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The world of information and communication technology is experiencing
changes that, regardless of some skepticism, are bringing to life the concept of
“utility computing”. The nostalgics observed a parallel between the emerging
paradigm of cloud computing and the traditional time-sharing era, depicting
clouds as the modern reincarnation of mainframes available on a pay-per-use
basis, and equipped with virtual, elastic, paid disks-as-a-service that replace
the old physical disks with quotas. This comparison is fascinating, but more
importantly, in our opinion, it prepares the ground for constructive critiques
regarding the security of such computing paradigm. In this paper we explore
similar analogies to discuss our position about the current countermeasures
(e.g., intrusion detection systems, anti-viruses), developed to mitigate well-
known security threats. By reasoning on said affinities, we focus on the simple
case of anomaly-based approaches, which are employed in many modern pro-
tection tools, not just in intrusion detectors. We illustrate our position by the
means of a simple running example and show that attacks against injection
vulnerabilities, a current menace that is easily recognizable with ordinary
anomaly-based checks, can be difficult to detect if web services are assumed
to be regular web applications. Along this line, we concentrate on a few,
critical hypotheses that demand particular attention. We conclude that, al-
though only a minority of threats qualify as novel, they are well camouflaged
and can be difficult to recognize behind the confusion caused by the cloud
computing excitement.

1 Introduction

The emerging concept of cloud computing is both widespread and puzzling [41]. Indeed, it
has been talked, blogged, written and discussed about as an unprecedented paradigmatic
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change in the information and communication technology world. As it often happens,
this also brought forth confusion in terms and buzzwords such as “public cloud”, “private
cloud”, “*-as-a-service”, etc. According to the definition given in a recent, comprehensive
and sound analysis [1], cloud computing enables organizations to run web applications
(often referred to as services) on a pay-as-you-go basis on top of reliable, highly-available,
scalable software and hardware infrastructures referred to as clouds. This is also, in
general, the widespread perception shared by users and developers. In some sense, a
cloud can be seen as a modern, large mainframe [28] with virtually infinite resources,
and the term cloud computing refers to the use of such resources to deliver web services.
However, as noted by other researchers, the lack of a widely-accepted definition may
distract users and experts [8].
Cloud security is also, unsurprisingly, an ill-defined and vague field. Community-driven

initiatives [3] and organizations such as the Cloud Security Alliance [30] are pursuing the
common objective of gathering knowledge and joining efforts to devise security measures
appropriate for cloud computing. The rapid growth of Cloud Security Alliance [17] suggests
that the community is indeed concerned about security. While cloud computing certainly
poses new challenges, however, it may be difficult to distinguish between issues specifically
caused by the emerging computing paradigm, and issues that, by coincidence, occur
on a system deployed on a cloud [8]. On one hand, the community of cloud users is
worried about the fragility of cloud computing [6, 29, 5, 20, 36, 12, 35, 21] and concerns
have arisen recently regarding the significant outages of the major cloud providers. On
the other hand, it is quite easy to observe that security issues are mainly caused, as
usual, by programming errors. In other words, although a cloud unquestionably offers
a sophisticated and flexible platform, it still runs pieces of software, which can be just
as insecure as any piece of software running on traditional environments. For instance,
Amazon’s S3 experienced two outages in the 2008 due to an overload of the authentication
service [37] and an error in a single bit [38]. Also, Google AppEngine suffered a “blackout”
because of a programming error [44]. Clearly, such vulnerabilities have nothing to do
with cloud computing itself.
In environments characterized by distraction and lack of solid understanding, it might

be difficult to reason about security threats1. At a first glance, it is almost superfluous to
recall that the Internet is not a safe place, with more than 97,500 known web application
vulnerabilities disclosed in 2009 [18], and more than 350 million sensitive records involved
in security breaches in the United States since 2005 [9]. Moreover, less the one year ago,
the number of entries in the Google Safe Browsing Malware List has doubled between June
2008 and August 2009. The black hats are somehow “weaponizing” malware [7] and, in
addition [39], provide full-fledged attacking infrastructures (e.g., botnets) available (to
inexperienced users) on a pay-per-use basis. It may be even argued that such threats
are, unavoidably, part of the Internet. In some way, they have contributed to its natural
evolution and therefore, they are also unavoidably part of the cloud computing realm.

