
AndRadar: Fast Discovery

of Android Applications in Alternative Markets

Martina Lindorfer1, Stamatis Volanis2, Alessandro Sisto3,
Matthias Neugschwandtner1, Elias Athanasopoulos2, Federico Maggi3,

Christian Platzer1, Stefano Zanero3, and Sotiris Ioannidis2

1 Secure Systems Lab, Vienna University of Technology, Austria
{mlindorfer,mneug,cplatzer}@iseclab.org

2 Institute of Computer Science, Foundation for Research & Technology – Hellas, Greece
volanis@csd.uoc.gr,{elathan,sotiris}@ics.forth.gr

3 Politecnico di Milano, Italy
alessandro.sisto@mail.polimi.it,{federico.maggi,stefano.zanero}@polimi.it

Abstract. Compared to traditional desktop software, Android applica-
tions are delivered through software repositories, commonly known as
application markets. Other mobile platforms, such as Apple iOS and
BlackBerry OS also use the marketplace model, but what is unique to
Android is the existence of a plethora of alternative application markets.
This complicates the task of detecting and tracking Android malware.
Identifying a malicious application in one particular market is simply not
enough, as many instances of this application may exist in other markets.
To quantify this phenomenon, we exhaustively crawled 8 markets between
June and November 2013. Our findings indicate that alternative markets
host a large number of ad-aggressive apps, a non-negligible amount of mal-
ware, and some markets even allow authors to publish known malicious
apps without prompt action.
Motivated by these findings, we present AndRadar, a framework for dis-
covering multiple instances of a malicious Android application in a set
of alternative application markets. AndRadar scans a set of markets in
parallel to discover similar applications. Each lookup takes no more than
a few seconds, regardless of the size of the marketplace. Moreover, it is
modular, and new markets can be transparently added once the search
and download URLs are known.
Using AndRadar we are able to achieve three goals. First, we can discover
malicious applications in alternative markets, second, we can expose app
distribution strategies used by malware developers, and third, we can moni-
tor how different markets react to new malware. During a three-month eval-
uation period, AndRadar tracked over 20,000 apps and recorded more than
1,500 app deletions in 16 markets. Nearly 8% of those deletions were related
to apps that were hopping from market to market. The most established
markets were able to react and delete new malware within tens of days from
the malicious app publication date while other markets did not react at all.

Keywords: Android, App Markets, Measurements, Malware Tracking

2 M. Lindorfer, S. Volanis, A. Sisto, M. Neugschwandtner et al.

1 Introduction

Due to its popularity with nearly 80% market share [15] and open model, Android
has become the mobile platform most targeted by cyber criminals. In spite of a
small infection rate [16,17] of devices with mobile malware in the wild, the remark-
able increase in the number of malicious applications shows that cyber criminals
are actually investing time and effort as they perceive financial gain. Indeed, the
typical malicious application includes Trojan-like functionalities to steal sensitive
information (e.g., online banking credentials), or dialer-like functionalities to call
or text premium numbers from which the authors are paid a commission. The
degree of sophistication of Android malware is rather low, although samples of
current malware families found in the wild include command-and-control func-
tionalities and attempt to evade detection with in-app downloads of the malicious
payload after the installation of a legitimate-looking application. Cyber criminals
are focusing more on widespread distribution and naïve signature evasion [23,32]
rather than attack vector sophistication.

Seminal work by Zhou and Jiang [35] reported the existence of 49 distinct
malware families according to data collected between 2010 and 2012. Current esti-
mations vary widely, with McAfee reporting about 68k distinct malicious Android
app [19] and Trend Micro counting up to 718k distinct Android “threats” [27] in Q2
2013. However, security vendors and researchers agree that there is an increasing
trend of malicious Android apps spotted in the wild, which indicates that criminals
consider this a source for profits. This phenomenon created a business opportunity
for new security companies, which according to Maggi et al. [18], created about a
hundred anti-malware applications for Android. Interestingly, about 70% of such
companies are new players in the antivirus (AV) market.

As with traditional malware, the research community has been focusing on
analyzing suspicious programs to identify whether they are malicious or not. In
the case of Android, this requires analyzing the application package file (APK),
a compressed archive that contains resources (e.g., media files, manifest) and
code, including Dalvik executables or libraries, or native code (e.g., ARM or x86).
Dynamic, static and hybrid program analysis approaches have also been ported
to Android. There is, however, a key difference between traditional malware and
Android malware. As we will discuss in Section 2, Android malware is distributed
through application marketplaces, which means that there is a wealth of metadata
associated with each sample, in addition to the resources contained in each APK.
Additional contextual information comes from the infection mechanism, bait-and-
switch, which uses an actual benign application distributed through alternative
marketplaces to attract victims.

Efficiency is a key requirement for monitoring malware campaigns in the large
Android ecosystem. However, we observe that meta information has not been
fully leveraged to this end. Indeed, as analyzed in Section 5, related work revolves
around features extracted from APK, which in turn implies that the sample is
downloaded and processed using static and dynamic analysis techniques, which
is time and space consuming.

Motivated by the need for tracking the distribution of Android malware across
markets, we follow a different approach and propose an alternative way to identify

AndRadar: Fast Discovery of Android Applications in Alternative Markets 3

them. We demonstrate that the combination of lightweight identifiers such as the
package name, the developer’s certificate fingerprint, and method signatures, cre-
ates a very strong identifier, which allows us to track applications across markets.
We implemented our approach by building AndRadar, which uses a flexible work-
flow. It applies lightweight fingerprinting to quickly determine if a known sample
has been found in a particular market. AndRadar postpones computationally
expensive tasks such as binary similarity calculation, so that they can be lazily
executed. This allows AndRadar to scan a full market for malware in real-time.
Using AndRadar we can infer useful insights about malicious app distribution
strategies and the lifetime of malware across multiple markets. For example, for a
total of 20,000 crawled apps AndRadar recorded more than 1,500 deletions across
16 markets in a period of three months. Nearly 8% of those deletions were related to
apps that were hopping from market to market, meaning the authors republished
their applications in one or more different markets after they were already deleted
from another market. Some markets reacted and deleted new malware within tens
of days from the publication date, whereas other markets did not react at all.
Interestingly, we were able to measure that the community reacts fast, flagging
applications as malicious faster than the market moderation in some cases.

In summary, we make the following contributions:
– We conducted an in-depth measurement on 8 alternative Android marketplaces.

In contrast to previous work, we collected the entire set of applications (318,515
overall) and not simply a random subset drawn from each market. With this
dataset, we provide preliminary insights on the role of these alternative markets,
with a focus on malicious or otherwise unwanted applications.

– We expand our set of observed markets and present AndRadar, a framework
for searching a set of markets, in real-time, in order to discover applications
similar to a seed of malicious applications. Using a set of distinctive fingerprints
that are robust to commonly used repackaging and signature-evasion techniques,
AndRadar can scan markets in parallel, and only needs a few seconds to discover
a given Android application in tens of alternative application markets.

