XSS Peeker: A Systematic Analysis of Cross-site Scripting Vulnerability Scanners

Enrico Bazzoli¹, Claudio Criscione¹,², Federico Maggi¹, and Stefano Zanero¹

¹ DEIB – Politecnico di Milano, Italy, enrico.bazzoli@mail.polimi.it, {federico.maggi, stefano.zanero} @polimi.it
² Google, Zurich, Switzerland, claudioc@google.com

Abstract. Since the first publication of the “OWASP Top 10” (2004), cross-site scripting (XSS) vulnerabilities have always been among the top 5 web application security bugs. Black-box vulnerability scanners are widely used in the industry to reproduce (XSS) attacks automatically. In spite of the technical sophistication and advancement, previous work showed that black-box scanners miss a non-negligible portion of vulnerabilities, and report non-existing, non-exploitable or uninteresting vulnerabilities. Unfortunately, these results hold true even for XSS vulnerabilities, which are relatively simple to trigger if compared, for instance, to logic flaws.

Black-box scanners have not been studied in depth on this vertical: knowing precisely how scanners try to detect XSS can provide useful insights to understand their limitations, to design better detection methods. In this paper, we present and discuss the results of a detailed and systematic study on 6 black-box web scanners (both proprietary and open source) that we conducted in coordination with the respective vendors. To this end, we developed an automated tool to (1) extract the payloads used by each scanner, (2) distill the “templates” that have originated each payload, (3) evaluate them according to quality indicators, and (4) perform a cross-scanner analysis. Unlike previous work, our testbed application, which contains a large set of XSS vulnerabilities, including DOM XSS, was gradually retrofitted to accommodate for the payloads that triggered no vulnerabilities.

Our analysis reveals a highly fragmented scenario. Scanners exhibit a wide variety of distinct payloads, a non-uniform approach to fuzzing and mutating the payloads, and a very diverse detection effectiveness. Moreover, we found remarkable discrepancies in the type and structure of payloads, from complex attack strings that tackle rare corner cases, to basic payloads able to trigger only the simplest vulnerabilities. Although some scanners exhibited context awareness to some extent, the majority do not optimize the choice of payloads.

1 Introduction

The software industry is increasingly paying attention to security, with high profile incidents being more and more frequently leading news in the media. Nevertheless, web applications often contain flaws that, when successfully exploited, lead to dangerous security breaches. Web application vulnerabilities are one of the most important and popular security issues, constantly making it to the top list of disclosed vulnerabilities [20, 26].
Cross-site scripting (also known as XSS) is a prevalent class of web application vulnerabilities [15], despite being well known and studied in depth. Reported cases of XSS have increased significantly between 2004 and 2013 [2, 18]. In June 2013, XSS was reported as the most prevalent class of input validation vulnerabilities by far [24].

Black-box scanners are easy to use tools used to check web applications for vulnerabilities, including XSSs. It has been shown that black-box scanners miss a non-negligible portion of vulnerabilities, i.e. that they display false negatives [5, 22, 25], and that symmetrically they often report non-existing, non-exploitable or uninteresting vulnerabilities, i.e. they exhibit false positives [25]. Although XSS vulnerabilities are relatively easy to discover (for instance if compared with flaws in business logic), previous work and our own pilot study showed that black-box scanners exhibit shortcomings even in the case of XSS flaws.

To our knowledge (see §6) there is no detailed study of black-box web vulnerability scanners that focused specifically on XSS vulnerabilities and their detection approaches. Previous works and commercial benchmarks considered XSS bugs as part of a set of flaws in testbed web applications, but not as the main focus. Also, it is important to note that previous works measured the detection rate and precision of the scanners mainly with the goal of benchmarking their relative performance. Although we believe that these indicators are important, providing precise insights on the structure, generality, fuzzing mechanism, and overall quality of the XSS detection approaches could help web application developers to design better escaping and validation routines, and scanner vendors to understand the reasons behind scanner weaknesses. These goals require a different perspective: rather than using a testbed web application with difficult-to-find entry points, complex session mechanisms, etc., normally leveraged by testers to challenge a scanner or by vendors to demonstrate their product’s sophistication, we believe that the test cases should be easy to find and comprehensive, so to maximize the coverage of the analysis. Since the main detection approach for black box testing for XSS is to fuzz HTTP requests by injecting “payloads” [14], and empirical evidence shows that scanners do the same, maximizing coverage means, for our purposes, to observe the highest number of payloads.

We followed a simple methodology of our own devising, with the aid of an automated tool that we developed, XSS Peek, which sniffs network packets, decoding the HTTP layer and extracting the XSS payloads. In addition, XSS Peek streamlines some tedious tasks such as finding groups of related payloads, making automatic analysis and result visualization feasible even in the case of large amounts of payloads.

