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Abstract. Modern vehicles, and in particular electric vehicles, are increasingly
being equipped with interconnected computer systems, which collect information
through vehicular sources and remote, Internet-connected services. Unfortunately,
this creates a non-negligible attack surface, which extends even more when vehi-
cles are integrated with smartphones to offer advanced services. In fact, embedded
systems on vehicles have been developed to address safety, not security require-
ments. Furthermore, vehicles have real-time constraints, and the typical embedded
architectures used on board significantly complicate security designs.
In this paper, we introduce a communication framework that addresses these
challenges and we demonstrate how a smartphone can interact with a vehicle in a
secure and safe manner. To this end, we design a security session layer that ensures
end-to-end security transparently. We conduct an experimental evaluation on a real
implementation of our security layer, which shows that our solution is practical and
easy to use, satisfies performance constraints, and meets real-time requirements
by taking into account the limited capabilities of our target architecture. More
precisely, we implement our approach for an electrically-powered two-wheeler
manufactured by Piaggio, and show how a smartphone can interact via a wireless
link with the battery-life controller in a secure manner. Interestingly, our approach
is not limited to vehicles, but can be used in other application domains where a
smartphone needs to securely interact with an embedded device.

1 Introduction
We are moving to the often cited Internet of Things where (embedded) devices and
sensors regularly exchange data locally with each other and remotely via the Internet,
to assist and support humans. An important aspect is the ongoing transition to smarter
devices that are more energy efficient. Two notorious examples are the concept of
“smart grid” and of electric mobility (typically abbreviated as e-mobility). E-mobility,
in particular, has gained a lot of traction recently and there is a clear trend to produce
electrically-powered vehicles. Although this is mainly prompted by the limited availabil-
ity of fuel, it also enables to develop smarter vehicles that provide additional functionality
for a user. Such vehicles are becoming an integral part of the interconnected world, which
is for example illustrated by the integration of social networks within the infotainment
system of modern cars [1, 2] and the research efforts in the area of so called car-to-X
systems [3–5], which describe the communication between a vehicle and its environment
(e.g., car-to-car, car-to-infrastructure, car-to-grid, or car-to-mobile systems).



Modern vehicles collect information (e.g., current traffic volume, tire pressure, or
power consumption) through different sources, in order to improve the usage of the
vehicle. On the downside, such devices (e.g., modern infotainment systems and GSM
connections directly embedded in a vehicle) and sensors also lead to an increased attack
surface that may enable an adversary to gain remote control of vehicles. In several recent
case studies, different research groups highlighted this aspect and successfully demon-
strated attacks against different cars [6–10]. In each case study, it was possible to control
certain parts of a car and interfere with safety critical or otherwise sensitive components.
These vulnerabilities hamper novel use cases such as the usage of smartphones to unlock
the vehicle’s door or to start the engine, mainly due to the fear of successful attacks
against such systems. Adding security mechanisms to vehicles is a challenging task,
because vehicles are commonly designed with safety requirements as opposed to security
requirements. Recently, however, security requirements are gaining more and more
traction. Further challenges arise as vehicles have typically real-time constraints, use
broadcast networks often based on controller area network (CAN), embedded devices,
and have some other characteristics that complicate security as discussed in §2.

In this paper, we focus on a security solution to protect against potential attacks
and introduce a communication framework that addresses the challenges raised above.
We demonstrate how a smartphone can interact with a vehicle in a secure and safe
manner. More specifically, we discuss how a smartphone can pair with a vehicle over a
Bluetooth connection and then establish a security session layer that provides additional
security guarantees—regardless of the security mechanisms already implemented in
the physical layer (if any). We implement an asymmetric key-establishment scheme
according to the Elliptic Curve Diffie-Hellman (ECDH) protocol (NIST 800-56A [11])
and a standardized ECC-192 curve (NIST P-192 [12]), For the data encryption, we use
a symmetric encryption scheme (AES-128 [13]) based on a long-term shared secret.
As a result of our approach, the entire application layer is transparently secured by our
security extension. We have designed our solution with performance constraints and
real-time requirements in mind. Furthermore, we also took the capabilities of our target
architecture into account (e.g., no input capabilities on the vehicle side, limited output
capabilities, and lack of trusted execution environment on the mobile-device side). The
design of our solution ensures that all these challenges are overcome.