– Using AndRadar we study and expose the publishing patterns followed by
authors of malicious applications on 16 markets. Moreover, our evaluation
shows that AndRadar makes harvesting marketplaces for known malicious or
unwanted applications fast and convenient.

2 Market Characterization

As we detail in Section 5, previous research shows that in 2011 the majority of
malicious or otherwise unwanted Android applications were distributed through
so-called alternative marketplaces. An alternative marketplace is any web service
whose primary purpose is to distribute Android applications. For instance, blogs
or review sites that occasionally distribute applications do not qualify as market-
places. According to our definition, we were able to find 894 markets as of June
2013. The raison d’etre of such alternative markets depends on three main factors:
4 Although previous work reported 194 markets in 2011 [29], no details such as the

URL or name were mentioned.

4 M. Lindorfer, S. Volanis, A. Sisto, M. Neugschwandtner et al.

0

20

40

60

10 20 30
Number of positive AV detections

P
e

rc
e

n
ta

g
e

 o
f

a
d

−
/m

a
lw

a
re

 o
n

 m
a

rk
e

t

opera

andapponline

camangi

slideme

fdroid

blackmart

getjar

pandapp

0

2

4

6

8

10 20 30
Number of positive AV detections

P
e

rc
e

n
ta

g
e

 o
f

m
a

lw
a

re
 o

n
 m

a
rk

e
t

opera

andapponline

camangi

slideme

fdroid

blackmart

getjar

pandapp

Figure 1: Percentage of applications on alternative markets classified as positives by
[1-32] AVs, including adware (left) and excluding adware (right).

country gaps (i.e., the Google Play Store is inaccessible from certain countries),
promotion (i.e., markets tailored to help users find new interesting applications),
and specific needs (i.e., markets that publish applications that would be bounced
by the Google Play Store).

Regarding malware distribution, since the first measurements conducted in
2011 a lot has changed: Researchers, security vendors and media continuously
raise concerns about the explosive growth of Android malware. According to a
recent estimate [25], as of 2013, companies have invested about $9 billion in mobile
device and network security, and installation of anti-malware software has become
the de-facto requirement for mobile devices.

2.1 The Role of Alternative Marketplaces

Given the above premises, we wanted to investigate whether alternative market-
places employ any security countermeasure to avoid the spread of malicious appli-
cations. To this end, we conducted a series of probing experiments, in July 2013,
aimed at assessing the response of these markets to dangerous applications. We
submitted known malicious applications taken from the Android Malware Genome
Project [35] to 7 markets (i.e., andapponline, androidpit, appzoom, brothersoft,
camangi, opera, slideme) and analyzed their reaction. To deter users from down-
loading the apps, we included explicit indications that they were malicious and
should not be installed. To the best of our knowledge (i.e., by tracking the down-
load counts), those apps were not downloaded. However, certain markets such as
andapponline never bounced/removed samples from 10 known families (e.g., Droid-
KungFu, BaseBridge). This motivated us to conduct a more thorough analysis.
Therefore, we crawled 8 alternative marketplaces between July and November 2013
entirely, obtaining 318,515 APKs along with their metadata, which varies across
markets (e.g., application name, version, uploader’s nickname, category, price,
download count, declared permissions). We then extended this crawling experi-
ment, including metadata from a larger set of markets, as described in Section 4.

2.2 Preliminary Findings

Using this initial collection of applications, we set out to answer the following
questions:

AndRadar: Fast Discovery of Android Applications in Alternative Markets 5

Label #

Android/Generic 2,397
Trojan/AndroidOS.eee 2,119

Trojan.AndroidOS.Generic.A 1,020
AndroidOS/Denofow.B 768
AndroidOS/Denofow.B 765
Suspect.Package.RLO 682

WS.Reputation.1 593
UnclassifiedMalware 555

Android/DrdLight.D!tr 517
AndroidOS/FakeFlash.C 455

Android-PUP/Hamob 443
AndroidOS/FakeFlash.C 428

Application:Android/FakeApp.C 358
Trojan:Android/Downloader.F 339

Andr.Trojan.Zitmo-2 223
Android/DDLight.D!tr 204

Trojan.AndroidOS.FakeFlash.a (v) 192
Android Airpush 182

AndroidOS/FakeFlash.A 174

Table 1: Top malware families found
overall.

andapponline camangi opera pandaapp slideme

0

50

100

150

1 2 3 4 5 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5
Top 5 authors per market

N
u

m
b

e
r

o
f

a
p

p
s

p
u

b
lis

h
e

d

Malware

Goodware

Figure 2: Top 5 authors ranked by number
of applications published.

Do alternative markets distribute known, unwanted applications? We
used VirusTotal to analyze our entire dataset. As illustrated in Figure 1, our anal-
ysis showed that the infection rate is not negligible. Even if we exclude adware,
there are still about 5–8% malicious applications overall on the crawled markets
(15,925–25,481 distinct applications detected by at least 10 AVs). This is clearly an
underestimation. Interestingly, some markets are specializing in distributing ad-
ware. This finding is inline with Symantec’s recent report [28], which mentions the
“madware” phenomenon, the practice of creating ad-aggressive mobile applications
to obtain revenue.

We conducted the remaining preliminary experiments on the applications
marked as malicious, excluding adware. We list the ranking of the top families
found in Table 1.
Do alternative markets allow the publication of malicious applications?
Based on the number of applications published, we ranked the authors of those 5
markets that reported author information reliably (e.g., blackmart simply caches
that information from Google Play Store). Unfortunately, as shown in Figure 2,
these markets permit the top authors to freely to publish both malicious and
benign applications. This finding further amplifies the previous results, because
top authors are supposedly well visible and known to the market’s operators and
community due to the larger number of applications published with respect to
other authors.
Do malicious applications have distinctive metadata? Previous work fo-
cused on devising static and dynamic features, extracted through program analysis
techniques (see Section 5) applied to the APK files, that characterize malicious
applications. However, given the central role of alternative markets in malware
distribution, we wanted to understand if malware can be identified solely by its
metadata, meaning all ancillary data available on each market (file size, download
count, etc.). As Figure 3 shows, due to repackaging, the file size is a feature to con-

6 M. Lindorfer, S. Volanis, A. Sisto, M. Neugschwandtner et al.

0.00

0.25

0.50

0.75

1.00

0 10 20 30 40

APK file size (MB)

E
C

D
F

Goodware

Malware

Figure 3: APK file size comparison of
malware and goodware: malicious apps
are slightly larger than benign apps due to
repackaging.

