
AndroTotal: A Flexible, Scalable Toolbox and Service
for Testing Mobile Malware Detectors

Federico Maggi
fmaggi@elet.polimi.it

DEIB, Politecnico di Milano

Andrea Valdi
andrea.valdi@mail.polimi.it
DEIB, Politecnico di Milano

Stefano Zanero
zanero@elet.polimi.it

DEIB, Politecnico di Milano

ABSTRACT
Although there are controversial opinions regarding how
large the mobile malware phenomenon is in terms of absolute
numbers, hype aside, the amount of new Android malware
variants is increasing. This trend is mainly due to the fact
that, as it happened with traditional malware, the authors
are striving to repackage, obfuscate, or otherwise transform
the executable code of their malicious apps in order to evade
mobile security apps. There are about 85 of these apps only
on the official marketplace. However, it is not clear how
effective they are. Indeed, the sandboxing mechanism of
Android does not allow (security) apps to audit other apps.
We present AndroTotal, a publicly available tool, malware

repository and research framework that aims at mitigating
the above challenges, and allow researchers to automatically
scan Android apps against an arbitrary set of malware de-
tectors. We implemented AndroTotal and released it to the
research community in April 2013. So far, we collected 18,758
distinct submitted samples and received the attention of sev-
eral research groups (1,000 distinct accounts), who integrated
their malware-analysis services with ours.

KEYWORDS
Android; Malware; Malware detectors; Testing.

CATEGORIES AND SUBJECT DESCRIPTORS
D.4.6 [Security and Protection]: Invasive software; D.2.5
[Testing and Debugging]: Testing tools

1. INTRODUCTION
With 75% market share, Android is the most popular plat-
form for mobile devices according to the most recent sur-
veys [6, 7]. Along with the number of Android devices,
the prevalence of the official app market increased last year
hitting 25 billion downloads in September 2012 [14].
The popularity of Android devices turned them into a very

attractive target for cybercriminals [16]. Although various
types of threats against Android devices have been spotted in

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full cita-

tion on the first page. Copyrights for components of this work owned by others than

ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-

publish, to post on servers or to redistribute to lists, requires prior specific permission

and/or a fee. Request permissions from Permissions@acm.org.

SPSM’13, November 8, 2013, Berlin, Germany.

Copyright 2013 ACM 978-1-4503-2491-5/13/11 ...$15.00.

http://dx.doi.org/10.1145/2516760.2516768.

the wild, the most popular one consists of malicious apps dis-
tributed through both official and unofficial markets. These
apps perform actions without the user’s consent, which ulti-
mately end up in financial loss for the user (and financial gain
for the malware developer) and/or data stealing. According
to McAfee’s most recent report [10], malicious spyware and
targeted attacks are becoming more prevalent.
After the seminal research work by Zhou and Jiang [19]

in early 2012 (based on data collected in the preceding 2
years), we observed a continuous growth in the numbers of
malicious Android apps. However, it is difficult to define what
should be considered as one “instance” of a malicious app.
For this reason, some security companies like McAfee report
that their database contain about 60k distinct malicious
Android apps as of Q1 2013 [10], whereas other companies
like Trendmicro counted up to 590k distinct “threats” against
Android devices. More conservative estimates report numbers
between a few hundreds up to less than four thousands [15].
Regardless of the actual value, which may be difficult to
define, security companies, researchers and practitioners all
agree that there is an ongoing increasing trend of malicious
Android apps spotted in the wild, which indicates that the
criminals consider this as a viable market opportunity1.
This of course creates a market for security products on the