We have implemented our approach for an electric powered two-wheeler (PTW)
manufactured by Piaggio and show how the mobile device (an iPhone 4, in our proof-of-
concept implementation) can interact securely with the in-vehicle battery-life controller.
We performed a brief user study, which indicates that the solution is practical and
easy to use. More importantly, our experimental measurements show that the overhead
introduced by our security layer is small and reasonable. Interestingly, our approach
is not limited to vehicles, but can be used in many other application domains where
a smartphone needs to securely interact with an embedded device (e.g., keyless door
opening or mobile payment).

In summary, we make the following three key contributions in this paper:

– We introduce a security framework for communication between a mobile device and
a vehicle that is both theoretically sound and practical: we have implemented both a
software simulator and a real implementation for an electric powered two-wheeler.



– The proposed framework is easy to use and simple, the user is not required to
make complex interactions to pair a device with the vehicle in a secure manner. In
particular, we conducted hands-on tests with actual users (i.e., non-security people)
and collected feedback from a large Italian motorbike manufacturer. Both user
studies found that the solution is easy to use and the manufacturer was convinced by
the simplicity of our design.

– Performance tests suggest that our implementation has a small (almost absent)
computational overhead because it leverages a digital signal processor (DSP) to
maximize the cryptographic computations.

2 Security Needs in Modern Automotive Services
Today’s automotive market offers a broad range of services [1, 2, 14] that aim to improve
drivers’ and passengers’ safety, enhance their comfort (e.g., infotainment), or provide
useful remote services. Typically, such services comprise at least three sets of entities.
First, there are several different electronic control units (ECUs), sensors and actuators
on board a vehicle, usually interconnected through an in-vehicle network. Second, there
is at least one radio interface, which opens the in-vehicle network towards the outside
world, and thus turns the vehicle(s) into full-fledged, Internet-connected devices that
implement a truly distributed system. Third, there is at least one external entity (called
“service user” from hereinafter), which works closely with the vehicle’s ECUs via the
radio interface (e.g., a web service used by the vehicle’s local services, or a mobile
device used for some sort of computation).

In this way, as discussed throughout this paper, the vehicle exposes an interface to the
outside that may affect the processing that happens inside it. In particular, the reliability
and availability of the vehicular systems may depend on the integrity and safety of the
externally supplied data. Therefore, security mechanisms are of paramount importance.

2.1 Attacker Objectives and Model

In the aforementioned communication and execution environment, we assume that an
adversary is able to transmit and receive arbitrary data packets on the radio interface,
armed with the sole knowledge of the radio protocol in use [6]. Under this assumption,
which is perfectly reasonable and realistic, we develop the attacker model summarized in
Table 1. The attacker’s objectives may be very different, and they may shift, because they
are driven by the underlying economic motivations. For instance, due to the increasing
capabilities of ECUs (e.g., recent infotainment system designs are based on mobile
hardware architectures [15]) and their enhanced connectivity with the next generation of
cellular networks, an attacker objective moves from stealing a vehicle towards using the
capacity for his or her criminal ecosystem like already seen on mobile platforms [16–18].

Our attacker model encompasses these characteristics and outlines the security
threats for a generic automotive-based service. This provides the background for a
security assessment of our proposed security framework in §3. As an example, an
attacker motivated to steal a vehicle, would need to accomplish Obj. 1–5. On the other
hand, an attacker who wishes to transform the ECU—and hence the vehicle—into a
member of a so-called botnet would need to execute persistently malicious code on an
ECU—Obj. 1–3.



Table 1. The attacker’s objectives in an automotive system architecture.

NAME DESCRIPTION IMPACT

Obj. 1 Disclosure or interruption of the security mecha-
nisms integrated in the vehicle’s radio protocol

Unauthorized communication path
towards an ECU

Obj. 2 Compromising the software implementation of the
vehicle’s radio interface or protocol

Unauthorized communication path
towards an ECU

Obj. 3 Manipulate the execution flow of an ECU Execution of arbitrary code
Obj. 4 Transmission of specific network packets towards

the in-vehicle network
Manipulation of vehicle settings

Obj. 5 Recovery of any security information from a ser-
vice user

Impersonation of an authorized en-
tity

2.2 In-vehicle Network and CAN Bus

In this work we consider vehicles equipped with Controller Area Network (CAN) buses
according to ISO11898 [19]. These CANs are highly resilient to external disturbances,
and thus are suitable for high-speed distributed applications, which can exchange data
(up to 1 Mbit/s) between ECUs positioned in different locations on the vehicle.

