), we observe several deface
campaigns condemning the executors.

Even election events are followed by the cyber actors. Inter-
estingly, unidentified actors have compromised and defaced the
website of the European People’s Party to protest when its leader

Year Actors Teams Clusters Year Actors Teams Clusters

1998 50 30 31 2008 12,169 6,936 85,085
1999 410 248 826 2009 13,779 8,762 76,567
2000 820 492 2,385 2010 16,762 8,156 96,599
2001 2,283 1,167 11,726 2011 19,203 8,959 117,396
2002 2,122 1,244 14,684 2012 21,640 10,051 121,243
2003 2,778 2,948 23,183 2013 21,366 10,032 125,195
2004 4,041 4,459 29,722 2014 19,318 8,811 112,760
2005 6,729 5,789 48,043 2015 20,659 12,164 167,031
2006 14,335 9,504 90,632 2016* 16,317 10,521 113,085
2007 12,941 7,323 76,000

Table 5: Yearly distribution of actors, teams and clusters as
reported by our clustering system from Jan 1998 to Sep 2016*

Jean-Claude Junker was elected president of the European Com-
mission in Nov 2014. Contrarily, D. Trump supporters planted de-
facement campaigns to celebrate after the Nov 2016 elections.

5.4 Limitations
During our validation, on top of successful cases, we also found clus-
ters with unrelated pages. After manual inspection, we identified
the two main corner cases that challenged our approach.

First, defacers using almost empty pages, with a short sentence as
proof of defacement (e.g.,“Admin, you beenHACKED! ByAttacker”),
yielding feature values with poor discriminant power. Fortunately,
such pages seldom form proper campaigns.

Secondly, the defacement leaves the original, functional web
application almost unaltered (e.g., planting traffic-redirection or
drive-by code). Strictly speaking, such cases do not qualify as de-
facements, and our system groups the “deface” pages based on the
features of the original page, forming clusters containing classes of
web applications (e.g., WordPress, Drupal).

6 CLUSTERING RESULTS
In this section we present a general overview of the results of our
clustering on the entire dataset.

Overall, our clustering took 35 hours of processing time, in-
cluding 2 hours for Labeling and Visualization. In comparison,
the fastest alternative for large-scale clustering (DBSCAN) would

9

Session 11: Malware and Web ASIACCS’18, June 4–8, 2018, Incheon, Republic of Korea

451



have required prohibitive (exponentially growing) computational
resources, as shown in Figure 8. Attempts to cluster 128,000 de-
face pages with DBSCAN crashed for main memory exhaustion on
machine with 256GB of RAM. This further confirms our choice of
BIRCH.

Table 5 reports the number of clusters detected by the system
over the year, together with the number of teams and attackers. On
average, the clusters that we obtained include 8–9 records (with
a 136–137 standard deviation), and span across 9.23 days (with a
77.26 standard deviation).

From a practical point of view, each cluster found by our system
represents the joint work of multiple actors, working for the same
attack, using visually similar deface pages, and, most importantly,
believing in the same ideologies. This represents a unique anal-
ysis pivot, towards better understanding on how attackers work
together—beyond anecdotal evidence.

In this section we provide example of the measurements that an
analyst can obtain with our system.

6.1 How Attackers are Organized
First, our system produces insights on how attackers are organized
in groups when conducting defacement campaigns. A good sum-
mary is given in Figure 9.

Overall, when looking at the general picture, about half of the
attackers (53%) are lone wolves, as they do not identify themselves
using a team name. The remaining attackers belong to one or more
groups. More in detail, our data suggests that most of the defacers
(80%) are devoted to the same affiliation(s) throughout their “career,”
while only 20% of them migrate from one group to another.

The same Figure 9 also describes well the concept of joint cam-
paigns. This phenomenon is quite common and only 30% of the
campaigns do not cooperate. On the other side, campaigns sharing
common motives, objectives or targets, are often driven by similar
geopolitical or religious ideologies and therefore interested in tar-
geting similar ethnic groups or races. For example, the following
campaigns—operated by hacking groups of different countries like
Spain and Italy—all advocate for the stop of the well-known Syr-
ian war in Aleppo: alepo_se_pierden, savesyria, save_halab,
stoptheholocaust, aleppo_is_burning and aleppo_é_in_fiamme.
In another example, actors from anarchist groups operate joint cam-
paigns to benefit from larger outreach: freedom, opanarchy and
delirium.

