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ABSTRACT
Anti-forensics is the practice of circumventing classical foren-
sics analysis procedures making them either unreliable or
impossible. In this paper we propose the use of machine
learning algorithms and anomaly detection to cope with a
wide class of definitive anti-forensics techniques. We test
the proposed system on a dataset we created through the
implementation of an innovative technique of anti-forensics,
and we show that our approach yields promising results in
terms of detection.

Categories and Subject Descriptors
K.5.m [Legal Aspects of Computing]: Miscellaneous—
computer forensics; K.6.5 [Management of Computing
and Information Systems]: Security and Protection—
Unauthorized access (e.g., hacking, phreaking)

General Terms
Documentation, Experimentation, Legal Aspects

Keywords
Computer forensics; Host-based anomaly detection

1. INTRODUCTION
Computer forensics is usually defined as the process of ap-
plying scientific (repeatable) analysis processes to data and
computer systems, with the objective of producing evidence
that can be used in an investigation or in a court of law.
More in general, it is the set of techniques that can be ap-
plied to understand if, and how, a system has been used or
abused to commit mischief [26]. The increasing use of foren-
sic techniques has led to the development of “anti-forensic”
techniques that can make this process difficult, or impossible
[11, 4, 16].

There are two wide classes of anti-forensics techniques: tran-
sient techniques make the acquired evidence difficult to an-
alyze with a specific tool or procedure, but not impossible
to analyze in general. Definitive anti-forensics techniques
instead effectively deny once and forever any access to the
evidence. In this case, the evidence may be destroyed by
the attacker, or may simply not exist on the media. This
is the case of in-memory injection techniques, which we will
investigate in this paper.

In particular, we propose to use machine learning algorithms
and anomaly detectors to circumvent such techniques. We
illustrate a prototype of anomaly detector which analyzes
the sequence and the arguments of system calls to detect
intrusions. Afterwards, we use this prototype to detect in-
memory injections of executable code, and in-memory ex-
ecution of binaries. To do this, we reimplement in a reli-
able way the so-called “userland exec” attack technique. We
demonstrate that our prototype can detect the anomalies
that such techniques create in the program flow, by detect-
ing anomalous syscalls. This creates a usable audit trail,
without needing to resort to complex memory dump and
analysis operations [5, 34].

The remainder of this work is organized as follows: in Sec-
tion 2 we introduce the problem of anti-forensics, and ref-
erence related works in this young area. In Section 3 we
introduce the key concepts and structure of our prototype
for system call anomaly detection. In Section 4 we describe
the experimental setup we used to test its usefulness in a
forensic environment. In Section 5 we report the results we
obtained in an experimental evaluation of the usefulness of
the prototype in the test environment. In Section 6 we draw
our conclusions and outline future research perspectives.

2. PROBLEM STATEMENT
As we observed in Section 1, anti-forensics is defined by sym-
metry on the traditional definition of computer forensics:
it is the set of techniques that an attacker may employ to
make it difficult, or impossible, to apply scientific analysis
processes to the computer systems he penetrates, in order
to gather evidence [11, 4, 16]. The final objective of anti-
forensics is to reduce the quantity and spoil the quality [14]
of the evidence that can be retrieved by an investigation and
subsequently used in a court of law.

Following the widely accepted partition of forensics [33] in
acquisition, identification, evaluation, and presentation, the
two phases where technology can be critically sabotaged are
both acquisition and identification. Therefore, we can define
“anti-forensics” as comprising all the methods that make ac-
quisition, preservation and analysis of computer-generated
and computer-stored data difficult, unreliable or meaning-
less for law enforcement and investigation purposes.

Even if more complex taxonomies have been proposed [16],
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we can use the traditional partition of the forensic process
to distinguish among two types of anti-forensics:

• Transient anti-forensics, when the identification phase
is targeted, making the acquired evidence difficult to
analyze with a specific tool or procedure, but not im-
possible to analyze in general.