Inside the vehicle’s network, each ECU connected to the CAN bus is identified
with 11 (standard) or 29 (extended) bits. Each ECU can listen, transmit, and receive
messages—called data frames—on the bus. A data frame is characterized by 8 bytes
for the data plus the identifier and several bits for error detection and fault confinement.
Typically, ECUs are organized in sub-networks depending on their functionalities and
needed speed (e.g., braking system, engine system, or infotainment). The CAN can be
viewed as a three-layers protocol: the object layer and transfer layer are responsible for
the post-processing of the message (e.g., synchronization, arbitration, error detection
and message filtering) and the physical layer handles the electrical issues on the bus.

Clearly, CANs’ security requirements differs from the security requirements of the
highly-interconnected scenarios typical of modern in-vehicle services. Unsurprisingly,
CANs lack confidentiality, integrity, availability, authenticity, and non-repudiation mech-
anisms, as discussed in [20] and other works such as, for instance, [6–10]. As a matter
of fact, CANs are a closed and proprietary system that cannot be modified to secure
automotive services. Therefore, in this work, we concentrate on the security problems
that arise when the CAN is connected to external devices, which are more significant—
especially in today’s automotive services—than the security problems that exist within
the CAN itself (e.g., ECUs that send unauthenticated data).

2.3 Wireless Connectivity via Bluetooth

Typically, connectivity to the outside world is implemented with the help of a radio
interface module connected to the in-vehicle network; more precisely, a special ECU
that we call in the following “Gateway ECU’. This ECU acts as a gateway between the
internal network and the external world. In our work, we consider the Bluetooth standard
as the wireless communication protocol, but the presented concept can be applied to
other communication protocols as well.

The Bluetooth protocol has a two-phase session setup: after the so-called pairing
process, which allows the peers get to know each other and set up the network properties,



the actual communication between the peers is enabled. During the pairing process,
different security features can be applied for a secure network session depending on the
Bluetooth version supported by the peers. For instance, the owner of each device must
check that the information displayed on each peer (e.g., a random number) is consistent,
or has to choose a (static) personal identification number (PIN), usually propagated out of
band. Most of the current Bluetooth authentication schemes are driven by a human-based
processing. The first Bluetooth standard also includes the possibility to agree on using no
security features before starting a communication session—not a recommended setting
as it opens a broad range of potential attacks. The early Bluetooth standard suffered from
further security threats due to weak cryptographic primitives, as discussed in [21, 22].
Fortunately, Bluetooth v2.1 enforces the secure simple pairing (SSP) protocol [23], which
mitigates these security threats and takes into account the constrained resources as well as
I/O capabilities of Bluetooth devices. The SSP provides confidentiality and authenticity—
unidirectional or mutual—for all peers in a wireless personal-area network. Nevertheless,
the SSP protocol still suffers from similar security threats such as the previous Bluetooth
security mechanisms (see, e.g., [24, 25]). Unfortunately, most Bluetooth applications’
security (especially in embedded scenarios) rely solely on static PINs with no way to
change it.

The low security offered by mainstream Bluetooth deployments, the open accessibility of
the radio interface, and the closed-world assumption of in-vehicle CANs raise new and
important security concerns. Other researches have recently demonstrated the feasibility
of successfully compromising automotive services through the radio interface [6–10].
Most of these attacks exploit software implementation flaws on the ECUs or just the
disclosure of the communication protocols of the ECUs to take advantage of implemen-
tation flaws. However, no mitigation and defense approaches against these threats have
been proposed so far.

3 A Security Layer for Automotive Services

Given the attacker model and the application scenario that we described above, it is
necessary to devise an application-level security mechanism that is independent from
the underlying wireless layer, allows secure communication between portable devices
and vehicles, and mitigates the security drawbacks detailed in §2.

Our approach secures the communication with respect to the (generic) attacker model
described in §2.1. In addition, our approach brings the benefit of a relaxed dependency
on proprietary (untrusted) parts, because it provides a “unified” layer on top of which
car-to-X applications can be developed. Our experimental evaluation described in §4
shows that our solution has minimal deployment impact; more importantly, it complies
with the real-time requirements and constrained resources of the Gateway ECU, the
implementation and distribution of the application’s counterpart on mobile devices, and
the I/O capabilities of the deployed vehicle.

Before explaining the security approach and the details of our implementation, we
provide a brief introduction of the background on our security approach and its analysis.
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Fig. 1. Overview of the architecture proposed in §4 based on our approach of trusted domains.