Android platform. Given the restrictive security model of
Android, in which apps are sandboxed, questions arise on how
these security applications actually work. For instance, how
can a malware detector scan another app’s files if Android has
no primitives for allowing the former to inspect the filesystem
folder of the latter? Some malware detectors work around
this limitation by checking the APKs against a list of static
signatures at installation time. Unfortunately, this is the best
that the Android security model allows them to do (without
requiring root privileges, which in turn would increase the
attack surface even more).
Malicious developers generate malware variants to evade

these basic security checks, even just by changing the pack-
age name or repackaging the APKs to alter just a few bytes.
Two recent works [13, 18] studied the robustness of current
Android malware detectors against evasion attempts such as
repackaging, encryption or obfuscation (basically implement-
ing methodologies proposed before the Android era [2, 11]).
Unsurprisingly, most products failed at detecting variants of
known malware families.
In our vision, considering this trend and the reliance on

evasion techniques to circumvent static signatures, instead

1http://cwonline.computerworld.com/t/8652955/
807570490/619941/0/

49

of focusing on demonstrating that a specific malware detec-
tion app has low robustness, the research community would
benefit more from scalable approaches to evaluate malware
detectors against an arbitrarily large collection of malware
samples. Indeed, malware detector testing must be per-
formed on large collections of malware samples, otherwise
its significance is low [2, 11].

These crucial aspects are not really taken into account
by state-of-the-art malware detector testing approaches [12,
13, 18]. The only attempt at scalability and automation
is Google’s VirusTotal service2, which appears similar in
spirit to our research vision. However, it uses command-line
versions of desktop-based malware-detection applications,
modified and extended with the signatures for mobile mal-
ware where available (as it is unusual that a desktop-based
malware detector looks for malicious code that targets mo-
bile devices). For this and other reasons, Google explicitly
discourage the use of VirusTotal for evaluating or comparing
malware detectors. Contrarily, we believe that testing the
original, unmodified malware detectors is important to guar-
antee unbiased evaluation and to study their mechanisms of
detection on the mobile device itself.

This objective poses a challenge, as the user interface of
mobile apps is designed for touchscreens, and thus difficult to
automate. Even when feasible, executing an app against a list
of malware samples is insufficient without a programmatic
method to determine the outcome of each scan. In fact, even
the most advanced approach to mobile malware detector
testing we could find [12] falls short on this aspect, because
it assumes that a human oracle manually verifies the result
of each scan, which is clearly unfeasible.

We present AndroTotal, a publicly available tool, malware
repository and research framework that aims at mitigating
the above challenges, and allow researchers to automatically
scan Android apps against a collection of malware detectors.
After a careful review of the advantages and disadvantages of
existing libraries for user-interface scripting of Android apps,
we designed and implemented a generic SDK for automating
malware detector testing tasks, which we plan to release
publicly. Our SDK offers a high-level interface, and can
adapt to virtually any Android malware-detection app with
less than one hundred lines of Python code. Our approach
is agnostic with respect to the specific Android version and
works on both emulated and physical devices.

We deployed and released AndroTotal to the research com-
munity in April 2013. As of August 30, 2013, we collected
18,758 distinct submitted samples thanks to a simple yet
comprehensive JSON API. We were contacted by several
research groups: As a result, AndroTotal is integrated with
VirusTotal, CopperDroid, ForeSafe, SandDroid and Anubis.

In summary, we make the following contributions:

• In Section 3 we present an approach to programmati-
cally test Android mobile malware detectors.

• In Section 4 we propose an implementation and low-
cost deployment of a publicly available web service that
shows how our approach works in practice.

• We provide bona fide researchers with free access to
our deployment for research purposes. Up to now, we
granted access to 1,000 accounts.

2http://virustotal.com

We envision AndroTotal to become a starting point for cre-
ating a data-sharing and research platform, to which mobile
malware analyzers can be “plugged in” through open APIs.

2. MALWARE DETECTORS
Android adopts an app-centric security model, where each
app runs within a separate user process. Isolation is guaran-
teed natively by the underlying Linux kernel, which prevents
distinct user processes from interfering with each other: As
a matter of fact, each user process has a separate memory
space. The security of IPC is enforced through a custom
permission model, where apps and (sensitive) resources (e.g.,
phone, networks, SMSs) are allowed to communicate only if
the user has granted specific static permissions.
This app-centric security model has both positive and neg-