• Definitive anti-forensics, when the acquisition phase
is targeted, ruining the evidence or making it impossi-
ble to acquire.

Examples of transient anti-forensics techniques are the fuzzing
and abuse of filesystems in order to create malfunctions or to
exploit vulnerabilities of the tools used by the analyst, or the
use of log analysis tools vulnerabilities to hide or modify cer-
tain information [10, 14]. In other cases, entire filesystems
have been hidden inside the metadata of other filesystems
[14], but techniques have been developed to cope with such
attempts [32]. Other examples are the use of steganography
[20], or the modification of file metadata in order to make
filetype not discoverable. In these cases the evidence is not
completely unrecoverable, but it may escape any quick or
superficial examination of the media: a common problem
today, where investigators are overwhelmed with cases and
usually undertrained, and therefore overly reliant on tools.

Definitive anti-forensics, on the other hand, effectively de-
nies access to the evidence. The attackers may encrypt it,
or securely delete it from filesystems (this process is some-
times called“counter-forensics”) with varying degrees of suc-
cess [13, 12]. Access times may be rearranged to alter the
activity timeline that is usually exploited by analysts to cor-
relate events. The final anti-forensics methodology is not to
leave a trail: for instance, modern attack tools (commer-
cial or open source) such as Metasploit [2], Mosdef or Core
IMPACT [8] focus on pivoting and in-memory injection of
code: in this case, nothing or almost nothing is written on
disk, and therefore information on the attack will be lost as
soon as the system is powered down, which is usually stan-
dard operating procedure on compromised machines. These
techniques are also known as “disk-avoiding” procedures.

Memory dump and analysis operations have been advocated
in response to this, and tools are being built to cope with
the complex tasks of reliable acquisition [5, 35] and analysis
[5, 34, 30] of a modern system’s memory. However, even if
the memory can be acquired and examined, if the injected
process has already terminated, no trace of the attack will
be found: these techniques are much more useful against in-
memory resident backdoors and rootkits, which by definition
are persistent.

3. SYSTEM CALL ANOMALY DETECTION
USING SEQUENCE AND PARAMETERS

Most of the actions that an aggressor would try to perform
(e.g., accessing the host file system, sending or receiving
packets over the network, executing another program, etc.)
require the use of one or more system calls. Thus, it is rea-
sonable to monitor such calls in order to analyze the behav-
ior of a process. In particular, we propose to use anomaly
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Figure 1: The architecture of our HIDS prototype

detection techniques to flag anomalous or suspicious execu-
tions and record them for review in order to create a trail
(i.e., the alert logs) that would otherwise be lost. We will
use a technique we introduced in [23, 38] which makes use of
both the sequence and the content of system calls to detect
anomalies. This has been shown to be more efficient than
using sequences of syscalls only, something which has been
studied for a long time since the seminal work [9]. We re-
engineered and extended the proposal found in [22, 27] to
use Markov models of the sequence (as in, e.g., [21]) com-
plemented with an analysis of the arguments of the system
calls.

The resulting system is shown in Figure 1. Each execution
of an application is modeled as a sequence of system calls,
S = [s1, s2, s3, . . .], logged by the operating system auditing
facilities. Each system call si is characterized by a type
(e.g. read, write, exec, etc.), a list of arguments (e.g., the
path of the file to be opened by open), a return value, and
a timestamp. The return value is not taken into account,
neither the absolute timestamp (the sequence of the system
calls is considered instead).