Since our objective is to obtain as many payloads as possible from the scanners, we do not hide the vulnerable entry points in any way. In other words, our results show a best-case scenario for each scanner. Moreover, we designed our own testbed web application, which we called Firing Range in such a way that it is easy to insert new vulnerabilities. Whenever we detected a payload that was not triggering any of our test cases, we reverse engineered a test case that would satisfy specifically

\[\text{available online at } \text{http://public-firing-range.appspot.com} \]
that payload. We applied the process iteratively, running new scans and collecting new payloads. We also added specific test cases for DOM XSS vulnerabilities, one of the most recently discovered and emerging sub-classes of XSS flaws \[8\], not included in previous works. It is worth noting that our research is not limited to individual scanners: we observed how cross-scanner analysis yields very interesting results.

In summary, in this paper we make the following contributions:

- A publicly available testbed web application that exposes non trivial XSS vulnerabilities (detailed in §3), augmented with the new cases discovered in our results.
- A methodology to analyze how black-box web application scanners work by (1) extracting the payloads from the HTTP requests, (2) clustering them to scale down the evaluation challenge and keep it feasible, and (3) evaluating each cluster in terms of use of evasion, compactness, and other quality indicators.
- A publicly available prototype implementation of the above methodology.
- A detailed measurement applied to 6 scanners: Acunetix 8.0, NetSparker 3.0.15.0, N-Stalker 10.13.11.28, NTOSpider 6.0.729, Skipfish 2.10b and w3af 1.2.

For anonymity reasons, and because by no means we want to provide a benchmarking analysis, the names of the scanners appear, in random order, as Scanner1, Scanner2, etc., in our results.

2 Background

Before describing our approach in detail, we introduce the essential background concepts and terminology on web application XSS vulnerabilities and black-box scanners.

2.1 Cross-site Scripting Vulnerabilities and Attacks

XSS attacks consist in the execution of attacker-controlled code (e.g., JavaScript) in the context of a vulnerable web application. In this paper, we refer to the portion of malicious code as payload. XSS attacks are made possible by input-validation flaws (i.e., XSS vulnerabilities) in web applications, which accept input from a user (i.e., attacker) and deliver it to the client (i.e., victim) as part of an HTTP response. An attacker is thus able to deliver malicious code to a victim, with consequences ranging from information or credential stealing to full violation of the victim machine or network (e.g., by leveraging further browser vulnerabilities). The attacker is able to access cookies, session tokens and other sensitive informations, and also to rewrite the content of the HTML page.

Without aiming for a complete taxonomy, XSS vulnerabilities and attacks can be divided in *stored* and *reflected*, and both can be *DOM based* or not. In reflected attacks the victim is tricked (e.g., through links or short URLs \[12\] embedded in e-mail or instant messages) into sending a specially crafted request—which embeds the actual payload, which is bounced back to the client immediately. In stored XSS attacks the moment the payload is injected is decoupled from the moment that it
is effectively displayed and executed by the victim, as the attacker’s code achieves some form of persistence. DOM-based attacks \[10\] can be distinguished as they rely on the insecure handling of untrusted data through Javascript rather than the simple reflection of a full payload.

2.2 Black-Box Web Vulnerability Scanners

Black-box web vulnerability scanners leverage a database of known security attacks, including XSS payloads, and try to trigger and detect potential vulnerabilities. More precisely, black-box scanners crawl the target web application to enumerate all reachable pages with entry points (e.g., input fields, cookies), generate (mutations of) input strings based on their database, inject the resulting payload in the entry points and analyze application’s responses using an oracle to detect the presence of vulnerabilities (e.g., by looking for the injected payload in the output).

Black-box scanners are, by definition, agnostic with respect to the application internals and functioning, and thus virtually suitable for any application based on common web stacks.

When evaluating or analyzing a black-box vulnerability scanner, a so-called testbed web application is used. A common claim made by vendors is that testbed applications they provide closely mimic the relevant properties of real world applications. As we will detail in the next section, this is not our approach.

3 Development of Our Testbed Web Application

The implementation of the testbed web application is a key point. Given our goals and needs, the requirements of such a testbed are: to have clearly defined vulnerabilities, to be easily customizable, to contain the main types of XSS vulnerabilities. Realistic, full-fledged testbed web applications have been implemented in previous works \[1, 5, 6, 16\], but since they did not entirely meet our requirements, we chose to implement our own application, which we called Firing Range.

Meeting the above requirements, however, is tricky. On one hand, as pointed out in \[5\], the complexity of some applications can hinder the coverage of the scanner (e.g., if a vulnerable functionality is hidden behind a complex JavaScript handler, the crawling component of the scanner might fail to identify the vulnerable URL). On the other hand, there is no guarantee of comprehensiveness of the testbed: vast portions of the assessed tool’s capabilities might remain unexposed as they activate only under specific conditions that happen not to be triggered by the test application.