3.1 Security Analysis

We derive the requirements of our security layer through the evaluation of the application
scenario by means of trust domains and relationships between communicating parties (or
entities). A party is a trusted domain if we trust in the correct processing and execution of
the software implementation and thus in the integrity of the entity. Otherwise we consider
the party as an untrusted domain. Depending on the characteristics and the security
properties of the communication between entities, we can define trusted relationships
(or accepted dependence) between entities.

For the sake of backward compatibility, we assume that the security mechanisms
available are those provided by the Bluetooth standard—with the known security threats
that we discussed in §2.3. The mobile device and the Gateway ECU are each defined as
trusted domains. To mitigate the security threats by means of a potential adversary, the
focus of our proposed security approach is on the vehicle side. On the mobile device
side, an application serves trusted relationships to lower software layers with respect to
the security mechanisms offered by the mobile operating system. We assume that the
integrity of a mobile application relies on the appropriate security mechanisms (e.g.,
sandboxing, code signing, rights management, or secure storage) of current mobile
devices and operating systems, respectively. Therefore, we focus on the integration of a
given mobile system architecture and its security mechanisms without interfering the
safety of actual automotive architectures. The trusted domains and relationships are
summarized in Fig. 1, which also depicts our application scenario.

3.2 Security Requirements

The results of our analysis are the following security requirements, which describe the
background of our security framework:

Req. 1: The execution of any data is based on its context (e.g., the Bluetooth module is
only dedicated to transmitting and receiving data without interrupting the execution
of the ECU’s application layer).

Req. 2: No dependencies on proprietary subparts of an ECU and its interfaces towards
other entities.

Req. 3: Cryptographic mechanism must be under the developer’s authority.



Req. 4: End-to-end confidentiality and authenticity between the application layer of a
service user and an ECU.

For applying our security approach on a real application, we must take into account
any security flaws of the radio interface and remove any dependency of the application
layer towards proprietary parts on an ECU. In contrast to the security requirements, the
current architecture introduces a dependence on the provided information flow by the
Bluetooth module for the microcontroller of the ECU. Besides creating a dependence on
the security mechanisms of the Bluetooth standard and software implementation of the
Bluetooth stack, the processing and execution of the embedded application is explicitly
influenced by this data source. According to our security analysis, both entities share
a trusted relationship between each other and execute the data in a bidirectional way
without any security properties.

3.3 Implementation Approach

We follow a two-stage approach and rely on standardized and state-of-the-art cryptogra-
phy. The first stage sets up an end-to-end trusted relationship between both application
layers (i.e., on the mobile device or service user, and on the ECU). Due to the constraints
of the scenario (e.g., distribution of the mobile application through app stores, connectiv-
ity capabilities of the ECU), we cannot pre-compute and store any static credentials or
cryptographic keys on the mobile device, nor use a public key infrastructure on the ECU.
Therefore, we assume that only the vehicle’s owner is able to initiate the first stage by
enabling the authorization procedure on the vehicle’s side, only allowing the authentica-
tion of a mobile device user for a distinct time. Within this time span, the ECU accepts
the delivery of a service user’s identity and the user receives the identity information
of the ECU, respectively. In our implementation, the identity information includes the
public keys of an asymmetric cryptographic scheme. The second stage ensures that the
real-time communication requirements are met. To this end, it implements a symmetric
cryptographic scheme that establish a secure communication session, where the session
key is derived from the long-term shared secret of the first stage.

For integrating our two-stage approach on the Gateway ECU’s microcontroller, we
implemented an ECDH key-establishment scheme [11], for the authorization of a mobile
device, on a standardized curve (NIST P-192) [12]. For each authentication process, the
mobile device computes a new random key set and transmit the corresponding public key
to the ECU. In contrast to the key set of the mobile device, the ECU possesses a static
long-term key set for the key establishment scheme (see C(1,1) in [11]). For the session
encryption, we implemented the Advanced Encryption Standard (AES) in a chaining
block cipher (CBC) mode [13, 26] with a 128-bits key. The key-derivation function
is implemented according to the standard and provides a fresh 128-bits symmetric
key for each communication session. We rely on the DSP-capability of the underlying
hardware layer [27, 28] to compute the long-term secret and the operations on the
finite field of an elliptic curve. This allows us to enhance the speed of multi-precision
arithmetic operations. To further optimize the implementation, we developed most of the
cryptographic primitives in assembly code. Besides these two cryptographic schemes, we
implemented the SHA-1 hash function and defined a protocol structure for the integration
in a communication protocol stack.