ative consequences on malware development and detection.
On the one hand, it prevents, at least in theory, malicious
apps from interfering with a benign app (e.g., to read its mem-
ory content). On the other hand, as highlighted by Fedler
et al. [3], it limits the auditing capabilities of security apps,
such as anti-malware products. Indeed, it would need to
request all the existing permissions, audit other apps, and
intercept all network traffic.
A special set of fine-grained privileges would be necessary

for the next generation of malware detectors. Fortunately,
given the great research interest around the Android permis-
sion model [1, 4, 5, 8, 17], it is realistic that future versions
will incorporate special policies for certified auditing security
applications. However, given the current state of the art,
questions arise on how anti-malware apps currently work,
and how effective they can possibly be with such a restrictive
security framework.

2.1 Testing Malware Detectors
Testing malware detectors is an extensively investigated prob-
lem. In this work we do not use the term testing to indicate
“comparative analysis”, which results are often abused for
marketing purposes.
The seminal work by Christodorescu and Jha [2] proposed

to test the robustness of malware detectors by generating
variants via code-transformation. Morales et al. [11] adapted
such techniques to mobile malware detectors of the pre-
Android era (e.g., Symbian). Recently, Zheng et al. [18]
and Rastogi et al. [13] continued along the same line by
proposing and testing code-transformation procedures for
the Dalvik VM and ARM. The assumption behind this re-
search line is that malware authors will rely on (similar)
code-transformation procedures to evade static signatures:
Therefore, evaluating malware detectors against mutants is
a good estimation of their robustness to future malware. Al-
though [13, 18] have some technical limitations (i.e., corner
cases that, according to our experience, produce APKs that
do not run properly on some Android versions), we believe
that they cover extensively this research direction.

Research Gap. We notice a lack of tools that support
researchers in creating experiments to test malware detectors
against a given set of samples. VirusTotal is the only initia-
tive in this direction. However, as stated by the maintainers
themselves, VirusTotal does not use the original products:
It uses command-line versions of the applications (instead of
the GUI based ones) along with the same signature database
shipped and updated by the vendor. For traditional, PC-
based malware and detectors this approach is completely

50

Feature Robotium Monkey Runner UI Automator ViewClient apk-view-tracer AndroPilot

➀ User input simulation X X X X unstable X

➁ User interface feedback X X slow slow slow
➂ Multi-app context X X X X X

➃ No anti-malware modification X X X X X

➄ Version agnostic X X X X X

➅ Notification framework support unstable X

Table 1: Comparison of Android user-interface testing libraries with respect to AndroTotal requirements.

reasonable, even if it focuses on signature detection and does
not take into account heuristics or behavioral components.
Mobile malware and detectors are different, as also pointed

out in part by Pilz [12]. First, there are vendors (e.g.,
Lookout, Creative Apps, NQ, GFI) that produce malware-
detection apps only for mobile platforms (and therefore have
no command line clients available). Second, mobile malware
detectors may also need to be tested for power efficiency, per-
formance impact or network data usage, which is evidently
impossible in an approach similar to VirusTotal’s. Finally,
when testing mobile malware detectors multiple test scenar-
ios must be taken into account (e.g.,on-demand vs. on-install
detection).
Our research solves the scalability limitations of [12] and

overcomes the technical obstacles of the existing user-interface
testing tools, allowing researchers to fully explore the pecu-
liarities of the mobile settings.

2.2 User-interface Testing
User-interface testing poses a barrier to researchers that need
to create scalable procedures to test mobile applications. Pilz
[12] does not consider this aspect and assumes that either the
malware detector logs the recognized threats in a parsable
format, or a human operator manually retrieves such informa-
tion. These assumptions imply that some malware detectors
(i.e., those that support no logging) must be modified or
discarded, or that only a limited number of experiments can
be carried out because they become labor-intensive.
Automating mobile malware detector testing experiments,

in a way which is agnostic to the specific product, is essential
to build significant, extensive evaluations.
We examined and tested 6 publicly available libraries and,

as summarized in Table 1, none of them are fully suitable for
automating modern Android malware detectors with respect
to our requirements:

➀ User input simulation to reproduce the gestures needed
to control the app.