We decided to address these shortcomings explicitly while designing Firing Range. Our testbed offers no extraneous features, all links to the vulnerabilities are explicitly exposed through HTML anchors and vulnerable parameters are provided with sample input to improve discoverability. This approach allows testing to be performed by providing the full list of vulnerable URLs, thus removing any crawling-related failure entirely. Furthermore, each vulnerable page is served as a standalone component with no external resources such as images or scripts, as to create a minimal test case.
The main implementation challenge when creating a testbed is of course deciding what tests it should include. We wanted our initial set to cover as many cases as possible, but there was no such list readily available in previous literature. Since we basically wanted to test the detection of XSS on an HTML page, and considering the HTML parsers in modern browsers have a finite set of states, we resolved to create tests for each one of those. To this end we analyzed the different contexts identified by the contextual auto-escaper described in [19]: simply reversing the perspective of a parser, tasked with applying proper escaping to malicious payloads, provided us with clear samples of the different contexts. We generated test cases covering each of them with the goal of (1) producing a “vulnerable baseline” of the different states of an HTML parser and (2) inducing the scanners to inject as many payloads as possible. Given the fairly limited amount of cases, we manually generated tests where the input payload was echoed in the proper HTML context: during this first seeding we did not include any kind of escaping or filtering, and inputs were directly echoed back in the output page. It is worth noting that there is no functional difference between stored and reflected XSS when considering this perspective: simply changing the origin of the input to be echoed from the URL to a persistent data source allows to move from one type to the other. From the point of view of the payload analysis, which is our core focus, they are thus indistinguishable from one another. Therefore, for ease of development and of experimental repeatability, our testbed web application only contains reflected vulnerabilities.

HTML contexts are however not enough to generate test cases for DOM XSSs, which exploits interactions between the DOM generated by parsing the original HTML and JavaScript code. For DOM XSS, we started from the XSS Wiki[5] and other openly available collections of sample vulnerabilities, and generated a list of valid DOM sinks and sources—which, notably, include sources other than URLs such as cookies and browser storage. Each one of our DOM tests couples one of these sinks and sources. All the Firing Range tests have been manually verified as exploitable with an appropriate payload or attack technique.

3.1 Test Cases Examples
Although the publicly available website of the testbed already provides full details of the vulnerabilities we have tested, in this section we provide some representative examples for the sake of clarity.

Listing 1.1: DOM XSS from location.hash to innerHTML.

```html
<html>
<body>
<script>
  var payload = window.location.hash.substr(1);
  var div = document.createElement('div');
  div.id = 'divEl';
  document.documentElement.appendChild(div);
  var divEl = document.getElementById('divEl');
  divEl.innerHTML = payload;
</script>
</body>
</html>
```

Listing 1.2: DOM XSS from `location` to `setTimeout`.

```html
<html>
<body>
<script>
  var payload = window.location;
  setTimeout('var a=a;' + payload, 1);
</script>
</body>
</html>
```

Listing 1.3: DOM XSS from `documentURI` to `document.write()`.

```html
<html><head><title>Address based DOM XSS</title></head><body>
<script>
  var payload = document.documentURI;
document.write(payload);
</script>
</body>
</html>
```

Listing 1.4: Reflected XSS from `?q=payload` to a JavaScript slash-quoted assignment.

```html
<html>
<body>
<script>
  var foo=/payload/;
</script>
</body>
</html>
```

Listing 1.5: DOM XSS from `window.name` to `eval()`.

```html
<html><head><title>Toxic DOM</title></head><body>
<script>
  var payload = window.name;
eval(payload);
</script>
</body>
</html>
```

Listing 1.6: Reflected XSS from `?q=payload` to `eval()`.

```html
<html>
<body>
<a href="payload">Link!</a>
</body>
</html>
```

3.2 Iteratively discovered test cases

During our experimental evaluation described in §5 XSS Peeker discovered payloads that were not exercising any test case (i.e., vulnerability). Instead of limiting our analysis to report this discrepancy, we iteratively constructed new test cases and progressively re-ran all the scanners as described in §4.4.
Reverse engineering the missing test cases was mostly a manual work thanks to their limited number. Two of the payloads that did not exercise any of our test cases in one of the early runs are the following:

Listing 1.7: Sample negative payloads.

```html
<div style="width:expression(alert("XSS"));">  
<script>alert(/xlqjgg4y/)</script>
</div>
```

Our goal was to design a reasonable test that would be “discovered” by these payloads and not by others, while not overfitting to the point of string-matching the payload. Our newly designed test case would allow the injection of HTML tags as part of a payload, but would block any `script` tag and only allow `style` attributes. Executing JavaScript in this case is non trivial: a valid venue to exploit and thus detect the XSS vulnerability is the one leveraged by the payload that suggested the test case, where the `expression` CSS property can be used to execute javascript in certain browsers.

This iterative process produced 42 new test cases that were not identified by our initial seeding. Consequently, this approach greatly improved the testbed. For the sake of brevity, we refer the reader to http://public-firing-range.appspot.com for the complete list of live test cases.