1We refer to the most general definition of security threat as any opportunity (for a malicious entity)
to compromise confidentiality, integrity or availability of a system. In this context, the term system
may refer to different objects, such as a bare-metal computer, a virtual or physical network, an
application, a service, a file-system, or a database.
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Nevertheless, as discussed in Section 2, we believe it is important to critically re-
examine the known security issues in the light of the changes induced by the adoption
of cloud computing. This is the motivation of this paper, which analyzes the aforesaid
changes by leveraging the parallel between the new and the old computing approaches.
The consequences of such changes are the key point of our position, and are illustrated
by means of a running example that considers automatic protection techniques for web
applications. We chose this case primarily because web applications are widespread
and their security is a major concern. In addition, this example is simple to analyze,
it explains the essence of several modern detection approaches and, as summarized in
Section 3, it has been generalized beyond tools to detect attacks against web application.
Although throughout our discussion we borrow examples and concepts from real-world

applications of cloud computing (e.g., Amazon EC2, web services), our position focuses on
cloud computing as a paradigmatic shift (discussed in Section 4), and the extent to which
it may affect known security issues and countermeasures. Other aspects related cloud
computing, such as new business models, economics, or mobility, are far from the scope
of this paper and thus are not considered, as they do not impact directly the security
concerns (while they are, of course, the fundamental reason for the adoption of cloud
computing).

2 Security challenges

As discussed thoroughly in [1], the cloud computing paradigm presents some novel chal-
lenges to computer scientists. In our opinion, security-related challenges can be divided
into two groups. On one hand, there are challenges that are already evident to cloud
users (i.e., service providers), and as such demand for practical solutions (Section 2.1).
On the other hand, there are challenges that will significantly influence the security of
cloud computing in the long run. As explained in Section 2.2, this second group of
challenges is relevant, yet less obvious.

2.1 Challenges with immediate impact

The challenges described in this section are already visibly impacting cloud users and
providers. In particular, given the amount of data shared across these infrastructures,
data confidentiality, trust relationships and shared reputation are concerning issues.

2.1.1 Data confidentiality

The obvious and, in general, effective measure to protect data confidentiality is encryp-
tion. However, encryption is not always a feasible solution, especially for data-intensive
applications that require high I/O throughput. Although a scheme to compute arbitrary
circuits over encrypted data (so to avoid encryption/decryption) has been proposed re-
cently [16], in its current stage this solution requires significant efforts to be adopted in
the real world. In addition, encryption is not straightforward when data is distributed;
also, this solution may have a low acceptance rate and, more importantly, raises the issue
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of data property. As most of the users refrain from encrypting their laptop hard-drive be-
cause of the technical and computational overhead, in a similar vein, would users bother
encrypting their virtual, remote storage? Moreover, if a remote storage is transparently
encrypted (i.e., by the provider), whom the data belongs to? The user, the provider?
And, is this fact provable? How?

2.1.2 Sharing shared resources

The security issues typical of shared hosting environments are magnified in the case of
clouds, because the additional, unperceived, complexity due to dynamic resource slicing,
allocation, replication and optimization, gives each user the illusion of being unique. In
reality, each user (e.g., an actual system user or an application) operates in a shared envi-
ronment. Therefore, users may behave maliciously, or compromise virtualization software
(vulnerabilities in VMware have grown 35 times between 1999 and 2007 [25]), affecting
other users and their reputation. A recent incident [22] that affected the reputation of
a whole, shared Amazon EC2 cloud is discussed in [8] as a noteworthy example of this
specific issue.

Observation To what extent users sharing the same cloud are isolated? Is it feasible
to employ simple fail-over mechanisms to transparently “move” a mis-behaving user or
process onto another cloud; and would this offer an adequate degree of protection?