Our system must be trained in order to “learn” a model of
the normal behavior of the monitored applications. During
this phase, the system builds a distinct profile for each appli-
cation (e.g. sendmail, telnetd, etc.). A two-phase process
of machine learning is then applied to each type of system
call separately. Firstly, a single-linkage, bottom-up agglom-
erative hierarchical clustering algorithm [15] is used to find,
for each type of system call, sub-clusters of invocations with
similar arguments. We are interested in creating models on
these clusters, and not on the general system call, in order to
better capture normality and deviations on a more compact
input space. This is important because some system calls,
most notably open, are used in very different ways. Indeed,
open is probably the most used system call on UNIX-like
systems, since it opens files or devices in the file system
creating a descriptor for further use. Only by careful aggre-
gation over its parameters (i.e., the file path, a set of flags
indicating the type of operation, and an opening mode) we
can de-multiplex the general system call into “sub-groups”
that are specific to a single function. In order to do this, we
must define a way to measure “distance” among arguments,
as we will show.
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Table 1: Association of models to Syscall arguments in our prototype

Syscall Model used for the arguments

open pathname → Path Name

flags, mode → Discrete Numeric

execve filename → Path Name

argv → Execution Argument

setuid, setgid uid, gid → User/Group

setreuid, setregid ruid, euid → User/Group

setresuid, setresgid ruid, euid, suid → User/Group

symlink, link,rename oldpath,newpath → Path Name

mount source, target → Path Name

flags → Discrete Numeric

umount target,flags → Path Name

exit status → Discrete Numeric

chown path → Path Name

lchown group, owner → User/Group

chmod, mkdir path → Path Name

creat mode → Discrete Numeric

mknode pathname → Path Name

mode, dev → Discrete Numeric

unlink, rmdir pathname → Path Name

Afterwards, the system builds models of the parameters in-
side each cluster. The type of models, as well as the type
of distances used for agglomeration, depend on the type of
parameter, as shown in Table 1. In our framework, the
distance among two system calls, si and sj , is the sum
of distances between corresponding arguments D(si, sj) =P

a∈As
dmodel(a)(s

a
i , s

a
j ) (being As the shared set of system

call arguments). For each couple of corresponding argu-
ments a we compute the distance as:

da =


K(·) + α(·)δ(·) if the elements are different

0 otherwise
(1)

where K(·) is a fixed quantity which creates a “step”between
different elements, while the second term is the real distance
between the arguments δ(·), normalized by a parameter α(·).
We use “(·)” to denote that such variables are parametric
w.r.t. the type of argument.

Since hierarchical clustering does not offer a concept analo-
gous to the “centroid” of partitioning algorithms that can be
used for classifying new inputs, we also created, for each clus-
ter, a stochastic model that can be used to classify further
inputs. These models generate a probability density func-
tion that can be used to state the probability with which
the input belongs to the model. It is not strictly necessary
for such model, or its distance or probability functions, to
be the same as the distance functions that are used for clus-
tering purposes.

As can be seen in Table 1, at least 4 different types of argu-
ments are passed to system calls: path names and file names,
discrete numeric values, arguments passed to programs for
execution, users and group identifiers (UIDs and GIDs).

Path names and file names are very frequently used in sys-
tem calls. They are complex structures, rich of useful infor-

mation, and therefore difficult to model properly. For the
clustering phase, we chose to use a very simple model, the
directory tree depth. This is easy to compute, and experi-
mentally leads to fairly good results. Thus, in Equation 1
we set δa to be the difference in depth. The stochastic model
for path names is a probabilistic tree which contains all the
directories involved with a probability weight for each. File-
names are often too variable to be considered, so if the leaves
of the tree are too different we simply ignore them for that
specific model.

Discrete numeric values such as flags, opening modes, etc.
are usually chosen from a limited set. Therefore we can store
all of them along with a discrete probability. Since in this
case two values can only be “equal” or “different”, we set up
a binary distance model for clustering, where the distance
between x and y is:

da =


Kdisc if x 6= y

0 if x = y

and Kdisc, as usual, is a configuration parameter. In this
case, the generation of the probability density function is
straightforward.