4 Analysis Workflow

XSS Peeker automatizes the extraction and analysis of XSS payloads by following an iterative approach. At a high level, in **Phase 1 (Payload Extraction)** we run one scanner at a time against our testbed web application, capture the network traffic, and decode the HTTP requests. Then we extract the payloads from each request by analyzing the possible sources with a set of heuristics. In this phase we also retain the vulnerability report produced by each scanner.

We proceed to **Phase 2 (Payload Templating)**, where in order to simplify the evaluation and visualization of large volumes of payloads, we apply an algorithm that clusters the payloads based on their similarity and produces a representative template that describes the clustered payloads in a compact way. A *template* is a string composed by lexical tokens (e.g., a parenthesis, a function name, an angular bracket), common to all the payloads in a cluster, and variable parts, which we represent with placeholders (e.g., STR, NUM, PUNCT). We do not claim that our clustering algorithm is accurate, as the problem of inferring precise templates from strings is unsolved. But we do not need such precision, as we use this step simply as a mean to reduce the manual review of the results. Conceptually, the templates are the base payloads employed by a scanner before applying any mutation or fuzzying.

In **Phase 3 (Template Evaluation)** we evaluate each template on a set of metrics that quantify generality, filter evasion capabilities, use of mutations, and type of triggered vulnerability, presenting them in a compact report with average values computed on each cluster for ease of visualization.
These steps are executed in an automated fashion by three modules we implemented in Python (making use of the dpkt library to parse HTTP requests in Phase 1).

In Phase 4 (Retrofitting Negative Payloads), which cannot be fully automated, we generate a list of negative payloads, i.e., those that are not found in the parsed report. Using the Template Generator, we discard the redundant negative payloads. For each resulting distinct negative payload we create specific test cases via manual reverse-engineering, as outlined in §3. Iteratively, this results in the reduction of the number of negative payloads to zero, and the increase of the coverage of each scanner’s capabilities.

In the following, we explain in detail the four phases of our approach.

4.1 Phase 1 (Payload Extraction)

The high-level goal of this phase is to obtain, for each scanner, the entire set of XSS payloads used by each scanner for each entry point in the testbed application. To this end, this phase first captures (using libpcap) the traffic generated by the scanners during the test and performs TCP stream reassembly, decoding the full HTTP requests.

The first challenge is to automatically distinguish HTTP requests used for the actual injection (i.e., containing one or more payload) from those used for crawling or other ancillary functionalities. The ample amount of payloads generated makes manual approaches unfeasible. Therefore, we rely on two heuristics:

Signature Payloads: Most scanners use “signature” payloads (i.e., payloads uniquely used by a scanner). For example, one of the scanners always injects payloads that contain a custom, identifying HTML tag “sfi”. Therefore, we derived the signature payloads for each scanner and compiled a whitelist that allows this heuristic to discard the uninteresting requests.

Attack Characters: Since we know the testbed application, we guarantee that there is no legitimate request that can possibly contain certain characters in the header or body parameters. These characters include <, >, quote, double-quote and their corresponding URL-percent encodings, etc. Such characters should not be present in a crawling request by construction, and since they are often required to exploit XSS vulnerabilities, we have empirically observed them as linked to testing. For example, considering the GET request .../reflected/body?q=<script>alert(232)</script>, the value of q contains <, so this heuristic flags it as a testing request. We apply the same approach to POST requests.

To complement the coverage of the previous heuristics and maximize the number of identified payloads, we perform pairwise comparisons between requests issued by each couple of scanners. For each couple, we extract the body and URL of the two requests, and check if they have the same path and the same query parameters. If so, we compare the values of each query parameter. By construction, Firing Range provides only a single value for each parameter, thus any mismatch has to be originated by the scanner fuzzing routine. Once a pair of requests is flagged as a mismatch, we performed manual inspection to isolate the payload. The number of such cases is rare enough to make this a manageable process. We iteratively
applied and improved these heuristics until this cross-scanner analysis generated empty output, and we could confirm through manual inspection that no more test requests were missed (i.e., all payloads considered).

The astute reader notices that we focus our description on query parameters: This is part of the design of our testbed, which provides injection points exclusively on query parameters. Clearly, almost all of the scanners perform path injection, where the payload is injected in the path section of the URL. For example, in:

```
/</address>script>prompt(923350)<script>/location/innerHtml
```

the payload `<script>prompt(923350)</script>` is part of the request path. This is an important feature for scanners as modern applications often embed some of their parameters in the path of the request. Although our extraction process handles this type of entry points, we chose not to analyze path-based injections. Indeed, manual analysis confirmed that scanners used the very same set of payloads observed during parameter injection.