Instead of implementing cryptographic primitives on a mobile device, we opted to
use a standardized cryptographic library to guarantee the proper execution and runtime
behavior of the cryptographic primitives. For the integration of our security layer on a
mobile device, we choose the OpenSSL library. Due to the constrained resources of the
Gateway ECU, we enable the mobile device’s random number capabilities as a source
for any random number needed in the cryptographic protocols.

3.4 Security Analysis of the Framework

We hereby evaluate our approach with respect to the attacker model discussed in §2.1
and show that we can mitigate most of the identified security threats.

Unauthorized Communication: As depicted in Fig. 1, our security framework im-
plements requirements Req. 1 and Req. 2 with the help of cryptography and takes
into account a compromised communication interface. This prevents the attacker from
fulfilling the objectives Obj. 1 and Obj. 2 (i.e., compromising the execution flow of
the Bluetooth module). The focus of the attacker is to use the radio interface as an
intermediate entity to transmit data to an ECU. However, even if an attacker obtains
access to the ECU via the radio interface, it is not possible to transmit any commands
towards the ECU without the knowledge of a session key or the long-term secret.

Implementation Flaws or Malicious Code Injection: The objectives Obj. 3 and
Obj. 4 represent the deployment of malicious code on the ECU—with the final goal
of issuing specific commands to the in-vehicle network. Typically, the attacker accom-
plishes the deployment by first interrupting the execution flow of an ECU, by exploiting
for instance implementation flaws in the executed software code running in the ECU.
Req. 2 removes the dependency from proprietary implementations, and thus reduces
dramatically the risk of exploitation. However, in the unlikely event that the attacker
compromises the security mechanisms of the communication interface, she will also
need to compromise the encryption provided by our security layer, which we can rea-
sonably assume to be impossible. In addition, Req. 3 ensures that any implementation
flaw or security vulnerability in the deployed cryptographic primitives could also be
fixed conveniently via a software update: Our security layer do not rely on any hardware
device, instead the security is under the developer’s authority.

Disclosure of Cryptographic Primitives: The disclosure of cryptographic primitives
is one of the most crucial attacks against the security framework. There is always the
possibility of dedicated, physical attacks (e.g., side-channel attacks against the ECU’s
cryptographic implementations) without using tamper-proof devices. Clearly, the attacker
would need to obtain physical access to the ECU. In addition, our security framework
makes it non trivial for the attacker to obtain the cryptographic, long-term secret. In
particular, a man-in-the-middle (MITM) attack is more difficult to conduct than in regular
Bluetooth pairing: The attacker would need to be in the range of communication (i)
during the legacy Bluetooth pairing process and (ii) during the first stage of our security
framework (i.e., the exchange of the public keys). However, it is reasonable to assume
that only the owner of the vehicle is able to enable the authorization process for a mobile
device (e.g., in his own garage) and, more importantly, within a predefined and very
brief time span.



Instead of compromising the ECU’s security layer, an attacker may achieve Obj. 5
with the help of a dedicated attack against the service user (e.g., mobile malware). First,
our security framework addresses this type of security threat by fulfilling Req. 3 and
is flexible with respect to future updates to the mobile device or operating system. In
fact, we are able to change any cryptographic primitive or protocol in order to protect
from actual or future vulnerabilities and thus fulfill Req. 4. Second, we assume that
the security of the mobile application—and thus of our security layer–is based on the
integrity of the operating system and its services. Note that this assumption applies on
any non-trusted computing platform, and thus it is perfectly reasonable.

4 Experimental Evaluation
We hereby describe the experimental evaluation that we conducted using our implemen-
tation of the security layer detailed in §3. The goal of our evaluation is to ensure that our
security protocol can be used in practice. To this end, we show that the security protocol
does not impose any significant communication overhead. Furthermore, we demonstrate
that it can be applied and deployed in real-world applications with minimal development
efforts and with almost no impact on the existing hardware architecture that needs to be
secured.

4.1 Case Study Overview: Electric Powered Two-Wheeler

We deployed and extensively tested our security protocol on an existing prototypical
energy-management system for light electric vehicles. This system works as an intelligent
range extender. More specifically, the goal of this system is to control and optimize
the energy consumed by the vehicle by actively modifying the dynamical behavior of
the vehicle in real-time [29, 30]. This task is accomplished with the following cascade
structure (refer again to Figure 1):

High-level controller This is the state-of-charge (SoC) controller, designed so that the
battery SoC tracks a reference profile. The desired discharge policy is generated
according to the a priori knowledge of the track, thus taking into account the total
track distance and its elevation profile [31]. As a further degree of freedom for the
user, the reference discharge profile depends on the driver’s demand for energy
saving. A mobile device implements the SoC controller logic by means of a mobile
app, which also includes navigation features that leverage the Internet capabilities
of the device.