We also noticed that execution arguments (i.e. the argu-
ments passed to the execve syscall) are difficult to model,
but we found the length to be an extremely effective indica-
tor of similarity of use. Therefore we set up a binary distance
model, where the distance between x and y is:

da =


Karg if |x| 6= |y|
0 if |x| = |y|

denoting with |x| the length of x and with Karg a config-
uration parameter. In this way, arguments with the same
length are clustered together. For each cluster, we compute
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Figure 2: A sample of the resulting Markov model
with the clusters of system calls as states

the minimum and maximum value of the length of argu-
ments. Fusion of models and incorporation of new elements
are straightforward. The probability for a new input to be-
long to the model is 1 if its length belongs to the interval,
and 0 otherwise.

We developed an ad-hoc model for user and group identifiers.
These discrete values have three different meanings: UID 0 is
reserved to the super-user, low values usually are for system
special users, while real users have UIDs and GIDs above a
threshold (usually 1000). So, we divided the input space in
these three groups, and computed the distance for clustering
using the following formula:

da =


Kuid if belonging to different groups

0 if belonging to the same group

and Kuid, as usual, is a user-defined parameter. Since UIDs
are limited in number, they are preserved for testing, with-
out associating a discrete probability to them. Fusion of
models and incorporation of new elements are straightfor-
ward. The probability for a new input to belong to the
model is 1 if the UID belongs to the learned set, and 0 oth-
erwise.

In order to take into account the execution context of each
system call, we use a Markov chain (i.e. a first order Markov
model) to represent the program flow. The model states rep-
resent the system calls, or better they represent the various
clusters of each system call, as detected during the cluster-
ing process. For instance, if we detected three clusters in the
open syscall, and two in the execve syscall, then the model
will have five states: open1, open2, open3, execve1, execve2.
Each transition will reflect the probability of passing from
one of these groups to another through the program. A sam-
ple of such a model is shown in Figure 2. This approach was
investigated in former literature [6, 7, 18, 31, 19, 21], but
never in conjunction with the handling of parameters and
with a clustering approach.

During training, each execution of the program in the train-
ing set is considered as a sequence of observations. Using the
output of the clustering process, each syscall is classified into
the correct cluster, by computing the probability value for
each model and choosing the cluster whose models give out
the maximum composite probability along all known mod-
els: max(

Q
i∈M Pi). The probabilities of the Markov model

are then straightforward to compute.

Since training should happen, ideally, on the machine which
will be monitored, it is important to notice that the pro-
totype is resistant to the presence of a limited number of
outliers (e.g. abruptly terminated executions or attacks) in
the training set, because the resulting transition probabili-
ties will drop near zero. For the same reason, it is also resis-
tant to the presence of any cluster of anomalous invocations
created by the clustering phase. Therefore, the presence of
a minority of attacks in the training set will not adversely
affect the learning phase, which in turn does not require an
attack-free training set, and thus it can be performed on the
deployment machine.

During the detection phase, each system call is considered
in the context of the process. The cluster models are once
again used to classify each syscall into the correct cluster:
the probability value for each model is computed and the
stored cluster whose models give out the maximum compos-
ite probability (Pc = max(

Q
i∈M Pi)) is chosen as the “sys-

tem call class”. Three distinct probabilities can be taken
into account in order to build anomaly thresholds:

• Ps, the probability of the execution sequence to fit the
Markov model up to now;

• Pc, the probability of the system call to belong to the
best-matching cluster;

• Pm, the latest transition probability in the Markov
model.

We fuse the last two into a probability value of the single
syscall, Pp = Pc · Pm. A second, separate value for the
sequence probability Ps is kept. Using the training data,
appropriate threshold values are calculated by considering
the lowest probability over all the dataset for that single
program (for both Ps and Pp). We then choose a sen-
sitivity parameter for scaling such value, giving the final
anomaly threshold. A process is flagged as malicious if ei-
ther Ps or Pp are lower than the anomaly threshold. For
avoiding a Ps which quickly decreases to zero for long se-
quences, we introduced a “scaling” of the probability calcu-
lation based on the geometric mean, by introducing a sort

of “forgetting factor”: Ps(l) = 2l

qQl
i=1 Pp(i)i (where l is the

sequence length). In this case, we demonstrated [23] that
P [liml→+∞ Ps(l) = 0] = 1, but it converges more slowly.
Experimentally, this latter scaling function leads to much
better results in terms of false positive rate.