2.2 Challenges with delayed impact

Debugging and auditing in large-scale, distributed systems unavoidably affect the foun-
dations of secure software development. Although their impact may be delayed, and no
incidents can be attributed directly to them as of now, we believe that these obstacles
will influence significantly the security of the software developed for, or deployed onto,
modern computing infrastructures.

2.2.1 Debugging in large distributed systems

Programmers know how to pinpoint and solve software flaws using debuggers, which allow
to track the execution of even complex, multi-threaded processes and inspect the memory
content. This routine task turns out to be a challenging research problem in the case of
distributed applications [11, 15, 34]. Besides the intrinsic difficulties that programmers
have to face, i.e., understanding what is “the memory”, or the “process state”, debugging
tools devised for large-scale distributed systems are quite obtrusive (e.g., they require
code annotation). In general, the existing tools are designed for critical systems and
suitable for C-like languages, rather than web-oriented frameworks. In addition, bugs
are difficult to reproduce in local, smaller configurations because testing and development
environments might differ significantly from deployment conditions.
A less obvious complication that affects debugging is the “invasion” of web development

4



frameworks. Rapid development frameworks are indeed very popular2 and can speed
up significantly the work of a programmer, because they hide many low-level details,
exposing powerful abstract primitives. In some notable cases, such frameworks are the
cloud service, thus are tightly coupled with the cloud provider, e.g., Google AppEngine.
Because debugging “cloud-oriented” applications is an inherently difficult task, software
flaws may become more prevalent. And, since such flaws are the main cause of security
vulnerabilities, these aspects are likely to result in new venues for intrusions, and thus
need to be considered thoroughly.

Observation A natural question regarding debugging may arise. What is the actual
“programming language” a modern web application is written in? Is it the high-level,
abstract framework or the language the framework is built upon? A flaw may hide
deep down in this programming stack and, thus, affect more than one deployment (just
like bugs in shared libraries in older systems were an enormous security issues in the
mid-nineties).

2.2.2 Auditability

When disasters occur, reconstructing a “picture” of the system’s status is vital. From
a purely forensic point of view, monitoring and keeping track of a system’s activity is
as important as debugging. Unfortunately, this might in turn be very difficult in large-
scale systems, since data and processes are distributed rather than contained within
well-defined boundaries. Even simple tasks such as collecting logs are inherently more
challenging when applications are distributed. In case of successful exploitation, a likely
event in immature systems, the risk is that the compromised applications might leave
insufficient or unreachable tamper evidence. For instance, is it always feasible to access
the logs of all those hosted web services leveraged by an application that we developed?
Despite the level of abstraction and the transparency offered by cloud services, developers
should be aware that software is not running on bare-metal hardware.

3 Available countermeasures

Given the threat scenario briefly summarized in Section 1 and the obstacles mentioned in
Section 2 (in particular, those described in Section 2.2), it is useful to discuss the potential
consequences of combining a growing underground economy, armed with fast-spreading
automated attacks, with the inherent fragility of a new, sophisticated and exciting in-
frastructure. In order to do so, we need to look at current security countermeasures:
but of course, this is by no means a complete or exhaustive survey; it is limited to those
concepts that are needed to explain our position.
Until now, research on security of web services and service oriented architectures (which

are a key component of cloud computing) has focused on designing secure protocols for

2According to the most comprehensive ranking we were able to find, there are 98 web application
development frameworks (as of April 2010) http://hotframeworks.com/rankings
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exchanging messages that meet the confidentiality, integrity and availability require-
ments [2, 13, 4, 32]. Other approaches concentrated on secure patterns for modeling and
developing services, mostly from a software engineering perspective [33, 19]. The goals of
such measures are, basically, to prevent programmers — who are not necessarily security
experts — from writing vulnerable code, rather than protecting services directly.
Protection for existing systems often revolves around the use of detection and pre-

vention mechanisms, which nowadays are quite sophisticated, but still based on two
complementary approaches that have been part of intrusion detection from its first in-
ception [14]: recognizing known patterns of malicious signs (misuse detection), versus
recognizing deviations from known normal activity (anomaly detection). For instance,
the Intrusion Detection System (IDS) described in [23] models the normal characteris-
tics of benign interactions between clients and the server-side applications at the HTTP
layer. This system can effectively detect, for instance, code-injection attacks, which are
visible into HTTP parameters. A similar system, described in [10], further develops
client-side protection measures and, in addition, can detect attacks against the database
tier by profiling benign queries to recognize deviating ones. These systems are said to
be application-aware, because the knowledge they leverage is specific to the application
layer protocol (e.g., HTTP).
To explain our position, we make use of the following example.