���

���

���

���

���

���

���

���

�	��
�

Figure 4: Intersection between markets
by MD5: percentage and thickness of edges
indicate the percentage of apps in common.

sider: Statistically speaking, malware samples are slightly larger than goodware
samples because of the additional malicious code. Similarly, we observed that for
those markets that report the download count (e.g., getjar), malware are more
downloaded than goodware by at least an order of magnitude. One possible expla-
nation for this finding is that malware authors reportedly use app rank boosting
services to increase download numbers and thus improve their app’s ranking [13].
How are markets related to each other? We calculated the set intersection
of APKs across markets by taking the package name or the MD5 hash as the
identifier. Due to space constraints we only present the results for the latter in
Figure 4 although they both exhibit the same pattern. We can immediately see
that the number of shared apps across markets is non-negligible, with some no-
table examples such as andapponline–opera sharing 47%/59% of MD5s/package
names, or andapponline–getjar sharing 26%/38% respectively.
Conclusion. From this preliminary analysis, it appears that alternative markets
are not proactively removing malicious applications from their databases. Un-
derstandably, the volume of applications to be screened is large and the current
analysis methods rely on running expensive and error-prone analyses on each
submitted APK. Moreover, given the non-negligible flow of applications across
markets, we are concerned that malicious developers may be able to implement a
“failover” strategy to have their samples migrate from market to market in order
to hinder removal.

These findings motivate us to devise an Android market radar, called And-
Radar. AndRadar uses lightweight and transparent techniques that permit the
quick scanning of alternative markets for malicious or otherwise unwanted appli-
cations and allow us to track apps and their metadata across different markets.

3 Android Market Radar (AndRadar)

In this section we present the architecture of AndRadar. First, we discuss various
challenges we faced while designing and implementing AndRadar, and then we
describe its various components in detail.

AndRadar: Fast Discovery of Android Applications in Alternative Markets 7

3.1 Challenges
AndRadar aims at discovering a particular Android application, possibly indicated
as malware or otherwise unwanted applications by an AV scanner, in the official
Google Play Store as well as alternative markets. This is a non-trivial task as we
show in this part. Below we list the most significant challenges we had to overcome
while building the prototype.
Marketplaces Plethora. During our preliminary experiments discussed in Sec-
tion 2, we found 89 alternative marketplaces, run by companies or individuals,
whose quality in terms of security aspects is questionable. As demonstrated by
our marketplace study, which took months to complete, crawling markets is chal-
lenging. First, space and time requirements increase quickly with the number of
markets. Second, and most important, each market runs its own software. This
essentially means that for each market we want to monitor we need to analyze
its API for searching and downloading apps. Normally, this involves discovering
two URLs, one for searching for an application and one for downloading a discov-
ered application along with its metadata. Unfortunately, for many markets this
process is not straightforward. For example, many of them strictly require user
authentication—especially markets with specialized content, like adult content—
or are provided in the form of a mobile application, which needs manual reverse
engineering for revealing the market API. Finally, while running AndRadar we
also experienced cases where markets, for example Google Play and appchina,
changed their web templates during our experiments. Changes in a market’s web
templates essentially require us to carry out further adjustments in the engine we
use for extracting application metadata.
Application Mutation. The diversity of the marketplaces is not the only chal-
lenge we have to overcome. Applications can slightly mutate from market to
market. This might be due to legitimate reasons, for example two markets host
two different versions of a particular application. Applications may also be repack-
aged by another author either to add additional functionality missing from the
original application, or to profit from a popular application by including adver-
tising libraries or malicious code [29]. Detecting repackaged applications, maybe
the most popular form of Android malware, has been the target of recent related
work [7,33,34]. AndRadar’s primal goal is not to detect if a particular application
has been repackaged, but locating an application – possibly malware – across
different marketplaces. Research in repackaged application detection is orthogonal
to AndRadar. Nevertheless, it can substantially assist AndRadar in discovering
repackaged versions of applications across different alternative markets. Recall
that the common wisdom suggests that popular apps hosted in the official market
are enhanced with malicious functionality, repackaged and published to alterna-
tive marketplaces. We envision that, due to the immediate popularity gained by
alternative markets and due to the continuously growing defense systems in the
official Google Play Store, malware authors will further target alternative markets.
Therefore we expect them to start repackaging legitimate apps found in popular
alternative markets and then publishing the produced malware in less popular
markets. In such cases, AndRadar can use existing algorithms and heuristics for
real-time detection of repackaged applications across multiple marketplaces.

8 M. Lindorfer, S. Volanis, A. Sisto, M. Neugschwandtner et al.

Metadata
Scraper

Downloader

Search

App
Metadata

Market
Specifications

Tracker
Seed

Figure 5: Overview of AndRadar’s architecture: The seed, which is composed of apps
that have been flagged as malware, is used as input to the search for locating apps across
markets. Once an app is found, the tracker downloads and stores additional metadata.

3.2 Architecture Overview
We now present an overview of AndRadar’s architecture. In a nutshell, AndRadar’s
task is to probe a number of marketplaces for malware and, if found, track it.
Figure 5 shows how the components of AndRadar interact to achieve this task.

Essentially, AndRadar has three core components: The first one is the seed,
which is composed of apps that have been flagged as malware by a set of tools
or services. This is the input set that AndRadar uses for locating apps across
alternative markets. The second component is the search component. For each app
in the seed, AndRadar uses a set of crawlers for discovering the app in alternative
markets. Finally, the third component is the tracker, which, once an app is found,
downloads its additional metadata and keeps it in storage for further statistics.
We now look into each of the three components in detail.

3.3 Seed Sources and Content
To begin with, AndRadar requires a set of known malware or otherwise unwanted
applications that we call the seed. Because of its dynamic, online functionality,
AndRadar works best with a continuous, accumulating feed of malicious apps in
contrast to a static set. Apps for the seed can come from a variety of sources includ-
ing new additions to manually vetted malware repositories, feeds from submissions
to AV scanning services that are detected by multiple scanners as malicious, or
submissions to dynamic analysis sandboxes.

For our prototype AndRadar receives feeds from VirusShare [2], submissions
to VirusTotal [3] that trigger > 10 AV signatures, and submissions that Andru-
bis [1, 30] flagged as suspicious during dynamic analysis. However, AndRadar
could be easily extended to add further sources for malware such as submissions
to AndroTotal [18].

Each app in the seed is characterized by four identifiers that allow us to match
two apps at different levels of confidence (see Table 2 for a summary):
Package name. The package name is the “official” identifier of an app. It serves
as an installation-time ID, i.e., no two apps on a given device can share the same
package name. Some markets, such as Google Play, use it also as a unique reference,
but in principle developers are not restricted from creating an app with an already
existing package name. Therefore, in the context of AndRadar which operates on a
multi-market domain, we use the package name to locate apps inside a market (see
Section 3.4) and treat it as a weak match between two apps. However, AndRadar
is not restricted to this identifier as we further will discuss in Section 6.

AndRadar: Fast Discovery of Android Applications in Alternative Markets 9

App identifier Match level

MD5 perfect match
Package name, fingerprint, method signatures very strong match
Package name, method signatures strong match
Package name, fingerprint strong match
Package name weak match

Table 2: Different match levels based on app identifiers.