4.2 Phase 2 (Payload Templating)

Given the large number payloads generated by each scanner, manually analyzing and evaluating each of them separately is practically unfeasible. A closer inspection of the payloads, however, revealed self-evident clusters of similar payloads. For example, the following payloads:

```
<ScRiPt >prompt(905188)</ScRiPt>
<ScRiPt >prompt(900741)</ScRiPt>
```

differ only for the value passed to the `prompt` function. To cluster similar payloads, inspired by the approach presented in [17], we developed a recursive algorithm for string templating. A template, in our definition, is a string composed by lexical tokens (e.g., a parenthesis, a function name, an angular bracket), that are common to all the payloads in a cluster, and variable parts, which we represent with placeholders. The `NUM` placeholders replace strings that contains only digits, whereas the `STR` placeholders replace strings that contains alphanumeric characters. For instance, the template for the above example is

```
<ScRiPt >prompt(90_NUM_)</ScRiPt>
```

To generate the templates we leveraged the Levenshtein (or edit) distance (i.e., the minimum number of single-character insertions, deletions, or substitutions required to transform string A to string B).

At each recursion, our algorithm receives as an input a list of strings and performs a pairwise comparison (without repetition) between elements of the input list. If the Levenshtein distance between each two compared strings is lower than a fixed threshold, we extract the matching blocks between the two strings (i.e., sequences of characters common to both strings). If the length of all matching blocks is higher than a given threshold, the matches are accepted. Non-matching blocks are then substituted with the corresponding placeholders. The output of each recursion is a list of generated templates. All payloads discarded by the Levenshtein or matching-block thresholding are appended to the list of output templates.
to avoid discarding “rarer” payloads (i.e., outliers) and losing useful samples. The thresholds (maximum Levenshtein distance and minimum matching block length) are decremented at each cycle by an oblivion factor, making the algorithm increasingly restrictive. We selected the parameters of the system, including the oblivion factor, through benchmarks and empirical experimentation, by minimizing the number of templates missed. This automatic selection yielded the following values: 20, 0.9 (default case); 20, 0.9 (Acunetix), 15, 0.5 (NetSparker); 15, 0.8 (NTOSpider); 15, 0.9 (Skipfish); 15, 0.5 (W3af). The algorithm stops when a recursion does not yield any new templates.

For example, considering the following payloads as input

```html
<ScRiPt >prompt(911853)</ScRiPt>
<ScRiPt >prompt(911967)</ScRiPt>
```

the resulting template is

```html
<ScRiPt >prompt(911_NUM_)</ScRiPt>
```

whereas for payloads

```html
onerror=prompt("x6haqgl3")>
onerror=prompt("x6hbcxpn")>
```

the resulting template is

```html
onerror=prompt("x6h_Str_")>
```

4.3 Phase 3 (Template Evaluation)

We want to assess the quality of payloads in terms of filter-evasion capabilities and amount of mutations used by the scanner. Given our observations above, we apply such evaluation to templates, as opposed to each single payload.

More precisely, the quality of a template is expressed by the following template metrics, which we aggregate as defined in §5.3. Note that the rationale behind each metric is explained on payloads, whereas the metric itself is calculated on the templates.

M1 (Length), integer: The longer a payload is, the easier to spot and filter (even by accident). Thus, we calculate the length of each payload template to quantify the level of evasion capability.

M2 (Number of distinct characters), integer: The presence of particular characters in a payload could hit server-side filters, or trigger logging. The presence of a character instead of another could reveal an attempt to mutate the string (e.g., fuzzing). A symbol can have different meanings depending on the actual context. From this rationale we obtain that a payload with a small set of characters is “better” than one leveraging rare characters. We calculate this metric on the variable part of each template (i.e., excluding the STR ad NUM tokens).

M3 (Custom callbacks) boolean: Rather than using standard JavaScript functions like alert, a scanner can use custom JavaScript function callbacks to bypass simple filters. We interpret this as an evasion attempt. If a template contains a function outside the set of built-in JavaScript functions, we set this metric to true.
M4 (Multiple encodings), boolean: Encoding a payload may let it pass unnoticed by some web applications' filters. However, some applications do not accept certain encodings, resulting in the application not executing the payload. A payload that uses multiple encodings is also more general because, in principle, it triggers more state changes in the web application. We set this metric to true if the template contains symbols encoded with a charset other than UTF-8 and URL-percent, thus quantifying the level of evasion.

M5 (Number of known filter-evasion techniques), integer: With this metric we quantify the amount of known techniques to avoid filters in web applications. For each template we calculate how many known techniques are used by matching against the OWASP list6.

Although other metrics could be designed, we believe that these metrics are the bare minimum to characterize a scanner’s capabilities and understand more deeply the quality of the payloads that it produces and process.

4.4 Phase 4 (Retrofitting Negative Payloads)

At the end of a scan, each scanner produced a report of the detected vulnerabilities. We use a report-parsing module that we developed (and released) for each scanner and correlate the results with the payloads extracted. In this way we identify payloads that triggered vulnerabilities, which we call positive payloads and those that did not, called negative payloads.