➁ User interface feedback to inspect the displayed views
and activities, to synchronize the testing procedures
with the state of the running app and to scrape text
(e.g., the threat name) from the interface.

➂ Multi-app context is needed not only to support com-
plex testing procedures, which may involve more than
one application (e.g., malware detector and browser),
but also for basic operations (e.g., notification manage-
ment) across multiple application contexts.

➃ No anti-malware modification to avoid altering their
original code (e.g., instrumentation), which in turn may
bias the results of a test.

➄ Version agnostic.

➅ Notification framework support since many malware
detectors use it as their only form of output.

3. PROPOSED APPROACH

Our goal is to provide a framework to streamline parallel
testing of malware detectors.

3.1 Overview

Our approach consists in installing the original, unmodified
anti-malware apps in their native, clean environment. Then,
we install the suspicious app under analysis and we register
the system changes (e.g., user interface, log files, network
traffic). This allows us to determine whether or not the
malware detector recognizes the attempt of installing the
malicious app (so-called “on-install detection”). If the anti-
malware app permits it, we also perform an explicit scan
(including the external SD card) after the infection. This
allows us to determine whether or not the anti-malware
detects the presence of the malicious app on the system
storage (so-called “on-demand detection”). We then post-
process the system changes that we recorded to extract the
label of the detected threats.

Characteristics. Our approach advances the state of the
art [12] because it requires no manual work to perform tests.
For this, we leverage a custom user-interface automation
library that we developed as described in Section 4.2. This
library, called AndroPilot, allows to pilot any Android app
by emulating a user activity (e.g., press a button, copy the
content of a text field) and abstracts the task of running an
anti-malware test as a self-contained testing unit. In addition,
as described in Section 4.2, we support both emulated and
physical devices. This is essential because some malware
families refuse to exhibit their maliciousness when they realize
that they are being run within an emulated device. Finally,
our approach is inherently scalable because each testing
procedure is self contained and can run on modest, general-
purpose hardware, as described in Section 4.3.

3.2 Definitions and Design

We define a test as a function that applies a recipe to a
running instance of a given malware detector installed on a
chosen environment. A test takes as input a malware sample
as an APK, the anti-malware as the APK of the product
version under analysis, and the environment, which is the
Android platform. The recipe is a list of interactions that
need to be executed in order to obtain an outcome from the
anti-malware, which is the output of the test function.

4. SYSTEM DESCRIPTION

As depicted in Figure 1, AndroTotal is based on open-data
formats to ensure easy integration with existing systems.
This choice was successful, because we received many contacts
from other research groups that wanted to integrate their
systems with ours.

51

AndroTotal Backend

User

AndroTotal
FrontendStep 1

Upload APK

AndroTotal Manager

Android

Platforms

Antvirus

Repository

Maintainer

Step 0
Test and image specification

Emulator Pool

Android
Virtual Device

Android
Virtual Device

Android
Virtual Device

New Android
Virtual Device

Install sample

Run Test
- Result
- Execution log
- Screenshot
- Network dump

Step 2
Processing

Clean

Images

Results

Analysis
queue

Remote Client

Step 1
Submit APK

REST API

screen
scraping

S
te

p
 3

R
e
s
u
lt
 r

e
tr

ie
v
a
l

Figure 1: Overview of the logical architecture of AndroTotal.

4.1 Workflow

The maintainer ’s role is to provision anti-malware apps and
write one recipe (as detailed in Section 4.2) for each of them
through the AndroPilot framework (Step 0). As of now,
AndroTotal supports the 10 most popular Android malware
detectors3 (we received explicit permission from the vendors).
The maintainer acts only when new malware detectors must
be incorporated. Therefore, once a recipe exists for a given
anti-malware app, no further manual actions are required to
execute any number of tests. Although several pre-packaged
Android system images exist as part of the Android SDK,
the maintainer can also package customized system images.