Fingerprint. Apps in Android are signed with the private key of their developer.
Android uses this signature to enforce update integrity by only allowing updates
signed with the same key, as well as resource sharing and permission inheritance
between apps from the same author [4]. We can thus use the fingerprint of the
certificate used to sign the app as a further identifier. Since the key is specific
to an author, a match of the fingerprint is a strong indicator that the matching
apps stem from the same author, unless the author has shared her private key or
is using the key pair that is publicly available with the Android source code. We
thus treat a match of package name and author fingerprint as a strong match.

Method signatures. By leveraging Androguard [8, 22] we can generate signa-
tures of the methods in the application code. A signature is an abstract model of a
method’s intraprocedural control flow, enriched with information on the package
of further called methods. To compare signatures, Androguard uses the normal-
ized compression distance. For AndRadar, we limit the scope of the signatures
to methods that are either in the main package or in the package that contains
the app’s main activity, thus excluding third-party libraries that would skew the
comparison results and improving performance. We define everything above 90%
code similarity to be a strong match. In addition, we define the combination of a
method signature, fingerprint and package name match as a very strong match.

MD5 hash. In a very straightforward way, a match between the MD5 hash of
two APK files means that two applications are identical, i.e. a perfect match.

3.4 Search
The search component probes markets for a given app, based on its package name.
We chose the package name for our searching procedure, since it provides a strong
heuristic to identify a sample from the seed inside a market and some markets use it
to uniquely identify apps in their app catalog. Of course, as we discuss in Section 6,
a malware author could randomize the package name from market to market, but
this would actually run against the malware author’s own scheme when trying
to trick users into downloading his repackaged version of a popular application.
Thus, a malicious app trying to remain hidden from AndRadar would substantially
reduce its visibility to potential victims. As a future extension, we may add options
to search for words appearing in the title, or through other metadata that users
might use to locate an application inside a market. This, however, would require
AndRadar to track and download multiple candidate apps and their metadata
from each market in order to locate samples matching the seed application.

For markets such as Google Play, appchina, anzhi, wandoujia or coolapk, that
use the package name as an internal reference to the apps, the lookup is straight-
forward, as the package name is typically part of the app’s URL in the market.

10 M. Lindorfer, S. Volanis, A. Sisto, M. Neugschwandtner et al.

MD5 match? fingerprint
match?

a.b.c
MD5

part of
seed

a.b.c
MD5'
from

market

method signature
match?

perfect match
same application

weak match
N N

Y

Y

strong match
different application

by same author

N

Y

strong match
repackaged version

method signature
match?

very strong match
different version by

same author

Y

N

Figure 6: Flow chart of AndRadar’s application matching.

Other markets use different internal identifiers and thus require a more elaborate
search procedure. In that case we split the package name along the separators and
feed the individual parts to the market’s search interface, discarding well-known
common parts such as, e.g., “com”. Once the package name is located on the results
page, the search is considered finished. Otherwise, we continue by crawling the
individual market listings that are returned by the search query.

Finally, based on an author’s publishing habit, apps might appear in our seed
before they are released to one of the markets we monitor. As a consequence the
search component probes all the markets for all malicious apps at regular intervals
regardless whether they have been located before or not.

3.5 Tracking
Once the search component finds an app in a market, the tracker investigates the
corresponding market listing. The tracker first invokes the downloader to fetch
the app from the market. The downloaded app is matched with the sample in
the seed using the set of similarity features summarized in Table 2. In Figure 6
we present the flow chart of AndRadar’s matching algorithm. The tracker then
uses the scraper to obtain market-based metadata for each sample, from each
monitored market at regular intervals. Metadata includes the reported version
of an app as well as its price, update date, delete date, and popularity metrics
such as download count, user ratings and reviews, etc. If an app’s metadata infor-
mation has changed, indicating a possible update, the new version of the app is
downloaded and kept in storage.

4 Evaluation and Case Study

In this section we evaluate AndRadar in terms of performance, and use the system
to reveal insights about the behavior of particular applications, characterized as
possibly malware, across multiple markets.

4.1 Performance
AndRadar tracks apps in multiple markets in a parallel fashion. For the purposes
of the study presented in this paper, we have incorporated 16 different markets.
The time needed to search and download a particular app across the individual
markets is illustrated in Figure 7. Naturally, downloading is slower than search-
ing, but both operations take just a few seconds to complete for the majority of
markets. However, the download of an app is only initiated when the metadata
information indicates a possible update. Furthermore, both operations depend on

AndRadar: Fast Discovery of Android Applications in Alternative Markets 11

 1

 10

 100

 1000

 10000

 100000

appchina

google-play

aptoide

slidem
e

yingyong

w
andoujia

anzhi

yaam
1m

obile

f-droid

nduoa

appszoom

m
oborobo

lenovo

z-android

T
im

e
 (

m
s)

Search time Download time

Figure 7: Average time needed for search-
ing and downloading an app on each market.
Since AndRadar handles all markets in
parallel, searching and downloading a
particular app on all markets is constrained
by just the slowest market.

Market S D Total #/day

f-droid 0.49s 0.24s 0.73s 118,163
yaam 0.43s 0.67s 1.11s 77,996

slideme 1.30s 0.88s 2.18s 39,662
z-android 0.27s 1.93s 2.20s 39,319
appszoom 2.23s 0.59s 2.82s 30,605

google-play 1.06s 2.79s 3.85s 22,441
aptoide 1.67s 2.41s 4.08s 21,199
1mobile 0.79s 4.20s 4.99s 17,305

moborobo 0.57s 4.83s 5.40s 15,994
appchina 2.13s 11.36s 13.49s 6,406

anzhi 1.80s 18.69s 20.49s 4,217
nduoa 13.06s 38.18s 51.25s 1,685

wandoujia 0.76s 53.65s 54.41s 1,587
lenovo 1.08s 111.43s 112.51s 767

yingyong 1.80s 119.56s 121.35s 711

Table 3: Average time needed for
searching (S) and downloading (D) an
app on each market and number (#) of
apps we can track in each market per
day.

the network conditions, as well as the load the market is experiencing at the time,
but since AndRadar crawls all markets in parallel, we are only constrained by the
slowest market. We list the amount of apps we can track in each market per day
in Table 3. As it can be seen we are able to track tens of thousands of apps daily.

4.2 Case Study
AndRadar gives us the opportunity to collect data about an app in multiple mar-
kets, study the multi-market behavior of the app, and, possibly, identify publishing
patterns followed by app developers. For instance, if we use AndRadar with a
sample of (possibly) malicious apps, we can understand how malicious apps behave
across different markets. In this section, we present the insights we obtained by
crawling 20,000 apps in a daily manner between August and December 2013 in 16
markets. These apps matched applications in our seed at least by package name
and were identified according to the process described in Section 3.

For the purpose of this case study we split the sample of tracked apps in two
sets: a) deleted, a set that contains all apps that have been deleted at least once
from a market during our observation period, and b) non-deleted, a set of apps
that have never been deleted from any of the markets.