Figure 8: Scalability of BIRCH vs. DBSCAN (10 runs).

Figure 9: Cumulative distribution of the number of: joint
actors, affiliations (teams) per actor, joint teams, campaigns
per team, and joint campaigns. The term “joint” means “ap-
pearing together in the same cluster of deface pages.”

Figure 10: Teams (diamond nodes) and actors (circle nodes)
cooperate (arrows) in defacement campaigns (square nodes).
The “fallaga” team drives the largest of these campaigns,
while smaller teams (second column of nodes) refer to “fal-
laga” in their defacements. A minority of actors (nodes on
the right) conduct campaigns almost independently.

Digging deeper with an example, Figure 10 provides a view of
various campaigns pro and against the “Charlie Hebdo” attacks.
The “fallaga” team14 participate to the largest of these campaigns
(“chuipascharlie” slang for “I am not Charlie”), whereas smaller
teams are still referring to “fallaga” in their deface pages. Also, we
notice a vast majority of actors affiliated with at least one team,
and a minority of actors working almost independently.

6.2 Long Term vs. Aggressive Campaigns
Campaigns can differ in terms of durability and intensity. With the
following experiment, we capture such differences and visualize
them through the heatmaps in Figure 11.

Figure 11 left shows the longest lasting campaigns over our en-
tire dataset. For example, campaigns samarindahack and syshack

14“6 Members Of Fallaga Team Hacker Group Arrested” http://
cjlab.memri.org/lab-projects/monitoring-jihadi-and-hacktivist-activity/
6-members-of-fallaga-team-hacker-group-arrested-by-tunisian-authorities-over-opfrance/
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score 10+ years of presence in the underground with hundreds of
attacks distributed over the entire life of the campaign.

In contrast, the campaigns on the right last shorter and are more
aggressive with respect to the number of attacks they conduct. All
of them, including major geopolitical campaigns like bangladeshi
and savegaza reacting to war events in India and Palestine, prefer
visibility over stealth. This aspect is also highlighted from the cate-
gory of websites been targeted, with major news and media portals
been defaced for additional visibility.

6.3 Case Studies
Throughout this section we provide examples on how our system
can be adopted by an analyst to conduct real-world investigations
on historical and ongoing campaigns.

6.3.1 Timeline Analysis. Figure 12 shows a long-running cam-
paign named h4ck3rsbr. The 60 clusters are represented as hori-
zontal bars, annotated with the most targeted TLDs (on the vertical
axis) and the number of defacements in each cluster (on the magni-
fied detail on the right-hand side).

Although the entire campaign spans over 4 years, each cluster
(i.e., horizontal bar) does not go over 4 months. However, thanks
to these clusters sharing a common label like the name of the
campaign they affiliate to (i.e., h4ck3rsbr), we can automatically
draw a timeline.

As opposed to targeted campaings, h4ck3rsbr is generic, as it
targets websites hosted under various TLDs. Some of the groups
that contributed to the campaign are c0d3rz with a cluster of 24
defacements, Trustix (38 defacements), Fatal Error (6 defacements),
and Infektion Group (17 defacements). These clusters contain
templates with (pages having) either white or black background,
dating back to Oct 2006.

6.3.2 Targeted Campaigns (Victims’ TLDs and Categories). As
we previously discussed in Section 6.1, single campaigns often
cooperate for the benefit of the entire community. Figure 9 shows
that 70% of the campaigns cooperate and about half of the joint
campaigns are larger than 3. As said, this is often the case with
campaigns sharing common motives and objectives, e.g. in support
of certain ideologies like religion or politics.

In the following we present two examples of large-scale joint
campaigns that we observed in our dataset. Figure 13 visualizes the
Israeli-Palestinian conflict (left) and Anonymous operations (right).
In each of these graphs, one node is proportionally as big as the
number of connecting arcs (i.e. defacements). Similarly one arc is
as thick as the number of defacements.

For example, while the entire Israeli-Palestine conflict involves
12 campaigns, opisreal and opsavealaqsa15 represent the most
aggressive and active ones. With respect to Anonymous opera-
tions (on the right), these campaigns mainly focus on governmental
websites, as expected.