The user of AndroTotal can be an actual human that
uploads (Step 1) an APK through an HTML form, or an
automated client that sends JSON messages according to a
RESTful API. In both cases, an analysis task (i.e., execu-
tion of a test, as defined in Section 3.2) is enqueued in the
AndroTotal’s backend (Step 2). Whenever a worker, which
is a remote or local machine, is available, it pulls a task from
the queue and creates a copy of a given clean image (e.g., as
requested by the user), mounts a block storage to emulate
the SD, runs it within a virtual or physical device and infects
either the system image or the block storage with the APK of
the malware sample. The infection, which for state-of-the-art
Android malware consists in installing an APK, is performed
automatically for each test and needs not to be part of the
recipe. This step is executed for each anti-malware app, thus
creating a set of testing tasks.

3The public service exposes 7 out of the 10 supported prod-
ucts as of August 30, 2013.

At this point (Step 3), the recipe is executed, and the
output is written asynchronously on a database and delivered
back to the user (as a JSON or HTML payload).

4.2 Implementation Details

We implemented AndroTotal on top of the Flask Python
web framework, leveraging SQLAlchemy for storage abstrac-
tion, and Celery for asynchronous task management. In the
remainder of this section we describe how we implemented
the AndroPilot library and show how a recipe looks like.
Also, we detail how the anti-malware upgrade procedures
work, and provide some details about our current production
deployment.

Recipes: User-interface Automation. The AndroPi-
lot library overcomes the limits of the current user-interface
testing tools described in Section 2.2. We selected the library
that met most of our requirements (i.e., Apk-view-tracer)
and extended it.

More specifically, we leveraged the Android ViewServer

component to introduce new procedures that properly man-
age application synchronization during testing stages, in-
cluding functions that wait for an arbitrary view, text or
notification to appear on the screen. We improved the view
management to correctly report when a view is shown on the
running Android instance and implemented a new function
to retrieve the screenshot from a running device or emulator.
Additionally, we improved the overall code stability. Finally,
AndroPilot includes a Java library that supports the retrieval
of screenshots while running a test.

AndroPilot interacts with a running Android instance via
adb to send commands to the monkey server and to the
ViewServer processes.

52

Event waitingTap Tap

Screen scraping

Figure 2: Example user interaction needed to per-

form an on-demand device scan with Zoner An-

tiVirus Free 1.7.0.

AndroPilot is written in Python and leverages monkey and
ViewServer as the main tools for interacting with the An-
droid system. Thus, it works on any Android system that
supports them, which includes basically any Android OS
version on either a virtual or a physical device. The fact that
the ViewServer requires root privileges is not a limitation
because the rooting procedure must be performed only once,
when adding a worker for a new (physical) device. Creating
a new worker requires no effort.
To illustrate AndroPilot, in the following we summarize

the user-interface interactions (depicted in Figure 2) needed
to scan a device with the free version of the Zoner AntiVirus
and to scrape the threat label (if any is found):

from andropilot.pilot import AndroPilot

ap = AndroPilot(’device-5554’, ’localhost’, 4939, 10000)

ap.start_activity(
"com.zoner.android.antivirus", ".ActMain")

if not ap.wait_for_activity(
"com.zoner.android.antivirus.ActMain"):
raise Exception(’Activity not found!’)

ap.click_view_by_text("Antivirus")
if not ap.wait_for_activity(
"com.zoner.android.antivirus.ActMalware"):

raise Exception(’Activity not found!’)

ap.click_view_by_text("Scan device")
ap.wait_for_activity(

"com.zoner.android.antivirus_common.ActScanResults")
raise Exception(’Activity not found!’)

define an event to periodically check

event_checker = lambda:(ap.exist_view_by_text("Clean")
or ap.exist_view_by_text("problem found"))

if ap.wait_for_custom_event(
event_checker, timeout=45, refresh=True):
if ap.exist_view_by_text("problem found"):

threat_name = ap.get_view_by_id("scaninfected_row_virus").
mText

result = threat_name
else:

result = ’NO_THREAT_FOUND’
else:

result = ’SCAN_TIMEOUT’

Malware Detector Upgrades. After examining the 85
existing anti-malware products we found that they support

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 1800

03/01 04/01 05/01 06/01 07/01 08/01 09/01

Figure 3: Daily submissions. The spikes beyond the

average 100 daily submissions are due to a series of

batch submissions for workload testing. As it can

be seen, we experienced a downtime August 9–20th,

2013.