Low-level control loops These loops prevent speed and acceleration to exceed certain
limits [32]. The high-level controller updates these bounds according to control
algorithms based on optimization procedures. The Gateway ECU implements and
runs the low-level control loops on a 16-bits dsPIC microcontroller with a CPU
speed of 20 Mips [27]. The PTW exchanges data with this device via CAN messages.

The Gateway ECU and the mobile device communicate via the Bluetooth standard and
exchange the data as summarized in Table 2. The mobile device acts as a driver-to-vehicle
interface for a service (i.e., energy management) exposed by the vehicle. This paradigm
is very appealing and is gaining increasing interest among vehicle manufacturers. First
because modern drivers are likely to be already familiar with mobile apps, and secondly



because this deployment method facilitates the spread of software updates and the
integration with other web-based services (see for instance [33]).

However, as discussed in §2, the use of Bluetooth for the communication of real-
time data requires safety-critical issues to be addressed. In this kind of applications,
sensitive data need to be exchanged between the mobile device and the Gateway ECU
on the vehicle (see Table 2 for a summary). More precisely, this sensitive data include
inputs and outputs used to actively control the vehicle through the energy-management
system, as opposed to mere logging or display functionality (e.g., a virtual dashboard
embedded in the smartphone application). Therefore, if the data is compromised, then
the functionality of the control system may be severely altered. As a consequence, the
vehicle “driveability” may decrease and, depending on the attacker’s skills, the driver
could loose control of the vehicle.

Based on the case study, we successfully secured the existing architecture using our
security framework (as described in §3) and conducted the experiments described in the
remainder of this section with an actual PTW developed by Piaggio, a very large Italian
motorbike manufacturing company, and currently in production. This PTW is used
within the Green Move3 research project, a two-year project funded by the Lombardy
Region, involving eight research centers at Politecnico di Milano (Italy). This case study
allows us to assess the feasibility of the security approach, characterize its computational
performance, and highlight the impact on the overall control strategy.

In addition to these measurements, we also collected very positive feedback from
Piaggio and from a selected pool of end users. Clearly, this is by no means intended to
be a thorough usability study (which is part of our planned future work), but it provides a
qualitative idea of the perceived ease of use and simplicity of our approach. We argue that
this is an important aspect to ensure a good level of acceptance of automotive security
solutions.

4.2 Working and Measurements Conditions

The overall system has the two fundamental working modes pairing and payload ex-
change, during which different types of data are exchanged. These working modes are
the most critical ones in terms of computational burden and provide measurable feedback
on how the security layer impacts the dynamic behavior of the control system. Thus, we
concentrate our performance measurements on these two modes as we discuss in the
following:

Pairing (one shot) This mode is active when the mobile device is paired with the
vehicle, after the typical Bluetooth pairing mechanism has taken place. For this

3 http://www.greenmove.polimi.it

Table 2. Information exchanged between the Gateway ECU and the mobile device.

FROM TO KIND SIZE [bytes] FREQUENCY

Mobile device Gateway ECU Initialization 48 One-shot
Gateway ECU Mobile device Real-time (control data) 60 5 [Hz]
Mobile device Gateway ECU Real-time (control data) 6 every s [m]



mode, we measure the performance of the asymmetric cryptography both on the
mobile device and on the Gateway ECU. Moreover, as the key generation routine
runs on the mobile device, we also quantify its performance.

Payload Exchange (runtime) This is when the AES key exchange, encryption and
decryption take place. For this mode, we analyze the decryption on the mobile
device and the encryption on the Gateway ECU. The payload consists of 64 bytes of
data, which includes a padding scheme for supporting arbitrary payload size.

Note that the pairing is a one-shot task, whereas the system normally works in
payload-exchange mode. At runtime, the payload exchange must satisfy real-time con-
straints. Here, the bottleneck lies in the Bluetooth stack as the AES encryption-decryption
of the 64-bytes payload is executed each time one of the peers transmits or receives a
message via Bluetooth (i.e., every 200 ms). Thus, given its importance, we collect run-
time data both with a simulator and on a real implementation deployed on the PTW. This
ensures an accurate performance characterization. More precisely, during the simulation,
the gateway is not connected to the vehicle, but the Bluetooth connection is still active.