Running Example Let us assume that an HTTP-aware, anomaly-based IDS em-
ploys two simple models that capture, respectively, the length and the alphabet of
the string parameters submitted through HTTP requests, which have the following
structure:

POST /authenticate HTTP/1.1
Host: www.example.com
Content-Type: text/xml
Content-Length: ...

&name=administrator

In this case, the /authenticate handler accepts the name parameter via POST.
If we exclude the data encoded in the header, the payload of the HTTP request is
&name=administrator.
Let us suppose that the protected web application is designed to accept a limited

set of values for the name parameter, i.e., administrator (length 13, alphabet [a-z]),
logs (length 4, alphabet [a-z]), or activities (length 10, alphabet [a-z]). After
having examined a sufficient amount of benign requests, the IDS learns that the
normal length is, for example, 9, the variance is 21, and the alphabet is [a-z] (i.e.,
lowercase letters).
Let us now assume that the procedure invoked by the /authenticate handler

is vulnerable to cross-site scripting injections, because the name parameter is not
sanitized. Thus, an attacker may attempt to deploy a drive-by download kit, by
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submitting name=<script src=//j.mp/xss> (length 23, alphabet [.<>/=a-z]). The
simple models used in this example (yet employed in advanced prototypes such as [23,
10]) are able to recognize the injection because [.<>/=a-z] 6⊆ [a-z]. Note that, in
the case of particularly short injection vectors, the length model cannot recognize the
attack. To alleviate this type of problems, modern systems actually adopt multiple
models as well as probabilistic approaches, to assess the degree of anomaly in a more
sound manner. However, the goal of this example is to show the essential concepts
of anomaly detection to recognize evidence of malicious activity.

The aforesaid techniques are also suitable to protect operating systems. For example,
a very effective technique to detect misbehaving processes consists in modeling the data
passed to system calls and extracting some representative characteristics of the Control
Flow Graph (CFG). The tools described in [31, 26] adopt this approach to detect, for
example, whenever a program is forced to invoke an out-of-sequence system call, or a
system call with an unexpected, i.e., too long, string argument that is likely to be evidence
of a buffer overflow. In simple words, these techniques encode a process’ behavior in
terms of some features, which are then leveraged to assess the goodness of the system
call sequences generated at runtime.

4 Signs of a paradigmatic shift

Even if cloud computing has been touted as a revolution in the information technology
world, it is an ongoing change, and thus it might be difficult to assess its impact on
security. Indeed, as noticed in Section 1, and thoroughly detailed in [8], the majority
of current threats actually exploit vulnerabilities of the software, rather than of the
cloud computing paradigm itself. Thus, at a first glance, one may think of protecting
applications using traditional countermeasures. On the other hand, applying available
countermeasures as they are, under the assumption that applications running in cloud
computing environments are just regular applications, may reveal pitfalls in some cases.
In order to reason about security in the new scenario, we deem it useful to recall some

analogies between the centralized approach of mainframes and the apparently centralized
(but actually distributed) approach of cloud computing. There is an obvious difference
in scale between the two eras: what was a single, powerful mainframe connected to
dumb clients through a local, high-speed, switched network, has become a cluster of
consolidated, managed machines (either virtual or physical) connected to clients through
public, broadband, best-effort routed networks. Despite these differences, applications
taking advantage of the cloud computing paradigm have striking similarities with the
old-fashioned centralized software.
The case of web services is a particularly expressive example, as they are, to some