Label #APKs

UDS:DangerousObject.Multi.Generic 3963
HEUR:Trojan-SMS.AndroidOS.Opfake.bo 1252

not a virus Adware.Airpush.origin.7 701
AndroidOS Opfake.CTD 700

HEUR:Trojan-SMS.AndroidOS.Opfake.a 628
Android.SmsSend.origin.281 620
Android:FakeNotify-A [Trj] 620

HEUR:Trojan-SMS.AndroidOS.FakeInst.a 512
Android.SmsSend.origin.315 485

HEUR:Backdoor.AndroidOS.KungFu.a 466
Android.SmsSend.origin.585 462
Android.SmsSend.origin.629 461

Adware.AndroidOS.Airpush-Gen 432
HEUR:Backdoor.AndroidOS.BaseBrid.a 390

AndroidOS Opfake.CTC 386

Table 2: Top 15 labels overall.

app and signature upgrades. In the first case, the app is itself
upgraded with a new release. For some products, this type
of upgrade implies that also a signature upgrade is bundled
with the new release of the app. In the second case, the
product has an in-app procedure to upgrade the signatures.
AndroTotal handles both cases with an app-specific recipe

written with AndroPilot, which performs the necessary ges-
tures to issue an upgrade command. In our deployment, we
run these recipes daily.
A special case are anti-malware apps that use a remote

database of signatures: In this case obviously no signature
upgrade takes place.

4.3 Service Deployment
AndroTotal service is currently in beta phase. We deployed
it on desktop-class hardware: a dual-core machine with 4GB
of RAM handles the frontend and data-storage part, a dual-
core and a four-core machines implement 6 parallel workers.
In spite of the current hardware limitations, we receive and
process a substantial flow of daily and weekly submissions,
as Figure 3 shows.
A worker takes between 30 seconds and 3–4 minutes to run

a test on 10 malware detectors, including the time required
to launch all the emulators. On average a single test takes
1–3 minutes to complete. As shown in Figure 4, the wide
standard deviation does not allow us to firmly state that
there are vendors that are considerably slower or faster than
others.
Table 2 shows the most popular threat labels detected,

where the popularity is assumed to be proportional to the
number of distinct (i.e., in terms of MD5) sample APKs

53

00:00:15

00:00:30

00:00:45

00:01:00

00:01:15

00:01:30

00:01:45

00:02:00

00:02:15

00:02:30

00:02:45

00:03:00

00:03:15

V5 V4 V3 V1 V2 V7 V6 V8 V1 V9 V10

Figure 4: Average time to run a test. Vendors are

anonymized, as our goal is not currently that of per-

forming comparative analyses. V1 is repeated be-

cause it released two malware detectors.

uploaded with the that label. We obtained this table by
querying the AndroTotal database for the number of tests of
each APKs, grouped by the output label.

5. LIMITATIONS AND FUTURE STEPS
Our approach is limited to malware detectors that have a
“scrapable” user interface that exposes the details of the
detected threat. This assumption holds for all of the 85
commercial and free apps we analyzed.
Some security products include extra features such as

browser protection, phone call filtering, remote wiping, or
SMS scanning. Such features are not common to every
anti-malware product, and fall outside the scope of malware
detection, and thus of this paper.
Also, we tested the current implementation on virtual ARM

devices over Intel x86 machines: ARM-to-x86 emulation is
known to be slow. However, the availability of ARM-as-
a-service platforms4 makes scaling AndroTotal to physical
hardware feasible. To this purpose, we are currently inves-
tigating a solution to perform hot snapshots-rollbacks of a
running machine and its filesystem (similarly to what [9] does
for malware analysis on the bare metal). This would allow
us to obtain VM-like flexibility and bare-metal-like speed. In
addition, running automated tests on physical devices opens
up new measurement possibilities, including power-efficiency
studies, for instance.
We are also planning to refactor AndroTotal and release

it as a framework to automate user-interaction tasks and
retrieve results from a running Android instance. Hopefully,
this will allow other researchers to contribute to it and, more
importantly, to take advantage of AndroPilot for custom
experiments.