Impact of Interrupts: An important aspect to consider is the non-deterministic behavior
of the vehicle that may affect the performance of the system on the Gateway ECU: the
interrupts on the microcontroller may interfere with the execution of the security code in
a noticeable way and have a significant impact. This issue is manifested at runtime, when
interrupts from the CAN bus and the UART decrease the normal sequential behavior
of the executed code. Note that we can disable the interrupts on the Gateway ECU at
pairing time since we need no measurements from the vehicle— the reason is that the
application layer does not execute any safety crucial data during the devices’ pairing.

4.3 Measured Performance Indicators

Table 3 summarizes how, when and where we measured the execution time in our
experiments. Both at runtime and pairing time, the execution time is a significant
performance indicator. To measure the execution time on the Gateway ECU, we acquire
the number of instructions N executed when the code runs and divide it by CPU speed
c, thus obtaining the time elapsed in seconds, or in number of clocks (short for “clock
cycles”)—on the Gateway ECU. In the remainder of the paper, we explicitly plot the
number of clocks N needed to execute the code so as to make the analysis independent
from the actual CPU speed of the Gateway ECU.

We implemented data-logging routines on the mobile device that receive from the
Gateway ECU samples of the number of clocks N . These samples are submitted within
the exchanged Bluetooth messages. Although this strategy has the minor side effect
of an increased payload size, it makes data collection easier compared to, for instance,
collecting data directly on the Gateway ECU. In addition, our results show that this has
no significant impact on the results.

4.4 Performance Measurements

Table 3 summarizes the average results that we obtained from running our experiments.
In the following, we explain these results in more detail and provide more analysis
results regarding the performance measurements.



Pairing: The pairing phase is characterized by the computational time needed to gener-
ate the key set on the mobile device and the execution of the ECDH protocol needed to
perform the authentication scheme between the two devices.

Fig. 2 and 3 show the execution time measured on the Gateway ECU and on the
mobile device, respectively. The small average values of the measurements both on the
ECU and on the smartphone proves the feasibility of our proposed implementation in a
real application. Obviously, the bottleneck of the key exchange is the Gateway ECU due
to its lower CPU speed: the execution time on the microcontroller is approximately 130
ms, that is 20 time bigger than the average computational time recorded on the mobile
device. In addition, notice that the results achieved on the Gateway ECU are very similar
both in simulation and while driving with the vehicle; this proves that disabling the
interrupts—as explained in §4.2—is beneficial for the execution time.

Payload exchange: The communication overhead at runtime affects the day-to-day use
of the mechanism. Hence, a significant overhead would lead to functionality issues on
the control system. Fig. 4 shows the measurements from the Gateway ECU. As expected,
the simulated results differs from the on-vehicle tests: the quasi-periodical pattern shown
by the real-time data while driving the electric PTW is mainly due to the periodical
interrupts of the UART and the CAN bus on the microcontroller, as discussed earlier in
this section. This is also clearly depicted in the statistical domain, as summarized in the
boxplot shown in Fig. 5, which clearly shows that the average values obtained during
four different tests (5000 samples for each test) are remarkably constant. The maximum
and minimum values are mainly due to the oscillations induced by the interrupts.

Again, the time required by the smartphone for executing the security layer code
can be neglected while working on the synthesis of the control loop. The measurement
results for the AES decryption of 64 bytes payloads on the mobile device are shown in
Fig. 6.

Table 3. Summary of the average values that we obtained over 5000 samples collected by running
each routine on the mobile device and on the Gateway ECU in both simulation mode (S) and while
driving (D).

MODE PHASE DEVICE AVERAGE VALUE TEST

Runtime Data encryption (64-bytes payload) Gateway ECU 50.52 kClocks S
51.41 kClocks D

Mobile device 33.98 µs S
34.5 µs D

Pairing Key establishment protocol Gateway ECU 2626.21 kClocks S
2628.67 kClocks D

Mobile device 7161.2 µs D

EC key generation Mobile device 6939.8 µs D



Impact of our Security Protocol on Execution Time: Fig. 7 shows the instantaneous
Bluetooth sending frequency, which provides a concise view of the impact of the security
layer on the real-time exchange of data. We derived this frequency values by first
measuring the time interval ∆T between two received data frames on the smartphone.
Therefore, the instantaneous frequency fb is equal to:

fb =
1

∆T
=

1

∆Td +∆Tr +∆Te +∆Tb

∆Td and ∆Te are the computational time of the decryption and of the encryption,
respectively. ∆Tr is a random time interval between two sent messages, and ∆Tb is the
time needed by the Bluetooth stack to send and receive data.