extent, the unit of execution in software delivered as a service, much in the same way as
the primitive functions of traditional operating systems. In fact, functions take arguments
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(e.g., numeric values, file descriptors, strings) and, when invoked by a process, perform
a certain operation then, optionally, return a result. Similarly, services are invoked by
clients and react according to the input given (e.g., SOAP or JSON data). A careful
examination reveals that a web service is just incidentally a web application (i.e., merely
from a technical point of view), since it relies on web-oriented technologies, but on a
global scale it actually reminisces more of a local function call.
Ignoring this observation, protection mechanisms like HTTP-aware IDSs would appear

a natural solution to protect web services. Unfortunately, these IDSs are aimed at block-
ing attacks directed toward classic web applications. But as we noticed, it is common
practice to compose services together to provide richer functionalities. From a global
viewpoint, these mash-ups of different services are likely to offer subtler exploitation
opportunities. For instance, single services may be invoked in a benign manner, such
that an IDS deployed to protect the web application (which supports the service) would
not recognize any anomalous activity. However, said services could be invoked in such a
way to create a malicious action that is visible only globally. In some sense, this is the
dual of mimicry attacks [42], a stealthy evasion technique in which a process is violated
by scrupulously altering the data passed to one or more single system calls, while the
characteristics of the CFG are preserved, in order to fool security checks performed by
an IDS. In the type of attacks that we envision against web services, the idea of mimicry
attacks is reversed, that is, the “global CFG” (where functions nodes are replaced by ser-
vices) is altered, while each elementary service is invoked benignly. This observation is
further discussed in Section 4.2. In addition, in Section 4.1 we show a case where current
approaches exhibit shortcomings in detecting client-side code injections even against a
single services.

Observation In the light of the aforesaid points, would Internet security come to a point
where it needs to be re-thought? Would we need to revamp our knowledge on protecting
local operating systems and scale it for the next generation, global operating systems3?

In the remainder of this section, we detail the aforesaid cases by means of examples,
to stimulate other questions and critiques.

4.1 The HTTP is the TCP

The practice of using application protocols, mainly HTTP, to encapsulate a wide spec-
trum of data types (e.g., binary files, streams of videos, chunks of data with well-defined
semantics such as RDF) is becoming very popular. In some sense, HTTP is playing
the role of a transport layer, that is, encapsulating a payload and sending it. Complex
(even proprietary) protocols offer transparent communication layers between services
over HTTP. A simple example is the WebDAV protocol (adopted, for instance, by the
popular Google Calendar web service), which relies on HTTP to interface calendar clients
and servers (actually, services). As we all know, HTTP sits on top of a real transport

3Note that operating systems delivered as mash-ups of web services actually exist in the real world.
Notable examples are http://www.silveos.com/, http://cloudo.com/, http://eyeos.org/, http:
//ghost.cc/
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layer; but since TCP is so transparent, reliable and highly-available, to some extent it
can be considered as a network (or even physical) layer. In our opinion, the spreading
of web services and cloud computing modifies the way the Internet networking stack is
used by software, as shown in Figure 1.
From a security perspective, this observation suggests that a further layer of inspection

is desirable to effectively detect those threats that leverage the actual communication
protocol employed by a service. In fact, since the networking stack is evolving, the
protection mechanisms (especially those that inspect the application layer) should step
up as well, as exemplified in the following.

Running Example In Section 3, we described how a protocol-aware IDS analyzes
HTTP messages and checks for their validity with respect to normal usage of the
protected web application. Let us assume that a SOAP-based authentication system
(also vulnerable to injections) replaces the old-fashioned web application. The HTTP
requests have the following template:

POST /authenticate HTTP/1.1
Host: www.example.com
Content-Type: text/xml
Content-Length: ...

<SOAP-ENV:Envelope
xmlns:SOAP-ENV="http://schemas.xmlsoap.org/soap/envelope/"
xmlns:SOAP-ENC="http://schemas.xmlsoap.org/soap/encoding/"
xmlns:xsd="http://www.w3.org/2001/XMLSchema"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" ... >

<SOAP-ENV:Header>
<h:BasicAuth xmlns:h="http://soap-authentication.org/basic/2001/10/"

SOAP-ENV:mustUnderstand="1">
<Name>administrator</Name>
<Password>broccoli</Password>

</h:BasicAuth>
</SOAP-ENV:Header>
...