Since AndRadar checks each app located in one of the markets against the ma-
licious app from the original seed using a set of similarity features (detailed in Ta-
ble 2 and Figure 6), we have a spectrum of confidence regarding the maliciousness
of the collected apps. In Figure 8 we plot the distribution of the collected dataset
(across both deleted and non-deleted apps) against the similarity features used.

If we identify an app with a perfect match (MD5 match) that is removed
after a period of time (corresponding to the black bar in the deleted group in
Figure 8), we assume that the market administrators did this for a reason and
found something malicious about the app, thus strengthening our initial suspi-
cion. Conversely, on a weak package name match, a missing reaction from the
market administrators (corresponding to the white bar in the non-deleted group

12 M. Lindorfer, S. Volanis, A. Sisto, M. Neugschwandtner et al.

 1

 10

 100

 1000

Deleted Non-deleted

M
a

tc
h

 c
o

u
n

t

MD5
Fingerprint+Similarity

Similarity
Fingerprint

Package name

Figure 8: Number of deleted and non-
deleted apps per matching type across all
markets.

 0.7

 0.75

 0.8

 0.85

 0.9

 0.95

 1

 1 2 3 4 5 6 7 8

C
D

F

Number of markets

Deleted
Non-deleted

 0.95

 0.96

 0.97

 0.98

 0.99

 1

 1 2 3 4 5 6 7 8

 0.95

 0.96

 0.97

 0.98

 0.99

 1

 1 2 3 4 5 6 7 8

Figure 9: Deleted and non-deleted appli-
cations located in multiple markets at the
same point in time.

in Figure 8) indicates that the app located in the market is the benign version
the author of the malicious seed app used as a disguise.

In Figure 9 we plot the CDF of the two sets, deleted and non-deleted apps, over
the number of markets each app has been located on by AndRadar at the same
point in time. This figure justifies our initial concern that malware authors in-
deed leverage the plethora of app markets to distribute malware. A non-negligible
portion of apps simultaneously leverages more than five markets for distribution
(roughly 1/3 of the markets we have been monitoring). As an example, we were
able to locate the malicious app King Pirate (com.letang.game101.en.f) in five
different markets. In some of those markets the app has been available for over a
year and thus reached a considerable amount of downloads. To date, it was only
deleted from one market:

1. appchina: online since March 2012, 1,000-5,000 downloads
2. aptoide: online since May 2012, 270 downloads
3. wandoujia: online since August 2012, 1,430 downloads
4. 1mobile: online since July 2013, 25,808 downloads
5. lenovo: online from October 2012 to October 2013

The app advertises itself as a legitimate game available in the Google Play
Store5. The repackaged version adds the functionality to manipulate SMS, install
additional packages, and perform payments. It was first submitted to VirusTotal in
September 2012, flagged by the first AV scanners in December 2012, and since then
identified by 16 scanners as a Trojan horse, under the names Android/Ksapp.D or
Android/Qdplugin.A. Clearly, in cases like this, it is desirable for market operators
to remove the application from their catalog as soon as possible. To aid them in do-
ing so, we are going to integrate an automated notification system into AndRadar.

Finally, we take a look at how fast both the security community and the
application markets react to new malware and whether a multi-market strategy
enhances the lifetime of malware. We identified three typical patterns for the
lifecycle of a malicious app:

5 https://play.google.com/store/apps/details?id=com.letang.kpe

AndRadar: Fast Discovery of Android Applications in Alternative Markets 13

tpub tav tdel

community
reaction time

market
reaction time

first crawl date
app

published
in market

app
detected
by AVs

app
deleted

from market

community reaction time

(a) Normal Lifecycle:
An app is deleted from a
market after it has been
flagged by AVs.

tav tpub tdel

market
reaction time

first crawl date
app

detected
by AVs

app
published
in market

app
deleted

from market

community reaction time

(b) Malware Hopping:
An app is published to a
market after it already has
been flagged by AVs.

community reaction time

tpub tdel tav

market
reaction time

first crawl date
app

published
in market

app
deleted

from market

app
detected
by AVs

(c) Market Self-Defense:
An app is deleted from a
market before it has been
flagged by AVs.

Figure 10: Patterns for the lifecycle of a malicious app in a market.

Normal. In the most common case, an app is first published in a market at tpub,
it is later identified by the community and flagged by (some) AVs at tav, and at a
later point deleted from the market at tdel. We define as the community reaction

time the period tav � tpub and as market reaction time the period of tdel � tav.
We depict this behavior in Figure 10 (a).
Malware Hopping. In this scenario, malicious apps are republished in different
markets after they have been flagged as malware by AVs. In this pattern, an app
is published in a market at tpub, but has been identified by the community at
an earlier point tav. At a later point the app is deleted from the market at tdel.
We define the period of tdel � tpub as the market reaction time. We depict this
behavior in Figure 10 (b).
Market Self-Defense. Markets can sometimes filter malicious apps even before
they are flagged by AVs. In some instances, an app is published in a market at
tpub, at a later point the app is deleted from the market at tdel, and at even a
later point the app is flagged as malware by AVs. Again, tdel � tpub is the market
reaction time. We depict this behavior in Figure 10 (c).

We present the distribution of all deleted apps among these three scenarios in
Table 4. The majority of apps follows the “Normal” case, but AndRadar could also
identify apps that followed the other two cases, finding evidence that malicious
apps jump from market to market, possibly for survival, and also evidence that
some markets remove apps using some internal security mechanism.

For all deleted apps that follow case (a) in Figure 10 we measured the commu-
nity reaction time, which is the time needed for AVs to flag a particular app, once
this app was published in a market, and the market reaction time, which is the
time needed for a market to delete an app that was flagged by an AV as malware.
We present the distribution of app deletions per market in Table 5. We further
depict the community reaction time and the market reaction time for the three
markets that deleted the most applications in Figure 11. The following insights
can be gained from this figure:

First, each market has a different reaction behavior. It is evident that apps
that are published in Google Play reach the AVs community faster than those in
other markets. The majority of Google Play apps are submitted to AVs just a few
days after publication.

14 M. Lindorfer, S. Volanis, A. Sisto, M. Neugschwandtner et al.

Type Number Percentage

Normal 1,508 90.57%
Possibly Malware Hopping 131 7.86%

Possibly Market Self-Defense 26 1.56%

Table 4: Distribution of the lifecycle patterns
presented in Figure 10 for all deleted apps: The
large majority of apps follows the “Normal” case,
but we also found evidence of malware hopping
from market to market and market self-defense.

Market Deleted Apps

google-play 1,281
appchina 236

anzhi 83
wandoujia 48

lenovo 15
1mobile 1
aptoide 1

Table 5: Distribution of deleted
apps across markets.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 100 200 300 400 500 600 700

C
D

F

Days for detection

google-play
appchina

anzhi
 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 100 200 300 400 500 600

C
D

F

Days for deletion

google-play
appchina

anzhi

Figure 11: Time needed for AVs to detect apps as malware (community reaction time,
left) and time needed for markets to delete apps after they have been flagged as malware
(market reaction time, right).