These are only some of the analyses that our system can provide
via automated correlation of the cluster labels.

15The Al-Aqsa Mosque in Jerusalem

7 RELATEDWORK
Despite website defacement being a longstanding issue, only limited
peer-reviewed prior work exists. We divide them roughly between
measurements and detection approaches.

Measurements on Web Defacement. Woo at al. [10], from the
psychology research community, have analyzed the content of
462 defaced web pages collected between January and April 2001.
They found out that only about 30% of the defacements had a
political motive. Although drawing statistics about the motive of
defacements is not among the goals of our work, we have briefly
highlighted in Section 2 that we have noticed an increased presence
of keywords that suggest that the defacers are more and more
driven by real-world conflicts and ideologies. Interestingly, the
same authors in [10] also notice that web defacers are not isolated
individuals, but are part of active and extensive social networks.
Unfortunately, 462 hand-picked web deface pages are just a drop
in the ocean if compared to the data available as of 2009: Indeed,
Zone-H has been active since 1998.

The most recent work is [8], which is very aligned with our
research goal. However, authors in [8] are more interested in under-
standing whether and to what extent there is a link between web
defacement and hacktivism. To answer such question, the authors
focused on deface records reported to Zone-H throughout 2016.
Interestingly, they also find an increase in the use of defacement
for political and patriotism reasons, especially in the past 3 years.
However, the authors relied on the metadata (see Table 2) rather
than on the actual content of the deface page, which gives only part
of the picture, and is very limited in number.

Detection of Web Defacement. In 2007–2008, Davanzo et al. [3]
compared the effectiveness of 7 anomaly detection techniques—
versus domain knowledge—at detecting web defacement, on a set
of 480,000 deface pages obtained from Zone-H. Interestingly, all
the 7 automatic techniques required a feature-space reduction to a
dozen features in order to deliver acceptable results. Instead, the
use of expert knowledge delivered good results, sometimes better
than the automatic techniques, even with the full array of 1,466
features that the authors have selected. This result, extended in [4],
supports our decision of proposing a decision-support system, as
opposed to creating a pure detection system.

Overall, the problem that approaches such as [3, 5] tackled is
fundamentally different: The authors were looking for features that
recognizewhen amonitored benign page is altered by a defacement—
a binary decision, whereas we are looking for features that tell the
various defacement campaigns apart—a multi-outcome and much
more complex decision.

In this direction, Borgolte et al. [2] is the most advanced tech-
nique presented so far. Instead of doing feature engineering and
selection, the authors let a deep-learning pipeline figure out the
best features to recognize deface pages. The input domain to the
learning algorithm, which uses convolutional neural networks, is
a screenshot of the page, obtained with a headless browser. As a
result, the neural networks (automatically) give importance to the
regions of the page that contain the logos of the hacking groups, or
the special “symbols” displayed using non-ordinary fonts. Indeed,
such visual peculiarities immediately catch the attention of the

11

Session 11: Malware and Web ASIACCS’18, June 4–8, 2018, Incheon, Republic of Korea

453



Figure 11: Longest lasting vs. most aggressive campaigns: the heatmap highlights their opposite nature. The cell represents the
number of attacks conducted by the campaign in the year. Longest-lasting campaigns (left) conduct slower and longer attacks,
while aggressive campaigns (right) react to geographical events (like terrorist attacks) and prefer massive attacks (conducted
few days after the event, for example).

Figure 12: The long-running h4ck3rsbr campaign, with 60 clusters overall, each represented with an horizontal bar, with top-
targeted TLDs on the horizontal axis, and a magnified view on the right-hand side, showing two of the templates (white and
black) used by the actors.

Figure 13: Israeli-Palestinian conflict (left) and Anonymous operations (right). Two groups of joint campaigns targeting Is-
raeli websites (left) and Governmental websites (right). The campaigns cooperating in each group share commonmotives and
objectives.

domain expert, who finds them unusual in a regular benign page.
Despite our work goes in a different direction, we were inspired by
how the authors leveraged the visual appearance of the page, and
we designed some of our features to capture this aspect.

8 CONCLUSIONS
Attackers compromise and deface websites for various reasons,
from supporting their personal reputation to, more interestingly,
promoting a certain ideology, or religious or political orientation.