The average values of the Bluetooth frequency with and without the security layer
are 4.83 Hz and 5.01 Hz, respectively. The cause of this slight discrepancy is twofold.
On the one hand, the security layer introduces a delay because the terms ∆Td and ∆Te
are significant, as shown in Table 3. On the other hand, the size of the message sent
via Bluetooth is 40% larger compared to the case where the security layer is disabled.
Therefore, different payload sizes lead to different behaviors. In general, the increased
size of the message decreases the Bluetooth frequency due to the low-level mechanisms
implemented in the Bluetooth stack. Despite this slight decrease of sending frequency,
the performance of the closed-loop system is not affected by the security routines when
the high-level control strategies equipped with this additional layer are tested on the
electric PTW.

5 Discussion and Future Work
While our reference implementation is capable of providing a security session layer
that ensures end-to-end security transparently, there are three aspects that need fur-

Fig. 2. Execution time for the computation of the ECDH protocol measured on the Gateway ECU.
Top plot: simulation. Bottom plot: on-vehicle tests.



(a) Key establishment protocol.

(b) EC key generation.

Fig. 3. Execution time for the pairing phase measured on the mobile device. The measurements
have been taken independently from each other.

ther investigation in the future. First, in this work we concentrated on one symmetric
encryption algorithm (i.e., AES/FIPS 197) and an elliptic curve key establishment pro-
tocol. Depending on the specific needs of the application domain or case study, other
algorithms may be implemented and tested. For example, if a security session layer
should be established for an ECU with even less computational power than the Gateway
ECU, lightweight cryptographic algorithms like PRESENT [34] might be more suitable.
However, embedding other algorithms in our system only requires implementation—in
assembly, as we did for AES/FIPS 197 and ECDH/NIST P-192—and integration.

The second and third aspect that could be investigated further both regard the evalua-
tion of our approach. As discussed in §4.1, we already collected some initial feedback



Fig. 4. Measurements acquired for the encryption of 64 bytes payloads on the Gateway ECU. Top
plot: Simulation. Bottom plot: On vehicle tests.

Fig. 5. Performance of the encryption of 64 bytes payloads. Boxplot of four different acquisitions
on the Gateway ECU while driving the electric PTW.

from real-world users, which helped us in the design of the user interactions. This initial
feedback met the qualitative evaluation needs of this paper, whereas an extensive usabil-
ity study could help improving the user-interaction aspects of our approach—although
these are slightly out of scope for this paper.

Furthermore, the impact of our security layer on battery life should be measured,
although we expect no remarkable results. More precisely, as we discussed in §4.4,
our security layer barely affects the execution time; consequently, the computational
resources of the mobile device are little affected as well. Therefore, we expect that the
battery life is also not affected significantly. These conclusions are also substantiated
by a series of short (e.g., 10 to 20 minutes) test drives that we performed while we
monitored the battery discharge: We noticed no discrepancy when driving with and
without the security layer enabled.



Fig. 6. Measured execution time acquired for the decryption of 64 bytes payloads on the mobile
device. Top plot: Simulation. Bottom plot: On vehicle tests.

Fig. 7. Instantaneous Bluetooth sending frequency estimated with and without the security layer.

6 Conclusions
We proposed a security layer that sits on top of the Bluetooth standard (or actually, any
other communication layer), ensuring a secure communication between smartphones and
in-vehicle networks. This enables modern automotive services to interact with vehicles
in a secure manner. Our proposed approach can be applied to real-world cases, as shown
by our practical evaluation, because (1) it has very low impact on the (often small)
computational resources available on the vehicle and the smartphone, (2) it requires
no hardware modifications (i.e., it is agnostic with respect to the adopted wireless
communication standard), and (3) it requires no complex user interactions.



We implemented our proposed system on an electric vehicle and an iPhone applica-
tion that actively monitors the vehicle’s battery and controls the driving speed, so that
the battery lasts longer. This case study is suitable for our proposed system, because the
mobile device and the vehicles exchange sensitive control data, which may affect the
vehicle driveability. Our tests on this case study confirm that our system meets both the
security and the real-time performance requirements.

We conclude that our approach effectively mitigates the security threats that com-
monly affect car-to-X applications. Furthermore, the recent attacks against cars [6–10]
would be significantly harder if a security session layer would be used in vehicles since
simple sniffing of protocol messages is not feasible anymore given our approach.
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