Second, Google Play is also the fastest market to react when apps are flagged
as malicious by AVs. It takes tens of days for Google to delete the malicious apps.
The other two markets (appchina and anzhi) have a similar, but slower, behavior.

Third, there is a small but not negligible fraction (less than 4%) of apps, which
are deleted from markets only after several months (in some cases after more than
a year). After manual inspection of these incidents, we discovered that such ma-
licious apps fall into the gray area of adware, and are thus sometimes considered
not dangerous enough to be removed. For example, due to policy changes Google
only recently decided to remove apps including intrusive ad libraries such as Air-
Push from the Play Store [24]. In another recent example, researchers discovered
“vulnaggressive” (aggressive and vulnerable) versions of the ad library AppLovin
being used in popular apps that were subsequently updated or removed [31].

As illustrated in Figure 12, developments like this can be recorded by And-
Radar. Google seems to clean its store in regular intervals, with the number of
deletions increasing after the market policy changes came into effect at the end of
September 2013 and the vulnerabilities in AppLovin were disclosed. In fact, out
of the 1,749 apps for which we recorded deletion events on Google Play between
August 28, 2013 and December 4, 2013, 1,517 apps are detected at least by one AV
scanner as adware. Almost 90% of those apps include libraries such as AirPush,
Leadbolt, AdWo and Apperhand that display push notification ads [26] now being
banned by Google’s new policy. Some of those applications were in the market for
more than a year and were downloaded 100,000–500,000 times. For example, the
application com.airbit.soft.siii.oceano was deleted from Google Play after
409 days of its upload and is flagged by many AV vendors as AirPush adware.

AndRadar: Fast Discovery of Android Applications in Alternative Markets 15

 0
 20
 40
 60
 80

 100
 120
 140
 160
 180
 200

09/01 09/15 10/01 10/15 11/01 11/15 12/01
N

um
be

r o
f d

el
et

ed
 a

pp
s

Figure 12: Number of apps deleted from Google Play on a daily basis between
September and December 2013.

5 Related Work

Android security has been covered extensively in the literature [9] and is still a
major research topic. Furthermore, many generic measurements of mobile applica-
tion marketplaces have been conducted such as a recent study by Petsas et al. [21],
but we will focus on studies related to malware.

The practice of repackaging applications was studied in DroidMOSS [34], where
the authors propose a fuzzy hashing similarity metric to compare two APKs and
determine whether one is the repackaged version of the other. In March 2011 they
identified 5–13% of applications found on 6 alternative marketplaces (slideme, free-
warelovers, eoemarket, goapk, softportal, proandroid) as containing repackaged
versions of applications obtained from the Google Play Store.

The approach proposed in Juxtapp [14] determines whether applications con-
tain instances of known, flawed code, exhibit code reuse that indicates plagiarism,
piracy, or are (repackaged) variants of known malware. Differently from Droid-
MOSS [34], this approach does not explicitly concentrate on repackaging (although
it effectively finds repackaged applications), thus it is more generic. Moreover, it
has a strong focus on scalability, proposing a similarity metric that is applicable
to map-reduce frameworks. They show that 100 minutes of computation on 100
8-core machines with 64GB of RAM are sufficient to analyze 95,000 distinct APKs.
Unfortunately, obtaining the APKs is the bottleneck, as we showed in Section 4.1.

Vidas et al. [29] conducted a large-scale measurement on 194 alternative An-
droid markets (of which a list was not disclosed, to the best of our knowledge) in
October 2011, collecting 41,057 applications. Their key finding was that certain
markets almost exclusively distribute repackaged applications containing malware.
They propose to counteract the spread of repackaged applications by re-designing
how markets authenticate submitted applications. All three approaches [14,29,34]
require downloading the APKs, and processing the manifest and code offline. As
a result, for instance in the study by Vidas et al. [29], which is by far the most
extensive of the three, the numbers suggest that the authors have sampled only an
average of 211 applications per market, that is, very few compared to the overall
market sizes. With our lightweight market monitoring technique we can monitor
even the biggest alternative markets such as lenovo, containing around 400,000 ap-
plications, or the official Google Play Store with around 800,000 applications [20].

The authors of DroidRanger [36] proposed a permission-based and bytecode-
based fingerprinting approach to distinguish between malicious and benign ap-
plications. With this approach they conducted a measurement on 5 markets
(including the Google Play Store) in May 2011, analyzed 204,040 applications,

16 M. Lindorfer, S. Volanis, A. Sisto, M. Neugschwandtner et al.

and determined that 211 applications were exhibiting malicious patterns. In the
same fashion, RiskRanker [12] tries to identify certain behaviors – observed in
malware – in a given app and associate a risk with it. Both of these works focus
on finding or inferring malware on markets; we took a step further, proposing an
approach that is fast enough to allow tracking malware across markets over time.

Building on the aforementioned findings, Zhou et al. [33] propose an approach
to decouple primary from non-primary application modules. The authors observe
that the malicious payload, which is piggybacked to legitimate applications, simply
adds non-primary modules. Based on this finding, they propose a feature vector to
distinguish repackaged applications from their respective legitimate applications.
They applied their technique to 84,767 applications collected from 7 markets
(slideme, freewarelovers, eoemarket, goapk, softportal, proandroid, Google Play
Store) in March 2011, and reported that the practice of repackaging apps ranges
between 0.97 and 2.7%.

MAST [5] has a goal similar to ours: Finding fast analysis techniques that
scale to match the extensiveness of today’s markets. MAST is trained on a small
set of benign and malicious applications, from which features such as permis-
sions, intents, or native code information are extracted. Then, it uses multiple
correspondence analysis (MCA) to triage new applications.

Quantifying the similarity between two Android applications is currently an
active research topic. Ready-to-use tools such as Androsim [22], part of Andro-
guard project [8], can assist reverse engineers, but exhibit accuracy and scalability
issues. Proposed almost concurrently with Juxtapp [14], DNADroid [7] leverages
information from the dependency graph to create a structural comparison criterion
based on graph isomorphism, which allows finding pairs of matching methods to
detect plagiarized applications. Although their goals are different from ours, their
methods can in principle be applied to track versions of malicious applications
across markets.

Another example of applying plagiarism detection is described in AdRob [6,11],
where the authors concentrate on the problem of ad-aggressive applications. In-
deed, repackaging (paid) applications to incorporate ad libraries and distribute
the resulting applications on alternative markets seems to be a profitable, illicit
business. The authors’ estimations were based on monitoring the HTTP advertis-
ing traffic generated by 265,359 applications obtained from 17 alternative markets.
As ad-based revenue models are not considered malware, this work is orthogonal
to ours. Indeed, in our preliminary market characterization, described in Sec-
tion 2, we explicitly removed adware samples. Moreover, their work depends on a
static and dynamic analysis phase, which is more expensive than our lightweight,
metadata-based approach.