Using an automated approach, we conducted a large-scale mea-
surement on 13 million records of defacement incidents spanning
over a period of almost 19 years. We shed light on how attackers
collaborates, how are organized into teams to run long-lasting and
impactful campaigns. In particular, we explored the dark propa-
ganda phenomenon, that is the abuse of websites to deliberately
place content that may affect the public opinion.
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Appendices

Year Top 5 eTLDs Excluding gTLDs

1998 com co.uk net edu mil co.uk edu mil it ac.cr
1999 com org net gov se gov se de edu gov.br
2000 com com.br org net edu com.br edu gov.br co.uk gov
2001 com com.br net org edu com.br edu com.tw com.cn de
2002 com net com.br de com.br de it co.uk
2003 com de net com.br org de com.br co.uk it
2004 com de net org com.br de com.br it co.uk nl
2005 com net org de it de it com.br co.uk ro
2006 com net org de co.uk de co.uk com.br info nl
2007 com net org de com.br de com.br info nl co.uk
2008 com net org de com.br de com.br co.uk nl info
2009 com net org com.br de com.br de nl co.uk dk
2010 com net org de co.uk de co.uk nl com.br info
2011 com net org com.br info com.br info co.uk ru nl
2012 com net com.br org co.uk com.br co.uk info nl ru
2013 com net org com.br de com.br de co.uk it ru
2014 com org net ru com.br ru com.br de co.uk it
2015 com org net com.br co.uk com.br co.uk ru in it
2016 com net org ru com.br ru com.br in pl it

Table 6: Top-level domains targeted each year, according to
metadata. The second column is obtained by excluding the
main generic TLDs (com, org, net). Ref. Section 2.2.2.

Team Size # Defacements Nationality

Mafia Hacking Team 47 714,863 Mashhad, Iran
Infektion Group 23 606,309 Brazil

h4x0rteam 31 604,597 Unknown
Hmei7 12 591,388 Indonesia

1923turk 2 547,208 Unknown
red devils crew 15 507,886 Saudi Arabia, China

team falcons hackers 41 491,361 Morocco
nopo team 12 474,379 Iran
ksg-crew 14 406,618 Unknown

anonscorpattackteam 12 356,248 Unknown

Table 7: Top 10 teams overall, according to metadata.

Year Top 5 Actors

1998 milw0rm, Team CodeZero, Zyklon, Giftgas, Magica de Bin
1999 AntiChrist, Fuby, PHC, Fl3m, ytcracker
2000 GForce, Prime Suspectz, Hackweiser, pimpshiz, WFD
2001 Silver Lords, BHS, PoizonB0x, Hi-Tech Hate, WoH
2002 Red Eye, Fatal Error, hax0rs lab, ISOTK, BYS
2003 TechTeam, PsychoPhobia, Red Eye, BloodBR, SHADOW BOYS
2004 iskorpitx, Ir4dex, r00t_System, Infektion Group, int3rc3pt0r
2005 iskorpitx, Infektion Group, ArCaX-ATH, Simiens, SPYKIDS
2006 iskorpitx, Thehacker, crackers_child, CyberLord, SPYKIDS
2007 iskorpitx, 1923Turk, crackers_child, GHoST61, Mafia Hacking Team
2008 iskorpitx, r00t-x, Crackers_Child, GHoST61, Dark_Mare
2009 iskorpitx, NobodyCoder, M0µ34d, 1923Turk, Fatal Error
2010 GHoST61, iskorpitx, TheWayEnd, 1923Turk, ByLenis
2011 TiGER-M@TE, 1923Turk, iskorpitx, KriptekS, GHoST61
2012 Hmei7, kinG oF coNTroL, TiGER-M@TE, 1923Turk, T0r3x
2013 Sejeal, Hmei7, misafir, BD GREY HAT HACKERS, SA3D HaCk3D
2014 d3b X, Hmei7, Index Php, Th3Sehzade, 1923Turk
2015 Index Php, w4l3XzY3, Kuroi’SH, d3b X, KingSam
2016 chinafans, GeNErAL, ifactoryx, Freedom Cry, 4Ri3 60ndr0n9

Table 8: Top 5 actors per year, according to metadata.
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Figure 14: Each screenshot is taken from one of the cluster that we identified in our dataset in support of the 20 major World
events used for the real-world validation of the clustering (ref. Section 5.3).
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