6. CONCLUSIONS
We implemented and deployed AndroTotal as a web service
and infrastructure open to the research community. Our
vision is to make it the first component of an independent,
collaborative observatory of the mobile malware phenomenon.
To this end we are working on creating a new, more powerful
deployment and, more importantly, collecting interest from
various research groups to federate our respective analysis
systems in a larger, cooperative, worldwide infrastructure.

4http://www.boston.co.uk/solutions/viridis/viridis-
cloud.aspx

REFERENCES
[1] S Bugiel, L Davi, A Dmitrienko, and S Heuser. Practical

and lightweight domain isolation on android. In SPSM,
2011.

[2] Mihai Christodorescu and Somesh Jha. Testing malware
detectors. In ISSTA. ACM, July 2004.

[3] R Fedler, J Schütte, and M Kulicke. On the Effectiveness
of Malware Protection on Android. Technical report,
Fraunhofer AISEC, Berlin, 2013.

[4] A P Felt, E Ha, S Egelman, A Haney, and E Chin.
Android permissions: User attention, comprehension,
and behavior. In SOUPS, 2012.

[5] Adrienne Porter Felt, Erika Chin, Steve Hanna, Dawn
Song, and David Wagner. Android permissions demys-
tified. In CCS. ACM, October 2011.

[6] Gartner. Gartner says asia/pacific led worldwide mobile
phone sales to growth in first quarter of 2013, 5 2013.

[7] IDC. Android and ios combine for 92.3shipments in the
first quarter while windows phone leapfrogs blackberry,
according to idc. http://www.idc.com/getdoc.jsp?

containerId=prUS24108913, 5 2013.

[8] J Jeon, K K Micinski, J A Vaughan, and A Fogel. Dr.
Android and Mr. Hide: fine-grained permissions in an-
droid applications. In SPSM, 2012.

[9] Dhilung Kirat, Giovanni Vigna, and Christopher
Kruegel. BareBox: efficient malware analysis on bare-
metal. In ACSAC. ACM, December 2011.

[10] McAfee Labs. Mcafee threats report: First quarter 2013.
Technical report, McAfee, 2013.

[11] Jose Andre Morales, Peter J Clarke, Yi Deng, and B M
Golam Kibria. Testing and evaluating virus detectors
for handheld devices. J. of Computer Virology, 2(2):
135–147, September 2006.

[12] Hendrik Pilz. Building a test environment for Android
anti-malware tests. In VB Conference, pages 1–7, 2012.

[13] Vaibhav Rastogi, Yan Chen, and Xuxian Jiang. Droid-
chameleon: evaluating android anti-malware against
transformation attacks. In ASIA CCS, New York, NY,
USA, 2013. ACM.

[14] Jamie Rosenberg. Google play hits 25 billion downloads.
officialandroid.blogspot.com/2012/09/google-

play-hits-25-billion-downloads.html, 9 2012.

[15] Symantec. Internet security threat report. Technical
report, Symantec, 4 2013.

[16] TrendLabs. Android under siege: Popularity comes at
a price. Technical report, Trend Micro, Inc., 2013.

[17] Rubin Xu, Hassen Säıdi, and Ross Anderson. Aurasium:
practical policy enforcement for Android applications.
In USENIX Security Symposium. USENIX Association,
August 2012.

[18] M. Zheng, P.P.C. Lee, and J.C.S. Lui. ADAM: An Au-
tomatic and Extensible Platform to Stress Test Android
Anti-Virus Systems. In DIMVA, April 2012.

[19] Y. Zhou and X. Jiang. Dissecting android malware:
Characterization and evolution. In Security and Privacy
(SP), 2012 IEEE Symposium on, pages 95–109. IEEE,
2012.

54