The main difference of related work with AndRadar is that other approaches
all focus on crawling (a subset of applications on) alternative markets and per-
forming expensive static and dynamic analysis on APK files, in many cases with
modified Android platforms. Contrarily, our system requires just a public market
interface to query apps, and is therefore much faster, scalable and lightweight.

AndRadar: Fast Discovery of Android Applications in Alternative Markets 17

6 Limitations and Future Work

For our prototype AndRadar was configured to discover apps by their package
name as the monitored markets distinguish apps by this identifier. Also, previous
work reported that malware authors tend to use valid and legitimate looking
package names in an effort not to attract attention [29, 35]. A recent report by
F-Secure [10] found 23% of malicious apps posing as legitimates ones by imitating
their package name. Consequently, they classified apps using the original package
and application name but requesting additional permissions as malicious. Alterna-
tively, in order to counteract malicious app authors randomizing the package name
or simply modifying single letters similar to typosquatting, AndRadar can query
markets for other identifiers. Possible candidates are application titles, parts of
their description or image characteristics of the icons and screenshots advertising
an app’s functionality. In order to attract users and lure them into downloading
their apps, malicious authors need an identifiable “brand”, e.g. by piggybacking
on popular apps from the official market. Thus, if malicious authors decide to
evade the discovery of their apps by AndRadar, this would invariably lower their
visibility to users.

Current binary similarity measurements for Android exhibit accuracy and
scalability issues. AndRadar tries to mitigate this by limiting the scope of the
comparison to the main application’s code, and by lazily executing such computa-
tionally expensive tasks. However, due to its flexible architecture, AndRadar can
be extended to use more scalable binary comparison techniques and also include
other characteristics from the apps’ resources or their visual similarity.

For future work we can incorporate a notification system that warns market
operators about the presence of malicious applications in their app catalog. De-
pending on the type of match between the malicious seed and the apps found in
the markets, AndRadar could issue warnings with different levels of confidence.
Furthermore, we plan to offer the app discovery mechanism of AndRadar through
a public interface in order to allow security researchers and developers concerned
about plagiarized versions of their apps to search alternative markets in real-time.

Finally, since AndRadar tracks different versions of malicious applications
across markets, as well as updated versions of an application in a single market,
we can leverage this data to identify further publishing patterns and the evolution
of the malicious functionality over time.

7 Conclusion

Our work started from an in-depth measurement performed on 8 alternative An-
droid marketplaces, by collecting their entire set of applications and analyzing
various characteristics. This measurement provided us with significant prelimi-
nary insights on the role of these alternative markets, with a focus on malicious or
otherwise unwanted applications. This is by far the most up-to-date measurement
of the alternative marketplaces. Even the most recent work that we surveyed is
based on data collected back in 2011.

Our findings motivated us to design and implement AndRadar, a complete
framework to monitor alternative markets for malware in real-time, leveraging

18 M. Lindorfer, S. Volanis, A. Sisto, M. Neugschwandtner et al.

the wealth of metadata associated with each sample. We demonstrated that the
combination of lightweight identifiers such as the package name, the developer’s
certificate fingerprint, and method signatures, creates a very strong identifier,
which allows us to track applications across markets.

Thanks to the efficiency of AndRadar, we were able to measure the lifetime
of malware across multiple markets in real-time. For example, we tracked more
than 1,500 app deletions across 16 markets over a period of three months. We
discovered that nearly 8% of the deletions were related to apps that were hopping
from market to market.

AndRadar was also able to identify and track malicious apps still available
in a number of alternative app markets. For future work we plan to integrate an
automated notification system that informs market operators about potentially
malicious applications in their catalog. We believe that efforts such as ours can
be successfully leveraged by marketplaces to “predict” upcoming spreads, so as to
provide early warnings and prompt remediations. Indeed we found out that, for
some markets (i.e., Google Play Store), the community contribution is essential
to quickly react against published malicious or unwanted apps.

Furthermore, we can also leverage the different versions of malicious apps that
AndRadar tracks to identify further publishing patterns such as how malware
authors change the malicious functionality of their apps over time. This is part of
our future work.

Acknowledgments. We thank VirusTotal for providing a live submission feed of
Android apps for our seed. This work was supported in part by the project ForToo,
funded by the Directorate-General for Home Affairs under Grant Agreement No.
HOME/2010/ISEC/AG/INT-002 and by the FP7 projects NECOMA, OPTET
and SysSec, under Grant Agreements No. 608533, No. 317631 and No. 257007. It
was also supported in part by the FP7-PEOPLE-2010-IOF project XHUNTER,
No. 273765, MIUR FACE Project No. RBFR13AJFT, and by the FFG – Austrian
Research Promotion under grant COMET K1.

References

1. Anubis. http://anubis.iseclab.org
2. VirusShare. http://www.virusshare.com
3. VirusTotal. http://www.virustotal.com
4. Barrera, D., Clark, J., McCarney, D., van Oorschot, P.C.: Understanding and

Improving App Installation Security Mechanisms Through Empirical Analysis of
Android. In: Proceedings of the 2nd ACM CCS Workshop on Security and Privacy
in Smartphones and Mobile Devices (SPSM) (2012)

5. Chakradeo, S., Reaves, B., Traynor, P., Enck, W.: MAST: Triage for Market-scale
Mobile Malware Analysis. In: Proceedings of the 6th ACM Conference on Security
and Privacy in Wireless and Mobile Networks (WiSec) (2013)

6. Chen, H.: Underground Economy of Android Application Plagiarism. In: Proceed-
ings of the 1st International Workshop on Security in Embedded Systems and
Smartphones (SESP) (2013)

7. Crussell, J., Gibler, C., Chen, H.: Attack of the Clones: Detecting Cloned Appli-
cations on Android Markets. In: Proceedings of the 17th European Symposium on
Research in Computer Security (ESORICS) (2012)

AndRadar: Fast Discovery of Android Applications in Alternative Markets 19

8. Desnos, A., Gueguen, G.: Android: From Reversing To Decompilation. In: Black
Hat Abu Dhabi (2011)

9. Enck, W., Octeau, D., McDaniel, P., Chaudhuri, S.: A Study of Android Application
Security. In: Proceedings of the 20th USENIX Security Symposium (2011)

10. F-Secure: Threat Report H2 2013. http://www.f-secure.com/static/doc/labs_
global/Research/Threat_Report_H2_2013.pdf (March 2014)

11. Gibler, C., Stevens, R., Crussell, J., Chen, H., Zang, H., Choi, H.: AdRob: Examining
the Landscape and Impact of Android Application Plagiarism. In: Proceedings
of 11th International Conference on Mobile Systems, Applications and Services
(MobiSys) (2013)

12. Grace, M., Zhou, Y., Zhang, Q., Zou, S., Jiang, X.: RiskRanker: Scalable and Accu-
rate Zero-day Android Malware Detection. In: Proceedings of the 10th International
Conference on Mobile Systems, Applications, and Services (MobiSys) (2012)