</SOAP-ENV:Envelope>

In this example, the payload of the HTTP request is the whole SOAP envelope,
which is just a sequence of characters. Suppose, however, that the IDS has a fall-
back procedure that, in absence of GET or POST parameters, extracts the alphabet
([.:="/<>a-zA-Z0-9]) and the length’s mean and variance4of the request body.
Let us complicate this example a little bit and assume that the IDS also employs

a more sophisticated technique to extract the syntax of the body and encode it as
a probabilistic grammar or a Markov model, a technique commonly used to detect
attack vectors that alter the syntax of a string [31]. After training on some samples,
such models can calculate the likelihood of a string with respect to the grammar
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learned. So, for example, given the sequence of symbols into an HTTP request body,
it could tell XML, JSON or plain text apart, because they contain different symbols
and also their syntax is dissimilar. Note that, however, this is far from having a multi-
purpose parser capable of extracting the real parameters (i.e., name, password) that
influence the behavior of the service. Thus, analyzing the entire SOAP block with
the aforesaid approach is insufficient to distinguish between messages that contain
“administrator” vs. “<script src=//j.mp/xss>”, because, intuitively, these values
are well “buried” by the extra content. Also, the vector’s alphabet, [.<>/=a-z], is
perfectly compatible with [.:="/<>a-zA-Z0-9] as it contain no extra characters.
For similar reasons, the length model is of little help, since injection vectors can be
notably (almost arbitrarily) short.
Obviously, more accurate models may be devised to deal specifically with the

simple case illustrated in this example; however, it is just as obvious that such an
approach would be difficult to generalize. In fact, such models would require a
language-specific parser to extract relevant content from the messages processed by
the (custom) application. In addition, the structure of these messages must be known
in advance, case by case, because it is impossible to automatically derive the actual
variables (while this is doable for HTTP parameters).

As observed in this example, the ongoing change in the networking stack suggests
that protocol-aware protection system should account for the actual protocol used by
the services on top of HTTP. Otherwise, new threats that exploit the upper-layer pro-
tocols (e.g., legitimate SOAP content that hides malicious parameters) are difficult, or
completely impossible, to detect. To make once again a comparison, anomaly detectors
that inspect the payload of IP packets to recognize attacks [24, 27, 43, 45] are inaccurate
at detecting most of those vectors that are malicious only by means of the application
layer’s semantic (e.g., a POST parameter with anomalous content). From the viewpoint
of a lower-layer protocol, code injection can be “confused” with payload that encodes
regular strings.

Observation To what extent the attacks against the future application (i.e., service)
layer are recognizable at the future transport layer (e.g., HTTP)? Is it just a matter
to perfecting existing tools to allow deeper examination, or the technical obstacles hide
more issues?

4.2 The services are the functions

In the previous section we discussed the changes in the networking aspect of computing
caused by service orientation and cloud computing. Similarly, in this section we discuss

4Mean and variance could be calculated assuming that valid values for the name are exactly the same as
in the previous run of the example, and assuming that the SOAP messages have a recurring structure,
which is perfectly realistic. The variance is indeed identical.
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Figure 1: As described in Section 4.1, the change in the networking stack is noticeable
from the traditional application layer (left) that, in the case of HTTP, is playing
the role of a transport protocol (right) to encapsulate upper layer protocols
(e.g., SOAP, JSON, XML), typical of modern web services.

how the cloud computing paradigm is impacting the way applications are constructed
and executed.
In a local system, processes originate whenever a certain program (e.g., a calendar

application, an e-mail client) is executed. Basically, these programs are built upon a
set of primitive functions, exposed by a certain programming language5. Cloud com-
puting extends that model to a larger scale. Indeed, the development of applications is
increasingly drifting toward the reuse of services (which have well-defined APIs, as classic
functions do!), as opposed to the simple reuse of code.
In a traditional operating system, processes can be modeled by means of their CFG.