Our current prototype is implemented in C. Both the clus-
tering phase and the behavioral analysis are multithreaded,
and the results of both procedures are stored in a binary
format but can be dumped in XML for manual inspection,
if needed. At runtime, the prototype dinamically loads the
program profiles it needs, and stores them in memory. The
prototype can send output to standard output, syslog facil-
ities, and/or to log files in IDMEF format.

We profiled the code with gprof and valgrind for CPU
and memory requirements. The throughput for the train-
ing phase varies between 6120 and 10228 syscalls per sec-
ond. The training phase is also memory consuming, with
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a worst-case peak during our tests of about 700 MB. The
performance observed in the detection phase varies between
12395 and 22266 syscalls/sec. Considering that the kernel of
a typical machine running services such as HTTP/FTP on
average executes system calls in the order of thousands per
second (e.g., around 2000 system calls per second for wu-

ftpd [27]), the overhead introduced by our IDS is noticeable
but does not severely impact system operations.

Of course, for using the prototype in a real system, there is
an issue of survivability, i.e. wheteher or not an intruder can
compromise the auditing system. This is a common issue for
any type of logging system: as soon as the host is compro-
mised at root level, any running auditing program cannot
be trusted anymore. However, compromising our prototype
would entail uploading a training file which accepts the at-
tacker’s actions as normal. This is definitely nontrivial: the
best choice for an attacker would probably be to deacti-
vate our system altogether. However, this can happen only
in the post-exploitation phase, whereas detection hopefully
happens during exploitation. If the logger is configured to
forward alerts to a remote syslog server, the attacker would
not be able to easily circumvent it.

4. EXPERIMENTAL SETUP
A well-known problem in IDS research is the lack of re-
liable sources of test data, except for the well-known and
abused datasets created by the Lincoln Laboratory at MIT,
also known as “DARPA IDS Evaluation datasets” or IDE-
VAL [1]. These datasets contain BSM auditing data for
Solaris systems, directory tree snapshots and the content of
sensitive directories, and inode data where available. How-
ever, their generation method makes them unsuitable for
testing systems dedicated to forensic analysis and incident
response. In fact, many authors already analyzed the net-
work datasets, finding many shortcomings and regularities
[25, 24]. We analyzed host-based logs, and concluded that
they are artificially simple and regular, as they contain only
a handful of executions, all very similar among themselves
since they are generated through simple, scripted sequences.
This can cause the overfitting of anomaly models. Various
other anomalies we found are reported in [23, 38].

We tried to avoid repeating such shortcomings in our ex-
periments. In order to show that our system is capable of
detecting the in-memory injection of code, and of creating
an audit trail which can be used for forensics purposes, while
at the same time reducing the logged data to the bare min-
imum that is needed, we generated an experimental dataset
for two console applications: bsdtar and eject. Our testing
platform is an Intel x86 machine running a basic installation
of FreeBSD 6.2, on which we recompiled the kernel enabling
auditing capabilities. Since our system accepts input in the
BSM format, we used OpenBSM [37] to collect audit trails
(i.e. system calls sequences and their details). We audited
vulnerable releases of eject and bsdtar, namely mcweject

0.9 (which is an alternative to the eject command bundled
with FreeBSD 6.2) and the release of bsdtar distributed
with FreeBSD 6.2.

The eject executable has a small set of command line op-
tion and a very plain execution flow. For the simulation of
a legitimate user, we simply chose various permutations of

flags and different devices. For this executable, we manu-
ally generated 10 executions, which are remarkably similar
(as expected).