13. Gu, L.: The Mobile Cybercriminal Underground Market in China. Tech.
rep., Trend Micro (March 2014), http://www.trendmicro.com/cloud-
content/us/pdfs/security-intelligence/white-papers/wp-the-mobile-
cybercriminal-underground-market-in-china.pdf

14. Hanna, S., Huang, L., Wu, E., Li, S., Chen, C., Song, D.: Juxtapp: A Scalable
System for Detecting Code Reuse Among Android Applications. In: Proceedings
of the 9th Conference on Detection of Intrusions and Malware & Vulnerability
Assessment (DIMVA) (2012)

15. IDC: Apple Cedes Market Share in Smartphone Operating System Market as
Android Surges and Windows Phone Gains. http://www.idc.com/getdoc.jsp?
containerId=prUS24257413 (August 2013)

16. Lever, C., Antonakakis, M., Reaves, B., Traynor, P., Lee, W.: The Core of the
Matter: Analyzing Malicious Traffic in Cellular Carriers. In: Proceedings of the
20th Annual Network & Distributed System Security Symposium (NDSS) (2013)

17. Ludwig, A., Davis, E., Larimer, J.: Android - Practical Security From the Ground
Up. In: Virus Bulletin Conference (2013)

18. Maggi, F., Valdi, A., Zanero, S.: AndroTotal: A Flexible, Scalable Toolbox and
Service for Testing Mobile Malware Detectors. In: Proceedings of the 3rd Annual
ACM CCS Workshop on Security and Privacy in Smartphones and Mobile Devices
(SPSM) (2013)

19. McAfee Labs: McAfee Threats Report: Second Quarter 2013. http://www.mcafee.
com/us/resources/reports/rp-quarterly-threat-q2-2013.pdf (August 2013)

20. One Platform Foundation: List of Android Appstores. http://www.onepf.org/
appstores/

21. Petsas, T., Papadogiannakis, A., Polychronakis, M., Markatos, E.P., Karagiannis,
T.: Rise of the Planet of the Apps: A Systematic Study of the Mobile App Ecosystem.
In: Proceedings of the 2013 Conference on Internet Measurement Conference (IMC)
(2013)

22. Pouik, G0rfi3ld: Similarities for Fun & Profit. Phrack Magazine 14(68) (2012)
23. Rastogi, V., Chen, Y., Jiang, X.: DroidChameleon: Evaluating Android Anti-malware

Against Transformation Attacks. In: Proceedings of the 8th ACM SIGSAC Sympo-
sium on Information, Computer and Communications Security (ASIACCS) (2013)

24. Ruddock, D.: Google Pushes Major Update To Play Developer Content
Policy, Kills Notification Bar Ads For Real This Time, And A Lot More.
http://www.androidpolice.com/2013/08/23/teardown-google-pushes-major-
update-to-play-developer-content-policy-kills-notification-bar-ads-
for-real-this-time-and-a-lot-more/ (September 2013)

20 M. Lindorfer, S. Volanis, A. Sisto, M. Neugschwandtner et al.

25. Signals and Systems Telecom: The Mobile Device & Network Security Bible: 2013–
2020. Tech. rep. (September 2013), http://www.reportsnreports.com/reports/
267722-the-mobile-device-network-security-bible-2013-2020.html

26. Simon, Z.: Adwares. Are they viruses or not? http://androidmalwareresearch.
blogspot.gr/2012/07/adwares-are-they-viruses-or-not.html (July 2012)

27. Trend Micro: TrendLabs 2Q 2013 Security Roundup. http://www.trendmicro.
com/cloud-content/us/pdfs/security-intelligence/reports/rpt-2q-2013-
trendlabs-security-roundup.pdf (August 2013)

28. Uscilowski, B.: Mobile Adware and Malware Analysis. Tech. rep., Symantec
(October 2013), http://www.symantec.com/content/en/us/enterprise/media/
security_response/whitepapers/madware_and_malware_analysis.pdf

29. Vidas, T., Christin, N.: Sweetening Android Lemon Markets: Measuring and
Combating Malware in Application Marketplaces. In: Proceedings of the 3rd ACM
Conference on Data and Application Security and Privacy (CODASPY) (2013)

30. Weichselbaum, L., Neugschwandtner, M., Lindorfer, M., Fratantonio, Y., van der
Veen, V., Platzer, C.: Andrubis: Android Malware Under The Magnifying Glass.
Tech. Rep. TR-ISECLAB-0414-001, Vienna University of Technology (2014)

31. Zhang, Y., Xue, H., Wei, T., Song, D.: Monitoring Vulnaggressive Apps on
Google Play. http://www.fireeye.com/blog/technical/2013/11/monitoring-
vulnaggressive-apps-on-google-play.html (November 2013)

32. Zheng, M., Lee, P., Lui, J.: ADAM: An Automatic and Extensible Platform to
Stress Test Android Anti-virus Systems. In: Proceedings of the 10th Conference on
Detection of Intrusions and Malware & Vulnerability Assessment (DIMVA) (2013)

33. Zhou, W., Zhou, Y., Grace, M., Jiang, X., Zou, S.: Fast, Scalable Detection of
"Piggybacked" Mobile Applications. In: Proceedings of the 3rd ACM Conference
on Data and Application Security and Privacy (CODASPY) (2013)

34. Zhou, W., Zhou, Y., Jiang, X., Ning, P.: Detecting Repackaged Smartphone
Applications in Third-Party Android Marketplaces. In: Proceedings of the 2nd ACM
Conference on Data and Application Security and Privacy (CODASPY) (2012)

35. Zhou, Y., Jiang, X.: Dissecting Android Malware: Characterization and Evolution.
In: Proceedings of the 33rd IEEE Symposium on Security and Privacy (2012)

36. Zhou, Y., Wang, Z., Zhou, W., Jiang, X.: Hey, You, Get Off of My Market: Detecting
Malicious Apps in Official and Alternative Android Markets. In: Proceedings of the
19th Annual Network & Distributed System Security Symposium (NDSS) (2012)

Appendix

Marketplace Website S R

1mobile www.1mobile.com X
andapponline www.andapponline.com X
anzhi www.anzhi.com X
appchina www.appchina.com X
appszoom www.appszoom.com X
aptoide www.aptoide.com X
blackmart www.blackmart.altervista.org X
camangi www.camangimarket.com X
coolapk www.coolapk.com X
f-droid f-droid.org X X
getjar www.getjar.mobi X

Marketplace Website S R

google-play play.google.com X
lenovo app.lenovo.com X
moborobo store.moborobo.com X
nduoa www.nduoa.com X
opera apps.opera.com X
pandaapp download.pandaapp.com X
slideme slideme.org X X
wandoujia www.wandoujia.com X
yaam yaam.mobi X
yingyong www.yingyong.so X
z-android z-android.ru X

Table 6: Marketplaces part of our market study (S) and monitored by AndRadar (R).