A simple example is shown, using a simplified graphical notation, in Figure 2: (a) the
read system call receives ans integer value, open is invoked to open a file which content is
passed to read, and finally wrote to the standard output. Assuming that the process has
a race condition vulnerability, for instance, an attacker may leverage such flaw to cause an
unexpected transition in the CFG (b). In a similar vein, “distributed processes” of modern
applications rely on several services (e.g., parse, build, share) to perform certain tasks
and to achieve a global goal. In the example drawn in Figure 2 (c), we imagine a service
that parses data submitted by a user through a form (e.g., http://www.formspring.
com/, http://www.formsite.com/), serializes it onto a remote storage (e.g., http://
aws.amazon.com/s3/, http://drop.io) and shares (e.g., http://www.wuala.com/) a
link to it on a social network. Similarly to the case of local process exploitation, an
attacker may leverage logic vulnerabilities to cause, for instance, a malicious redirection
in a “distributed process” (d).
From a security perspective, in both cases, malicious behaviors can be exemplified as

deviations from the expected sequence. On local processes, violations of the CFG can be
detected with simple checks. It is, however, more difficult to envision a similar approach
to recognize violations of a “global CFG”. Since services are logically very similar to
functions, we believe that the same techniques used to recognize bad-behaving processes
may inspire new approaches to mitigate stealthy attacks against service mash-ups.

5Note that, although higher level functions and concepts such as libraries, objects, or classes are avail-
able to the programmer, from the operating system’s perspective, running programs is all about
invoking function in a certain sequence and passing data across functions.
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(a) A local process.
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(b) An altered local process.
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JSON
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(c) A “distributed process”.

fetch

parsestart store

share ...

JSON
URL

(d) An altered “distributed process”.

Figure 2: Example of snippets of processes in a traditional operating system (a), modeled
by means of the system calls they invoke. Data is passed across functions via
parameters. In a similar vein, “distributed processes” (c) of modern applications
rely on several services (e.g., parse, build, share) to perform certain tasks and
to achieve a global goal. In this example, we imagine an application that
parses data submitted by a user through a form, serializes it onto a remote
storage and shares a link to it on a social network. In both the cases, malicious
behaviors can be exemplified as deviations from the expected work-flow. On
local processes, violations (b) of the CFG can be detected with simple checks.
As discussed in Section 4.2, it is however more difficult to think of a similar
approach to recognize (d) when a “global CFG” is altered.

Observation Event correlation techniques [40] originated from the need of detecting re-
lated alerts across several IDSs. However, these tools have provided no effective solutions
to detect large-scale, slow attacks, which is indeed a very difficult problem. Interestingly,
this type of attacks resemble the aforesaid global mis-behaving processes. Could corre-
lation techniques attract more research efforts than in the past and finally mitigate a
longstanding issue?

5 Conclusions

In this paper, we have discussed some key points that, in our opinion, motivate a con-
structive reconsideration of the current security measures.
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The simple observation that paradigmatic changes (e.g., from thin client connected
to a mainframe, to powerful workstations, to, once again, thin clients connected to a
cloud) induce parallel changes in the security world, suggests a broad approach to the
“novel” security issues. In the approach that we envision, the stack offered by the cloud
computing paradigm needs to be mapped to the well-known hardware and software stack.
In principle, this would help at mapping also the patterns of the traditional security issues
onto the new stack. Examples of the insights that we believe this will make possible are
outlined in Sections 4.1 and 4.2. Obviously, this mapping will not, by itself, lead to a
complete description of the new threats. Rather, it will point out key areas to develop
and refine, in a much similar way to what the periodic table did for the discovery of
unknown chemical elements. Similarly, for some areas, this approach will indicate that
many issues can be solved through an appropriate “porting” of the traditional security
countermeasures to the cloud computing paradigm.
Even if exploring new business models opened up by cloud computing falls entirely

outside of the scope of this paper, it is undeniable that the fast-growing underground
economy has already embraced the cloud model (in fact, botnets are an embryonic dis-
tributed malicious infrastructure [7]). The fact that business-to-business interactions will
also embrace this paradigm makes the problem even more evident and alarming, leading
to a number of potential frauds on pay-per-use services.
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