We manually verified each negative payload to ensure that it was not our report-parsing module failing to correlate. We found that there are at least four reasons for which a negative payload occur:

- The payload was malformed (e.g., wrong or missing characters, incorrect structure) and it was not executed. This is a functional bug in the scanner.
- The payload was designed for a different context than the one it was mistakenly injected in.
- The scanner used what appears to be the “right” payload for the test case, but the detection engine somehow failed to detect the exploit.
- The payload was redundant (i.e., the scanner already discovered a vulnerability) in the same location thanks to another payload, and thus will not report it again.

Since one of our goals was to create a testbed application as complete as possible, we wanted to ensure that all negative payloads had a matching test case in our application. With manual analysis, we proceeded to discard malformed and redundant payloads from the list of negative payloads. For each remaining negative payloads we produced a specific vulnerable test case.

To avoid introducing a bias in the results, we crafted each new test case to be triggered exclusively by the payload type for which it has been created, whereas the other payloads of the same scanner are rejected, filtered, or escaped. Of course, nothing would prevent other scanners from detecting the case with a different payload and that was indeed the intended and expected behavior.

6https://www.owasp.org/index.php/XSS_Filter_Evasion_Cheat_Sheet
Experimental Results

During our experiments we tested 4 commercial scanners, for which we obtained dedicated licenses with the support of the vendors (in random order, we used Acunetix 8.0, NetSparker 3.0.15.0, N-Stalker 10.13.11.28, NTOSpider 6.0.729) and 2 open-source scanners (in random order, we used Skipfish 2.10b and w3af 1.2). We installed each scanner on a dedicated virtual machine (VM) to guarantee reproducibility and isolation (i.e., Debian 6.0.7 for Skipfish and W3af, and Windows 7 Professional for Acunetix, NetSparker and NTOSpider). We used Wireshark on each VM to capture the traffic. When possible, we configured each scanner to only look for XSS vulnerabilities, and to minimize the impact of other variables, we left the configuration to its default values and kept it unchanged throughout all the tests.

We tested Firing Range several times with each scanner. Overall, the scanners are generally good at detecting the reflected XSS while performing very poorly with respect to the DOM based XSS vulnerabilities: none of those included in our application was identified by any scanner. No scanner reported false positives, as we were expecting, since we did not design any test cases to trick them like Bau et al. [1] did in their testbed application.

Of course, simply running scanners against a test application and analyzing their reports is not enough to evaluate their performance. As Doupé et al. [5] did in their study, we wanted to understand the behavior of a scanner in action to be able to explain their results. Our approach, however, differs noticeably since Doupé et al.’s main concern is about the crawling phase of the scanner, whereas we focus on the attack phase, and specifically on the payloads.

5.1 Payload Extraction Results

The number of extracted payloads for all scanners is shown in Fig. 1. When looking at the results, it is worth keeping in mind that all scanners performed very similarly: they were able to detect the same number of vulnerabilities on the first version of Firing Range, before Phase 4 (Retrofitting Negative Payloads). Indeed, they all missed the same amount of vulnerabilities. Although our report-parsing modules are able to obtain these results automatically, we confirmed this by manual analysis.

With this in mind it is easy to see how a simple measure like the number of distinct payloads is interesting: the detection technique used by Scanner 3 results in the use of far fewer payloads. The comparatively larger number of payloads observed in the first 2 scanners is due to the use of unique identifiers tied to each of requests. We argue that the identifiers are used to link a result back to the request that originated it even if server side processing had moved it around—this property is important when detecting stored XSS.

Fig. 1 also clearly illustrates the benefits of Phase 3 (Template Evaluation), as these numbers do not really tell much about the actual quality and type of the payloads: it is quite possible that Scanner 1 had simply appended an incremental number to the very same payload.
5.2 Payload Templating Results

After applying the clustering process described in Payload Templating, we notice immediately the limited number of templates, as shown in Fig. 1.

The larger number of templates generated for Scanner 2 is an index of lower efficiency and of lack of generality. These numbers also show that our hypothesis was correct: the high number of payloads of Scanner 1 was due to an incremental number (or randomly generated number), rather than structurally different payloads. Indeed, among the templates that we generated from Scanner 1 there is:

-STR-_NUM_<STR>ScRiPt-STR>_prompt(_NUM_)</ScRiPt>-STR-

where the second _NUM_ token is the unique identifier.

At this point in the analysis we could already see some scanners emerging as clearly more efficient due to the smaller number of templates they use. For example, Scanner 2 uses more complex payloads such as:

-STR-"--></style></script><script>alert(0x0000-_NUM_</ScRiPt>-STR-

Since the variety of payloads of Scanner 3 is very low, also the number of generated templates is very limited (only 5). The majority, 14, of the payloads of this scanner are represented by the following template:

-STR<-alert><h1>SCANNER3_XSS-STR-

where alert and SCANNER3 were replaced to avoid revealing the scanner’s real name. Attempts of evading filters from Scanner 3 are well represented by the following template:

alert><h1>SCANNER3_XSS

a>alert><h1>SCANNER3_XSS
Fig. 2: Number of generated templates.