Creating a dataset of normal activity for the bsdtar pro-
gram is more challenging. It has a large set of command
line options, and in general is more complex than eject.
While the latter is generally called with an argument of
/dev/*, the former can be invoked with any argument string,
for instance bsdtar cf myarchive.tar /first/path /sec-

ond/random/path is a perfectly legitimate command line.
Using a process similar to the one used for creating the IDE-
VAL dataset, and in fact used also in other works such as
[36], we prepared a shell script which emulates the pseudo-
random behavior of an user who creates or extracts archives.
The randomization takes into account the different way in
which users pick flags: for instance, many users prefer to un-
compress an archive using tar xf archive.tar, many oth-
ers still use the dash tar -xf archive.tar, and may use
the “verbose” option as well. Running inside a snapshot of a
real-world desktop filesystem, our tool randomizes such vari-
ations and similar aspects. To simulate user activity, it ran-
domly creates files of various size and content both around
the system (in the case of superusers), and into an user’s own
home directory. Once the filesystem has been populated, the
script randomly walks around the system directory tree and
creates TAR archives, with random sets of command line
flags and target directories. Similarly, archives are expanded
using the above explained flag randomization procedures.

It is important to underline that normal users rarely choose
random names for their files and directories, they usually
prefer to use common words plus a limited set of characters
(e.g., ., -, _) for concatenating them. Therefore, we rely on
a large dictionary of words for generating filenames.

We have chosen these two applications because they have
been recently found to be vulnerable to two different buffer
overflow vulnerabilities that allow to execute arbitrary code.
In the case of mcweject 0.9, the vulnerability [28] is a very
simple stack overflow, caused by improper bounds checking.
By passing a long argument on the command line, an ag-
gressor can execute arbitrary code on the system with root
privileges. There is a public exploit for the vulnerability [17]
which we modified slightly to suit our purposes and execute
our own payload. The attack against bsdtar is based on a
publicly disclosed vulnerability in the PAX handling func-
tions of libarchive 2.2.3 and earlier [29], where a function
in file archive_read_support_format_tar.c does not prop-
erly compute the length of a buffer when processing a mal-
formed PAX archive extension header (i.e., it does not check
the length of the header as stored in a header field), resulting
in a heap overflow which allows code injection through the
creation of a malformed PAX archive which is subsequently
extracted by an unsuspecting user on the target machine. In
this case, we developed our own exploit, as none was avail-
able online, probably due to the fact that this is a heap over-
flow and requires a slightly more sophisticated exploitation
vector. In particular, the heap overflow allows to overwrite a
pointer to a structure which contains a pointer to a function
which is called soon after the overflow. So, our exploit over-
writes this pointer, redirecting it to the injected buffer. In
the buffer we craft a clone of the structure, which contains
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Figure 3: An illustration of the in-memory execution technique we developed and used for this paper

a pointer to the shellcode in place of the correct function
pointer.

In the tests we also used a modified version of SELF [3],
which we improved in order to reliably run under FreeBSD
6.2 and ported to a form which could be executed through
code injection (i.e., to shellcode format). This tool imple-
ments a technique known as“Userland Exec”: by overwriting
the program headers of any statically linked ELF binary, and
by building a specially-crafted stack it allows an attacker to
load and run that ELF in the memory space of a target
process without calling the kernel and, more importantly,
without leaving any trace on the hard disk of the attacked
machine. This is accomplished through a two-stage attack
where a shellcode is injected in the vulnerable program, and
then retrieves a modified ELF from a remote machine, and
subsequently injects it into the memory space of the running
target process, as shown schematically in Figure 3.

5. RESULTS
In the setup detailed above, we performed several experi-
ments with both eject and bsdtar. We trained our anomaly
detector with ten different execution of eject and more than
a hundred executions of bsdtar, randomized as described
above. We also audited eight instances of the activity of
eject under attack, while for bsdtar we logged seven ma-
licious executions. We repeated the tests both with a sim-
ple shellcode which opens a root shell (a simple execve of
/bin/sh) and with our implementation of the userland exec
technique. In the latter we injected four different statically
built payloads (sash, links, fget, and the sudoku command
line game); in the case of bsdtar we gathered 8 executions
by invoking bsdtar with two different command line option
sets; in the case of eject we injected 8 different payload
(the same used for bsdtar plus portsentry, tree, pstree,
less) and we audited eight different executions.