Given the high number and variety of payloads employed by this **Scanner 4**, also resulting templates are numerous and very different from each other. There is one template that represents most of the 200 payloads generated by this scanner:

```
-STR-"<script>alert("x6_NUM_-STR-_NUM_")</script>-STR-
```

whereas the remainder templates are variations of the above one. For instance:

```
<img ""><script>alert("x6wsuum4")"></script><script>alert(/x6STR/)STR</script>
</script><script>alert(/x6w2uf13/)"></script>
\r\n\r
<script>alert(/x6okbc2h/"></script>
```

where the latter two template show attempt of evading filters (e.g., multi line). The (low number of) templates from **Scanner 5** show that its payloads are significantly different from the rest. The templates that cover most of the payloads are:

```
--->"">"<sfi000084v209637>
.htaccess.aspx--->">"<sfi000085v209637>
.htaccess.aspx--->">"<sfi000_NUM_v209637>
-STR--->">"<sfi_NUM_v209637>
```

which capture the scanner developer’s particular interest in generic payloads that can highlight the incorrect escaping of a number of special characters at once. This approach is not found in any other scanner.

Scanner 6 created a large number of templates, sign of strong use of non-trivial mutations and fuzzing. The most interesting samples, which cluster about 40 payloads each, are:

```
javas-STR-crypt:alert("-STR-";
javas\x00ccript:alert("FSWQ");
javas\cript:alert("0mRP");
```
5.3 Template Evaluation Results

During this phase we evaluated each of the templates on the metrics defined in §4.3.

Fig. 3 reports the mean of M1 (Length) calculated over the number of templates produced by each scanner. This is an interesting finding, which can be interpreted in two ways. On the one side, the length of the templates is in line with the minimum length of real-world payloads required to exploit XSS vulnerabilities, which is around 30 characters [7, 23], which somehow justifies the choice of the payloads. On the other hand, 30 characters is also quite a long string. Indeed, if a vulnerable entry point (e.g., id=311337) that employs a weak sanitization filter (e.g., based on a cut-off length) will not be detected as vulnerable by these long payloads. Although this can be a good way for the scanner to avoid flagging unexploitable vulnerabilities (false positives), it has been shown that multiple small payloads can be combined to generate a full attack [13]. However, the scanners that we examined miss these occurrences.

Table 1: Summary of template evaluation.

<table>
<thead>
<tr>
<th>Scanner</th>
<th>Mutations (M4)</th>
<th>Callbacks (M3)</th>
<th>Filter evasion (M2, M4, M5)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Scanner 1</td>
<td>✓</td>
<td>x</td>
<td>✓</td>
</tr>
<tr>
<td>Scanner 2</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Scanner 3</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Scanner 4</td>
<td>✓</td>
<td>x</td>
<td>✓</td>
</tr>
<tr>
<td>Scanner 5</td>
<td>x</td>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td>Scanner 6</td>
<td>✓</td>
<td>x</td>
<td>✓</td>
</tr>
</tbody>
</table>
We notice that Scanner 1 employs significantly longer payloads than Scanner 5. This can be explained, considering that Scanner 5’s M5 is zero, meaning that it uses no known filter-evasion techniques: thus, Scanner 5 is less sophisticated than Scanner 1.

Using M2–M5, we derived Table 1, which gives bird’s eye view on the use of mutations, filter evasion and use of callbacks from each scanner. Regarding callbacks and mutations, we use M3 (Custom callbacks) and M4 (Multiple encodings), whereas for filter evasion, if at least one template has a non empty character set (from M2), uses multiple encodings (from M4), and adopt at least one evasion technique (from M5) we consider the scanner as using filter evasion.

As it can be seen, both random mutations and filter-evasion techniques are widely employed in the scanners that we tested. We comment on their effectiveness in §5.4, but our analysis suggests that such features are now widespread. The use of callbacks over parsing or standard JavaScript functions, on the other hand, is not very used.

5.4 Retrofitting Negative Payloads Results
As described in §3, we have iteratively added new test cases in our testbed to account for negative payloads. The expected result was the reduction of the number of negative payloads to zero.

We ran all the scanners against the new testbed and analyzed the results. Unfortunately, as Fig. 4 shows, scanners failed to detect most of the new vulnerabilities. We manually confirmed that the negative payloads do trigger an XSS on those new cases. However, the very same scanners that generated such negative payloads still failed to detect and report most of the new vulnerabilities. Note that the payloads of Scanner 1 were all already covered by our initial test case, thus no additional cases were created.
Fig. 5 shows the overall results produced by each scanner after including the new test cases.

By manually analyzing the requests toward the new cases, we discovered that some scanners did not exercise the test case with the right payload although they should have been able to: A faulty (or random) payload-selection procedure somehow failed to choose the right payload, instead using it in test cases where it would turn out to be ineffective.

Another interesting result is that, after the introduction of the new cases, some scanners started using payloads we had not observed before. This behavior suggests some degree of context awareness, as scanners would only generate this new set of templates after having observed these new contexts. However, even in this case we observed a staggering high rate of failures for the new corner cases we added.

Although scanners did not achieve the expected results, this process allowed us to greatly increase our coverage of test cases for attacks supported by the analyzed scanners, and to produce a state of the art testbed for future work.

6 Related Work

As explained in §1 and 2 most of the state of the art and related work differ from ours in the approach, analysis perspective (payload), and scope (XXS in depth). Although we also evaluate the scanner detection rate, we focus on extracting the payloads for analyzing them. While doing this, we try not to trick the scanner into complex contexts, because our goal is to extract as many payloads as possible.

The most closely related work is by Doupé et al. [5], who tested 11 commercial and open-source scanners on a realistic testbed application called “WackoPicko”, containing some of the most popular and known vulnerabilities (e.g., XSS, SQL injections, parameter manipulation) and challenges for scanner crawler modules. In
their application they included reflected and stored XSS, without including DOM, which was one of our main concerns. They also performed comparisons between scanners by arranging them in a lattice ordered based on detected vulnerabilities, differently from our work, which is not comparative. In their evaluation, they try to explain scanners’ results by focusing on the crawling phase (rather than the attack phase as we did) and underline the importance of crawling challenges.

Another closely related work is by Bau et al. [1], which evaluates 8 black-box web vulnerability scanners, on the parameters of the supported classes of vulnerabilities, effectiveness against target vulnerabilities and how representative generated tests were, when compared to real world vulnerabilities. They also implemented a custom web application, containing known vulnerabilities, to use as a target. Their application also includes traps designed to trick scanners into reporting false positives. Their perspective and focus, however, is completely different by ours.

Another work by Doupé et al. [4] takes into consideration limitations in interacting with complex applications, due to the presence of multiple actions that can change the state of an application. They propose a method to infer the application internal state machine by navigating through it, observing differences in output and incrementally producing a model representing its state. They then employ the internal state machine to drive the scanner in finding and fuzzing input vectors to discover vulnerabilities. To evaluate the approach, they ran their state-aware scanner along with three other vulnerability scanners, using as metrics real total detections, false positives and code coverage. Like the previously cited work, [4] differs from our approach in the focus of the analysis.

Several other works perform evaluation of web vulnerability scanners. Vieira et al. [25] tested four web scanners on 300 web services, Khoury et al. [9] evaluated three state of art black-box scanners supporting detection of stored SQL injection vulnerabilities on a custom testbed application, Chen [3] conducted an evaluation of 40 popular scanners on several test applications containing XSS vulnerabilities. However, as previously mentioned, previous work was not XSS specific, and not focused on payloads.

Suto [21, 22] evaluate the accuracy and time needed to run and review and supplement the results of 7 web application scanners. To test scanners they did not use custom testbed applications, opting for vendor-provided ones, which could however lead to biased results. This type of work complement ours and the previously cited ones, because they focus on pure performance indicators rather than (only) on detection capabilities.

7 Conclusions

Our analysis, the first vertical study on XSS vulnerability scanners, produced quality metrics of 6 commercial and open-source products through passive reverse engineering of their testing phases, and manual and automated analysis of their payloads. Furthermore, we created a reliable, reusable and publicly available testbed.

Our results reveal a high variance in the number of distinct payloads used by each scanner, with numbers ranging from an handful to over 800, as well as in the
variety of payload types: the scanners generate from a couple to tenths of unique payload types. The first element is significant when analyzed in conjunction with the number of detected vulnerabilities, because it shows the redundancy and lack of efficiency of some scanners.

We also analyzed the structure of payload templates to assess their quality using a set of specific metrics. This analysis highlighted remarkable discrepancies in the type and structure of payloads: some scanners leverage complex and advanced attack strings designed to trigger vulnerabilities in rare corner cases, others use basic, versatile payloads.

Notably, none of the scanners we assessed was capable of detecting DOM XSS.

Finally, by iterating on payloads that triggered no test cases, we were able to noticeably improve our test application and draw important conclusions about each scanner’s inside workings. One of the key results is that, despite having some kind of awareness about context, all of the tested scanners were found wanting in terms of selecting the attack payloads and optimizing the number of requests produced. A staggering high number of detection failures suggest bugs and instability in the detection engines, while the high variance in types and features of the payloads we inspected makes the case for cooperation in defining common, efficient and reliable payloads and detection techniques.

References

International Conference on Privacy, security, risk and trust (PASSAT). pp. 1095–1101 (Oct 2011)