The overall results are summarized in Table 2. Let us con-
sider the effectiveness of the detection of the attacks them-
selves. The attacks against eject are detected with no false
positive at all. The exploit is detected in the very begin-
ning: since a very long argument is passed to the execve,
this triggers the argument model. The detection accuracy is
similar in the case of bsdtar, even if in this case there are
some false positives. The detection of the shellcode happens
with the first open of the unexpected special file /dev/tty.
It must be underlined that most of the true alerts are cor-
rectly fired at system call level; this means that malicious
calls are flagged by our IDS because of their unexpected ar-

guments, for instance. It must be noted that, in the case
of userland execution with SELF, we were able of reaching
100% because our IDS is easily triggered by in memory at-
tacks; in fact, executing the injected payload significantly
modifies the normal behavior of the process more than a
classic exploit does. Also note that to test the accuracy of
the prototype we used attack-free data.

On the other hand, exploiting the “Userland Exec” an at-
tacker launches an otherwise normal executable, but of course
such executable has different system calls, in a different or-
der, and with different arguments than the ones expected
in the monitored process. This reflects in the fact that we
achieved a 100% detection rate with no increase in false pos-
itives, as each executable we have run through SELF has
produced a Markov model which significantly differs from
the learned one for the exploited host processes.

6. CONCLUSIONS
In this paper we analyzed the wide class of definitive anti-
forensics techniques, which try to eliminate evidence by avoid-
ing disk usage. In particular, we focused on in-memory injec-
tion techniques. Such techniques are widely used by modern
attack tools (both commercial and open source).

As memory dump and analysis is inconvenient to perform,
often it is not part of standard operating procedures, and
it does not help except in case of in-memory resident back-
doors and rootkits, we proposed an alternative approach to
circumvent such techniques. We illustrated how a prototype
which analyzes (using learning algorithms) the sequence and
the arguments of system calls to detect intrusions can be
used to detect in-memory injections of executable code, and
in-memory execution of binaries.

We proposed an experimental setup using vulnerable ver-
sions of two widely used programs on the FreeBSD platform,
eject and bsdtar. We described the creation of a training
and a testing dataset, how we adapted or created exploits
for such vulnerabilities, and how we recorded audit data.
We also developed an advanced in-memory execution pay-
load, based on SELF, which implements the “userland exec”
technique through an injectable shellcode and a self-loading
object (a specially-crafted, statically linked ELF file). The
payload executes any statically linked binary in the mem-
ory space of a target process without calling the kernel and,
more importantly, without leaving any trace on the hard
disk of the attacked machine.
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Details Detection accuracy

Programs DR % = TP
TP+FN

% FPR % = FP
FP+TN

%

Test env.: (a) w/o userland execution (b) w/ userland execution (SELF) (c) Attack-free data

eject 75% 100% 0%

(no. of execs.) = 6
6+2

% = 8
8+0

% = 0
0+404

%

bsdtar 70.6% 100% 7.81%

(no. of execs.) = 12
12+5

% = 4·2
4·2+0

% = 20
20+236

%

Table 2: Experimental results for DR with a (a) regular shellcode and (b) with our userland exec implemen-
tation (SELF). Test environment (c) is related to the data used to compute the FPR.

We performed several experiments, with excellent detection
rates for the exploits, but even more importantly with a
100% detection rate for the in-memory execution payload
itself. We can positively conclude that our technique yields
promising results for creating a forensic audit trail of other-
wise“invisible” injection techniques. Future developments of
this work will include a more extensive testing with different
anti-forensics techniques, and the development of a specifi-
cally designed forensic output option for our prototype.
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